Last data update: Jan 21, 2025. (Total: 48615 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Rogier EW[original query] |
---|
Editorial: Current research on serological analyses of infectious diseases.
Rogier EW , Giorgi E , Tetteh K , Sepúlveda N . Front Med (Lausanne) 2023 10 1154584 Serology based on antibody detection or quantification is a key research tool in the analysis of human infectious diseases. In Public Health and Epidemiology, it allows the estimation of the disease burden beyond the classical measures based on the presence or frequency of active infections in the population (1, 2). It also allows the prediction of when individuals were previously infected for tailoring novel disease control strategies (3, 4). In Medicine, it can assist in diagnosis (5), in the inference of disease etiology and pathology (6–8), and in the stratification of patients for better disease management and treatment (9). All these research opportunities motivated a discussion about the creation of a World Serum bank for infectious diseases (10–12). |
Multiplex serology for measurement of IgG antibodies against eleven infectious diseases in a national serosurvey: Haiti 2014-2015
Chan Y , Martin D , Mace KE , Jean SE , Stresman G , Drakeley C , Chang MA , Lemoine JF , Udhayakumar V , Lammie PJ , Priest JW , Rogier EW . Front Public Health 2022 10 897013 BACKGROUND: Integrated surveillance for multiple diseases can be an efficient use of resources and advantageous for national public health programs. Detection of IgG antibodies typically indicates previous exposure to a pathogen but can potentially also serve to assess active infection status. Serological multiplex bead assays have recently been developed to simultaneously evaluate exposure to multiple antigenic targets. Haiti is an island nation in the Caribbean region with multiple endemic infectious diseases, many of which have a paucity of data for population-level prevalence or exposure. METHODS: A nationwide serosurvey occurred in Haiti from December 2014 to February 2015. Filter paper blood samples (n = 4,438) were collected from participants in 117 locations and assayed for IgG antibodies on a multiplex bead assay containing 15 different antigens from 11 pathogens: Plasmodium falciparum, Toxoplasma gondii, lymphatic filariasis roundworms, Strongyloides stercoralis, chikungunya virus, dengue virus, Chlamydia trachomatis, Treponema pallidum, enterotoxigenic Escherichia coli, Entamoeba histolytica, and Cryptosporidium parvum. RESULTS: Different proportions of the Haiti study population were IgG seropositive to the different targets, with antigens from T. gondii, C. parvum, dengue virus, chikungunya virus, and C. trachomatis showing the highest rates of seroprevalence. Antibody responses to T. pallidum and lymphatic filariasis were the lowest, with <5% of all samples IgG seropositive to antigens from these pathogens. Clear trends of increasing seropositivity and IgG levels with age were seen for all antigens except those from chikungunya virus and E. histolytica. Parametric models were able to estimate the rate of seroconversion and IgG acquisition per year for residents of Haiti. CONCLUSIONS: Multiplex serological assays can provide a wealth of information about population exposure to different infectious diseases. This current Haitian study included IgG targets for arboviral, parasitic, and bacterial infectious diseases representing multiple different modes of host transmission. Some of these infectious diseases had a paucity or complete absence of published serological studies in Haiti. Clear trends of disease burden with respect to age and location in Haiti can be used by national programs and partners for follow-up studies, resource allocation, and intervention planning. |
Establishing a National Molecular Surveillance Program for the Detection of Plasmodium falciparum Markers of Resistance to Antimalarial Drugs in Haiti.
Hamre KES , Pierre B , Namuyinga R , Mace K , Rogier EW , Udhayakumar V , Boncy J , Lemoine JF , Chang MA . Am J Trop Med Hyg 2020 103 (6) 2217-2223 Chloroquine remains the first-line treatment for uncomplicated malaria in Haiti, and until recently, sulfadoxine-pyrimethamine was the second-line treatment. A few studies have reported the presence of molecular markers for resistance in Plasmodium falciparum parasites, and in vivo therapeutic efficacy studies (TESs) have been limited. Recognizing the history of antimalarial resistance around the globe and the challenges of implementing TESs in low-endemic areas, the Ministry of Health established a surveillance program to detect molecular markers of antimalarial resistance in Haiti. Sentinel sites were purposefully selected in each of Haiti's 10 administrative departments; an 11th site was selected in Grand'Anse, the department with the highest number of reported cases. Factors considered for site selection included the number of malaria cases identified, observed skills of laboratory technicians conducting rapid diagnostic tests (RDTs), stock and storage conditions of RDTs, accuracy of data reporting to the national surveillance system, and motivation to participate. Epidemiologic data from 2,437 patients who tested positive for malaria from March 2016 to December 2018 and consented to provide samples for molecular sequencing are presented here. Of these, 936 (38.4%) patients reported self-treatment with any medication since the onset of their illness before diagnosis; overall, 69 (2.8%) patients reported taking an antimalarial. Ten patients (0.4%) reported travel away from their home for at least one night in the month before diagnosis. Establishing a molecular surveillance program for antimalarial drug resistance proved practical and feasible in a resource-limited setting and will provide the evidence needed to make informed treatment policy decisions at the national level. |
Use of bead-based serologic assay to evaluate chikungunya virus epidemic, Haiti
Rogier EW , Moss DM , Mace KE , Chang M , Jean SE , Bullard SM , Lammie PJ , Lemoine JF , Udhayakumar V . Emerg Infect Dis 2018 24 (6) 995-1001 The index case of chikungunya virus (CHIKV) in Haiti was reported during early 2014; the vector, the pervasive Aedes aegypti mosquito, promoted rapid spread throughout the country. During December 2014-February 2015, we collected blood samples from 4,438 persons at 154 sites (62 urban, 92 rural) throughout Haiti and measured CHIKV IgG by using a multiplex bead assay. Overall CHIKV seroprevalence was 57.9%; differences between rural (mean 44.9%) and urban (mean 78.4%) areas were pronounced. Logistic modeling identified the urban environment as a strong predictor of CHIKV exposure (adjusted odds ratio 3.34, 95% CI 2.38-4.69), and geographic elevation provided a strong negative correlation. We observed no correlation between age and antibody positivity or titer. Our findings demonstrated through serologic testing the recent and rapid dissemination of the arbovirus throughout the country. These results show the utility of serologic data to conduct epidemiologic studies of quickly spreading mosquitoborne arboviruses. |
Correlation of biomarker expression in colonic mucosa with disease phenotype in Crohn's disease and ulcerative colitis
Bruno ME , Rogier EW , Arsenescu RI , Flomenhoft DR , Kurkjian CJ , Ellis GI , Kaetzel CS . Dig Dis Sci 2015 60 (10) 2976-84 BACKGROUND: Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are characterized by chronic intestinal inflammation due to immunological, microbial, and environmental factors in genetically predisposed individuals. Advances in the diagnosis, prognosis, and treatment of IBD require the identification of robust biomarkers that can be used for molecular classification of diverse disease presentations. We previously identified five genes, RELA, TNFAIP3 (A20), PIGR, TNF, and IL8, whose mRNA levels in colonic mucosal biopsies could be used in a multivariate analysis to classify patients with CD based on disease behavior and responses to therapy. AIM: We compared expression of these five biomarkers in IBD patients classified as having CD or UC, and in healthy controls. RESULTS: Patients with CD were characterized as having decreased median expression of TNFAIP3, PIGR, and TNF in non-inflamed colonic mucosa as compared to healthy controls. By contrast, UC patients exhibited decreased expression of PIGR and elevated expression of IL8 in colonic mucosa compared to healthy controls. A multivariate analysis combining mRNA levels for all five genes resulted in segregation of individuals based on disease presentation (CD vs. UC) as well as severity, i.e., patients in remission versus those with acute colitis at the time of biopsy. CONCLUSION: We propose that this approach could be used as a model for molecular classification of IBD patients, which could further be enhanced by the inclusion of additional genes that are identified by functional studies, global gene expression analyses, and genome-wide association studies. |
Lessons from mother: long-term impact of antibodies in breast milk on the gut microbiota and intestinal immune system of breastfed offspring
Rogier EW , Frantz AL , Bruno ME , Wedlund L , Cohen DA , Stromberg AJ , Kaetzel CS . Gut Microbes 2014 5 (5) 663-8 From birth to adulthood, the gut microbiota matures from a simple community dominated by a few major bacterial groups into a highly diverse ecosystem that provides both benefits and challenges to the host. Currently there is great interest in identifying environmental and host factors that shape the development of our gut microbiota. Breast milk is a rich source of maternal antibodies, which provide the first source of adaptive immunity in the newborn's intestinal tract. In this addendum, we summarize our recent data demonstrating that maternal antibodies in breast milk promote long-term intestinal homeostasis in suckling mice by regulating the gut microbiota and host gene expression. We also discuss important unanswered questions, future directions for research in this field, and implications for human health and disease. |
Secretory IgA is concentrated in the outer layer of colonic mucus along with gut bacteria
Rogier EW , Frantz AL , Bruno ME , Kaetzel CS . Pathogens 2014 3 (2) 390-403 Antibodies of the secretory IgA (SIgA) class comprise the first line of antigen-specific immune defense, preventing access of commensal and pathogenic microorganisms and their secreted products into the body proper. In addition to preventing infection, SIgA shapes the composition of the gut microbiome. SIgA is transported across intestinal epithelial cells into gut secretions by the polymeric immunoglobulin receptor (pIgR). The epithelial surface is protected by a thick network of mucus, which is composed of a dense, sterile inner layer and a loose outer layer that is colonized by commensal bacteria. Immunofluorescence microscopy of mouse and human colon tissues demonstrated that the SIgA co-localizes with gut bacteria in the outer mucus layer. Using mice genetically deficient for pIgR and/or mucin-2 (Muc2, the major glycoprotein of intestinal mucus), we found that Muc2 but not SIgA was necessary for excluding gut bacteria from the inner mucus layer in the colon. Our findings support a model whereby SIgA is anchored in the outer layer of colonic mucus through combined interactions with mucin proteins and gut bacteria, thus providing immune protection against pathogens while maintaining a mutually beneficial relationship with commensals. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure