Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Routh Janell[original query] |
---|
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States.
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . PLoS One 2020 15 (9) e0238342 Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4-38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19. |
Antibodies to Enteroviruses in Cerebrospinal Fluid of Patients with Acute Flaccid Myelitis.
Mishra N , Ng TFF , Marine RL , Jain K , Ng J , Thakkar R , Caciula A , Price A , Garcia JA , Burns JC , Thakur KT , Hetzler KL , Routh JA , Konopka-Anstadt JL , Nix WA , Tokarz R , Briese T , Oberste MS , Lipkin WI . mBio 2019 10 (4) ![]() ![]() Acute flaccid myelitis (AFM) has caused motor paralysis in >560 children in the United States since 2014. The temporal association of enterovirus (EV) outbreaks with increases in AFM cases and reports of fever, respiratory, or gastrointestinal illness prior to AFM in >90% of cases suggest a role for infectious agents. Cerebrospinal fluid (CSF) from 14 AFM and 5 non-AFM patients with central nervous system (CNS) diseases in 2018 were investigated by viral-capture high-throughput sequencing (VirCapSeq-VERT system). These CSF and serum samples, as well as multiple controls, were tested for antibodies to human EVs using peptide microarrays. EV RNA was confirmed in CSF from only 1 adult AFM case and 1 non-AFM case. In contrast, antibodies to EV peptides were present in CSF of 11 of 14 AFM patients (79%), significantly higher than controls, including non-AFM patients (1/5 [20%]), children with Kawasaki disease (0/10), and adults with non-AFM CNS diseases (2/11 [18%]) (P = 0.023, 0.0001, and 0.0028, respectively). Six of 14 CSF samples (43%) and 8 of 11 sera (73%) from AFM patients were immunoreactive to an EV-D68-specific peptide, whereas the three control groups were not immunoreactive in either CSF (0/5, 0/10, and 0/11; P = 0.008, 0.0003, and 0.035, respectively) or sera (0/2, 0/8, and 0/5; P = 0.139, 0.002, and 0.009, respectively).IMPORTANCE The presence in cerebrospinal fluid of antibodies to EV peptides at higher levels than non-AFM controls supports the plausibility of a link between EV infection and AFM that warrants further investigation and has the potential to lead to strategies for diagnosis and prevention of disease. |
Notes from the Field: Cluster of Acute Flaccid Myelitis in Five Pediatric Patients - Maricopa County, Arizona, 2016.
Iverson SA , Ostdiek S , Prasai S , Engelthaler DM , Kretschmer M , Fowle N , Tokhie HK , Routh J , Sejvar J , Ayers T , Bowers J , Brady S , Rogers S , Nix WA , Komatsu K , Sunenshine R . MMWR Morb Mortal Wkly Rep 2017 66 (28) 758-760 ![]() ![]() In 2016, CDC saw an increase in cases of acute flaccid myelitis (AFM); 144 persons in 37 states and the District of Columbia were confirmed to have AFM. After investigations in California (1) and Colorado (2) in 2014, CDC characterized AFM as an acute flaccid paralysis (AFP) distinguishable by magnetic resonance imaging (MRI) abnormalities of the gray matter of the anterior and posterior spinal cord segments, involving one or more spinal segments (3). Although certain viruses (e.g., nonpoliovirus enteroviruses, adenoviruses, and West Nile virus) can cause rare cases of AFP, and findings from the 2014 outbreak investigations indicated that enterovirus D68 (EV-D68) was temporally associated with AFM, no viral etiology for AFM has been definitively established (3). In September 2016, an acute care hospital in Arizona notified the Maricopa County Department of Public Health (MCDPH) of a suspected case of AFM and subsequent cluster of 11 children who were evaluated with similar neurologic deficits; differential diagnoses included transverse myelitis and AFM. The Maricopa County Department of Public Health, in cooperation with the Arizona Department of Health Services, CDC, the Translational Genomics Research Institute (TGen, Flagstaff, Arizona), and the acute care hospital, initiated an investigation to confirm AFM cases and identify an etiology. | The 2015 Council of State and Territorial Epidemiologists and CDC case definition for probable AFM requires acute onset of flaccid limb weakness and cerebrospinal fluid (CSF) pleocytosis (CSF white blood cell [WBC] count >5/mm3 when corrected for red blood cells). A confirmed case must have an MRI demonstrating lesions restricted primarily to the gray matter of the spinal cord, in addition to acute onset of flaccid limb weakness (4). Based on medical chart abstraction and review of the MRI images, a CDC neurology subject matter expert verified four confirmed cases of AFM and one probable case. Among the six patients whose cases did not meet the AFM confirmed or probable case definition, two had focal limb weakness and pleocytosis (CSF WBC = 7/mm3 and 22/mm3, respectively), but MRI results indicated alternative etiologies (acute disseminated encephalomyelitis and neuromyelitis optica, respectively). The case that met the probable case definition had pleocytosis (CSF WBC = 7/mm3), but MRI findings were inconsistent with AFM, and no other plausible diagnosis was identified. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure