Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-11 (of 11 Records) |
Query Trace: Rolfes Melissa[original query] |
---|
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
Implications of Shortened Quarantine Among Household Contacts of Index Patients with Confirmed SARS-CoV-2 Infection - Tennessee and Wisconsin, April-September 2020.
Rolfes MA , Grijalva CG , Zhu Y , McLean HQ , Hanson KE , Belongia EA , Halasa NB , Kim A , Meece J , Reed C , Talbot HK , Fry AM . MMWR Morb Mortal Wkly Rep 2021 69 (5152) 1633-1637 To prevent further transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), CDC currently recommends that persons who have been in close contact with someone with SARS-CoV-2 infection should quarantine (stay away from other persons) for 14 days after the last known contact.* However, quarantine might be difficult to maintain for a prolonged period. A shorter quarantine might improve compliance, and CDC recommends two options to reduce the duration of quarantine for close contacts without symptoms, based on local circumstances and availability of testing: 1) quarantine can end on day 10 without a test or 2) quarantine can end on day 7 after receiving a negative test result.(†) However, shorter quarantine might permit ongoing disease transmission from persons who develop symptoms or become infectious near the end of the recommended 14-day period. Interim data from an ongoing study of household transmission of SARS-CoV-2 were analyzed to understand the proportion of household contacts that had detectable virus after a shortened quarantine period. Persons who were household contacts of index patients completed a daily symptom diary and self-collected respiratory specimens for 14 days. Specimens were tested for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR). Among 185 household contacts enrolled, 109 (59%) had detectable SARS-CoV-2 at any time; 76% (83/109) of test results were positive within 7 days, and 86% (94 of 109) were positive within 10 days after the index patient's illness onset date. Among household contacts who received negative SARS-CoV-2 test results and were asymptomatic through day 7, there was an 81% chance (95% confidence interval [CI] = 67%-90%) of remaining asymptomatic and receiving negative RT-PCR test results through day 14; this increased to 93% (95% CI = 78%-98%) for household members who were asymptomatic with negative RT-PCR test results through day 10. Although SARS-CoV-2 quarantine periods shorter than 14 days might be easier to adhere to, there is a potential for onward transmission from household contacts released before day 14. |
Transmission of SARS-COV-2 Infections in Households - Tennessee and Wisconsin, April-September 2020.
Grijalva CG , Rolfes MA , Zhu Y , McLean HQ , Hanson KE , Belongia EA , Halasa NB , Kim A , Reed C , Fry AM , Talbot HK . MMWR Morb Mortal Wkly Rep 2020 69 (44) 1631-1634 Improved understanding of transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), within households could aid control measures. However, few studies have systematically characterized the transmission of SARS-CoV-2 in U.S. households (1). Previously reported transmission rates vary widely, and data on transmission rates from children are limited. To assess household transmission, a case-ascertained study was conducted in Nashville, Tennessee, and Marshfield, Wisconsin, commencing in April 2020. In this study, index patients were defined as the first household members with COVID-19-compatible symptoms who received a positive SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test result, and who lived with at least one other household member. After enrollment, index patients and household members were trained remotely by study staff members to complete symptom diaries and obtain self-collected specimens, nasal swabs only or nasal swabs and saliva samples, daily for 14 days. For this analysis, specimens from the first 7 days were tested for SARS-CoV-2 using CDC RT-PCR protocols.(†) A total of 191 enrolled household contacts of 101 index patients reported having no symptoms on the day of the associated index patient's illness onset, and among these 191 contacts, 102 had SARS-CoV-2 detected in either nasal or saliva specimens during follow-up, for a secondary infection rate of 53% (95% confidence interval [CI] = 46%-60%). Among fourteen households in which the index patient was aged <18 years, the secondary infection rate from index patients aged <12 years was 53% (95% CI = 31%-74%) and from index patients aged 12-17 years was 38% (95% CI = 23%-56%). Approximately 75% of secondary infections were identified within 5 days of the index patient's illness onset, and substantial transmission occurred whether the index patient was an adult or a child. Because household transmission of SARS-CoV-2 is common and can occur rapidly after the index patient's illness onset, persons should self-isolate immediately at the onset of COVID-like symptoms, at the time of testing as a result of a high risk exposure, or at the time of a positive test result, whichever comes first. Concurrent to isolation, all members of the household should wear a mask when in shared spaces in the household.(§). |
Severe Acute Respiratory Syndrome Coronavirus 2 Prevalence, Seroprevalence, and Exposure among Evacuees from Wuhan, China, 2020.
Hallowell BD , Carlson CM , Jacobs JR , Pomeroy M , Steinberg J , Tenforde MW , McDonald E , Foster L , Feldstein LR , Rolfes MA , Haynes A , Abedi GR , Odongo GS , Saruwatari K , Rider EC , Douville G , Bhakta N , Maniatis P , Lindstrom S , Thornburg NJ , Lu X , Whitaker BL , Kamili S , Sakthivel SK , Wang L , Malapati L , Murray JR , Lynch B , Cetron M , Brown C , Roohi S , Rotz L , Borntrager D , Ishii K , Moser K , Rasheed M , Freeman B , Lester S , Corbett KS , Abiona OM , Hutchinson GB , Graham BS , Pesik N , Mahon B , Braden C , Behravesh CB , Stewart R , Knight N , Hall AJ , Killerby ME . Emerg Infect Dis 2020 26 (9) 1998-2004 To determine prevalence of, seroprevalence of, and potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among a cohort of evacuees returning to the United States from Wuhan, China, in January 2020, we conducted a cross-sectional study of quarantined evacuees from 1 repatriation flight. Overall, 193 of 195 evacuees completed exposure surveys and submitted upper respiratory or serum specimens or both at arrival in the United States. Nearly all evacuees had taken preventive measures to limit potential exposure while in Wuhan, and none had detectable SARS-CoV-2 in upper respiratory tract specimens, suggesting the absence of asymptomatic respiratory shedding among this group at the time of testing. Evidence of antibodies to SARS-CoV-2 was detected in 1 evacuee, who reported experiencing no symptoms or high-risk exposures in the previous 2 months. These findings demonstrated that this group of evacuees posed a low risk of introducing SARS-CoV-2 to the United States. |
Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States.
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . PLoS One 2020 15 (9) e0238342 Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4-38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19. |
Investigation and Serologic Follow-Up of Contacts of an Early Confirmed Case-Patient with COVID-19, Washington, USA.
Chu VT , Freeman-Ponder B , Lindquist S , Spitters C , Kawakami V , Dyal JW , Clark S , Bruce H , Duchin JS , DeBolt C , Podczervinski S , D'Angeli M , Pettrone K , Zacks R , Vahey G , Holshue ML , Lang M , Burke RM , Rolfes MA , Marlow M , Midgley CM , Lu X , Lindstrom S , Hall AJ , Fry AM , Thornburg NJ , Gerber SI , Pillai SK , Biggs HM . Emerg Infect Dis 2020 26 (8) 1671-1678 We describe the contact investigation for an early confirmed case of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in the United States. Contacts of the case-patient were identified, actively monitored for symptoms, interviewed for a detailed exposure history, and tested for SARS-CoV-2 infection by real-time reverse transcription PCR (rRT-PCR) and ELISA. Fifty contacts were identified and 38 (76%) were interviewed, of whom 11 (29%) reported unprotected face-to-face interaction with the case-patient. Thirty-seven (74%) had respiratory specimens tested by rRT-PCR, and all tested negative. Twenty-three (46%) had ELISA performed on serum samples collected approximately 6 weeks after exposure, and none had detectable antibodies to SARS-CoV-2. Among contacts who were tested, no secondary transmission was identified in this investigation, despite unprotected close interactions with the infectious case-patient. |
First Mildly Ill, Nonhospitalized Case of Coronavirus Disease 2019 (COVID-19) Without Viral Transmission in the United States-Maricopa County, Arizona, 2020.
Scott SE , Zabel K , Collins J , Hobbs KC , Kretschmer MJ , Lach M , Turnbow K , Speck L , White JR , Maldonado K , Howard B , Fowler J , Singh S , Robinson S , Pompa AP , Chatham-Stephens K , Xie A , Cates J , Lindstrom S , Lu X , Rolfes MA , Flanagan M , Sunenshine R . Clin Infect Dis 2020 71 (15) 807-812 BACKGROUND: Coronavirus disease 2019 (COVID-19) causes a range of illness severity. Mild illness has been reported, but whether illness severity correlates with infectivity is unknown. We describe the public health investigation of a mildly ill, non-hospitalized COVID-19 case who traveled to China. METHODS: The case was a Maricopa County resident with multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive specimens collected on January 22, 2020. Contacts were persons exposed to the case on or after the day before case diagnostic specimen collection. Contacts were monitored for 14 days after last known exposure. High-risk contacts had close, prolonged case contact (>/=10 minutes within 2 meters). Medium-risk contacts wore all U.S. Centers for Disease Control and Prevention (CDC)-recommended personal protective equipment during interactions. Nasopharyngeal and oropharyngeal (NP/OP) specimens were collected from the case and high-risk contacts and tested for SARS-CoV-2. RESULTS: Paired case NP/OP specimens were collected for SARS-CoV-2 testing at 11 time points. In 8 pairs (73%), >/=1 specimen tested positive or indeterminate, and in 3 pairs (27%) both tested negative. Specimens collected 18 days after diagnosis tested positive. Sixteen contacts were identified; 11 (69%) had high-risk exposure, including 1 intimate contact, and 5 (31%) had medium-risk exposure. In total, 35 high-risk contact NP/OP specimens were collected for SARS-CoV-2 testing; all 35 pairs (100%) tested negative. CONCLUSIONS: This report demonstrates that SARS-CoV-2 infection can cause mild illness and result in positive tests for up to 18 days after diagnosis, without evidence of transmission to close contacts. These data might inform public health strategies to manage individuals with asymptomatic infection or mild illness. |
First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA.
Ghinai I , McPherson TD , Hunter JC , Kirking HL , Christiansen D , Joshi K , Rubin R , Morales-Estrada S , Black SR , Pacilli M , Fricchione MJ , Chugh RK , Walblay KA , Ahmed NS , Stoecker WC , Hasan NF , Burdsall DP , Reese HE , Wallace M , Wang C , Moeller D , Korpics J , Novosad SA , Benowitz I , Jacobs MW , Dasari VS , Patel MT , Kauerauf J , Charles EM , Ezike NO , Chu V , Midgley CM , Rolfes MA , Gerber SI , Lu X , Lindstrom S , Verani JR , Layden JE . Lancet 2020 395 (10230) 1137-1144 BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in China in December, 2019. In January, 2020, state, local, and federal public health agencies investigated the first case of COVID-19 in Illinois, USA. METHODS: Patients with confirmed COVID-19 were defined as those with a positive SARS-CoV-2 test. Contacts were people with exposure to a patient with COVID-19 on or after the patient's symptom onset date. Contacts underwent active symptom monitoring for 14 days following their last exposure. Contacts who developed fever, cough, or shortness of breath became persons under investigation and were tested for SARS-CoV-2. A convenience sample of 32 asymptomatic health-care personnel contacts were also tested. FINDINGS: Patient 1-a woman in her 60s-returned from China in mid-January, 2020. One week later, she was hospitalised with pneumonia and tested positive for SARS-CoV-2. Her husband (Patient 2) did not travel but had frequent close contact with his wife. He was admitted 8 days later and tested positive for SARS-CoV-2. Overall, 372 contacts of both cases were identified; 347 underwent active symptom monitoring, including 152 community contacts and 195 health-care personnel. Of monitored contacts, 43 became persons under investigation, in addition to Patient 2. These 43 persons under investigation and all 32 asymptomatic health-care personnel tested negative for SARS-CoV-2. INTERPRETATION: Person-to-person transmission of SARS-CoV-2 occurred between two people with prolonged, unprotected exposure while Patient 1 was symptomatic. Despite active symptom monitoring and testing of symptomatic and some asymptomatic contacts, no further transmission was detected. FUNDING: None. |
Active Monitoring of Persons Exposed to Patients with Confirmed COVID-19 - United States, January-February 2020.
Burke RM , Midgley CM , Dratch A , Fenstersheib M , Haupt T , Holshue M , Ghinai I , Jarashow MC , Lo J , McPherson TD , Rudman S , Scott S , Hall AJ , Fry AM , Rolfes MA . MMWR Morb Mortal Wkly Rep 2020 69 (9) 245-246 In December 2019, an outbreak of coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, began in Wuhan, China (1). The disease spread widely in China, and, as of February 26, 2020, COVID-19 cases had been identified in 36 other countries and territories, including the United States. Person-to-person transmission has been widely documented, and a limited number of countries have reported sustained person-to-person spread.* On January 20, state and local health departments in the United States, in collaboration with teams deployed from CDC, began identifying and monitoring all persons considered to have had close contact(dagger) with patients with confirmed COVID-19 (2). The aims of these efforts were to ensure rapid evaluation and care of patients, limit further transmission, and better understand risk factors for transmission. |
Effects of Influenza Vaccination in the United States during the 2018-2019 Influenza Season.
Chung JR , Rolfes MA , Flannery B , Prasad P , O'Halloran A , Garg S , Fry AM , Singleton JA , Patel M , Reed C . Clin Infect Dis 2020 71 (8) e368-e376 BACKGROUND: Current multivalent influenza vaccine products provide protection against influenza A(H1N1)pdm09, A(H3N2), and B lineage viruses. The 2018-2019 influenza season in the US included prolonged circulation of both A(H1N1)pdm09 viruses well-matched to the vaccine strain, and A(H3N2) viruses the majority of which were mismatched to the vaccine. We estimate the number of vaccine-prevented influenza-associated illnesses, medical visits, hospitalizations, and deaths for the season. METHODS: We used a mathematical model and Monte Carlo algorithm to estimate numbers and 95% uncertainty intervals (UI) of influenza-associated outcomes prevented by vaccination in the US. The model incorporated age-specific estimates of national 2018-2019 influenza vaccine coverage, influenza virus-specific vaccine effectiveness from the US Influenza Vaccine Effectiveness Network, and disease burden estimated from population-based rates of influenza-associated hospitalizations through the Influenza Hospitalization Surveillance Network. RESULTS: Influenza vaccination prevented an estimated 4.4 million (95% UI: 3.4 million-7.1 million) illnesses, 2.3 million (95% UI: 1.8 million-3.8 million) medical visits, 58,000 (95% UI: 30,000-156,000) hospitalizations, and 3,500 (95% UI: 1,000-13,000) deaths due to influenza viruses during the US 2018-2019 influenza season. Vaccination prevented 14% of projected hospitalizations associated with A(H1N1)pdm09 overall and 43% among young children aged 6 months-4 years. CONCLUSIONS: Influenza vaccination averted substantial influenza-associated disease including hospitalizations and deaths in the US, primarily due to effectiveness against A(H1N1)pdm09. Our findings underscore the value of influenza vaccination, highlighting that vaccines measurably decrease illness and associated health care utilization even in a season in which a vaccine component does not match to a circulating virus. |
Influenza-Associated Parotitis During the 2014-2015 Influenza Season in the United States.
Rolfes MA , Millman AJ , Talley P , Elbadawi LI , Kramer NA , Barnes JR , Blanton L , Davis JP , Cole S , Dreisig JJ , Garten R , Haupt T , Jackson MA , Kocharian A , Leifer D , Lynfield R , Martin K , McHugh L , Robinson S , Turabelidze G , Webber LA , Pearce Weinberg M , Wentworth DE , Finelli L , Jhung MA . Clin Infect Dis 2018 67 (4) 485-492 Background: During the 2014-2015 influenza season in the United States, 256 cases of influenza-associated parotitis were reported from 27 states. We conducted a case-control study and laboratory investigation to further describe this rare clinical manifestation of influenza. Methods: During February 2015-April 2015, we interviewed 50 cases (with parotitis) and 124 ill controls (without parotitis) with laboratory-confirmed influenza; participants resided in 11 states and were matched by age, state, hospital admission status, and specimen collection date. Influenza viruses were characterized using real-time polymerase chain reaction and next-generation sequencing. We compared cases and controls using conditional logistic regression. Specimens from additional reported cases were also analyzed. Results: Cases, 73% of whom were aged <20 years, experienced painful (86%), unilateral (68%) parotitis a median of 4 (range, 0-16) days after onset of systemic or respiratory symptoms. Cases were more likely than controls to be male (76% vs 51%; P = .005). We detected influenza A(H3N2) viruses, genetic group 3C.2a, in 100% (32/32) of case and 92% (105/108) of control specimens sequenced (P = .22). Influenza B and A(H3N2) 3C.3 and 3C.3b genetic group virus infections were detected in specimens from additional cases. Conclusions: Influenza-associated parotitis, as reported here and in prior sporadic case reports, seems to occur primarily with influenza A(H3N2) virus infection. Because of the different clinical and infection control considerations for mumps and influenza virus infections, we recommend clinicians consider influenza in the differential diagnoses among patients with acute parotitis during the influenza season. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure