Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-30 (of 62 Records) |
Query Trace: Roberts JR[original query] |
---|
Assessment of dermal sensitization by nickel salts in a novel humanized TLR-4 mouse model
Roach KA , Anderson SE , Waggy C , Aldinger J , Stefaniak AB , Roberts JR . J Immunotoxicol 2024 21 (1) 2414979 ![]() The fundamental goal of this study was to determine the potential utility of a novel humanized Toll-like receptor-4 (hTLR-4) mouse model for future in vivo studies of nickel allergy. First, mice of both sexes and hTLR-4 expression profiles were incorporated into a Local Lymph Node Assay (LLNA) to assess skin sensitization. Next, a set of hTLR-4 hTLR-4-positive mice (female and male groups) was similarly exposed to vehicle control (VC) or 10% NiSO(4) on Days 1, 2, and 3. Mice were euthanized on Day 10, lymph node (LN) cellularity was assessed, LN and spleen cells were phenotyped, and serum was collected to quantify circulating cytokine and IgE levels. In the LLNA, hTLR-4-positive mice of both sexes exhibited enhanced responsivity to nickel. NiSO(4) (10%) had a stimulation index (SI) of 3.7 (females) and 3.8 (males) in hTLR-4-positive animals, and an SI of 0.5 (females) and 0.8 (males) in hTLR-4 hTLR-4-negative mice. In the 10d study, hTLR-4-positive mice exposed to 10% NiSO(4) exhibited increased LN cellularity (6.0× increase in females, 3.2× in males) and significantly higher concentrations of circulating IgE (4.1× increase in females, 3.4× in males). Significant increases in serum interferon (IFN)-γ, interleukin (IL)-4, and IL-5 levels were seen in female mice, while altered concentrations of IL-4 and IL-10 were detected in male mice. The results of this study ultimately demonstrate that murine expression of hTLR-4 confers enhanced susceptibility to dermal sensitization by nickel, and consequently, the hTLR-4 mouse model represents a viable approach for future studies of nickel allergy in vivo. |
Effects of inhaled tier-2 diesel engine exhaust on immunotoxicity in a rat model: A hazard identification study. Part II. Immunotoxicology
Weatherly LM , Shane HL , Baur R , Lukomska E , McKinney W , Roberts JR , Fedan JS , Anderson SE . Toxicol Rep 2024 12 135-147 Diesel exhaust (DE) is an air pollutant containing gaseous compounds and particulate matter. Diesel engines are common on gas extraction and oil sites, leading to complex DE exposure to a broad range of compounds through occupational settings. The US EPA concluded that short-term exposure to DE leads to allergic inflammatory disorders of the airways. To further evaluate the immunotoxicity of DE, the effects of whole-body inhalation of 0.2 and 1 mg/m(3) DE (total carbon; 6 h/d for 4 days) were investigated 1-, 7-, and 27-days post exposure in Sprague-Dawley rats using an occupationally relevant exposure system. DE exposure of 1 mg/m(3) increased total cellularity, number of CD4+ and CD8+ T-cells, and B-cells at 1 d post-exposure in the lung lymph nodes. At 7 d post-exposure to 1 mg/m(3), cellularity and the number of CD4+ and CD8+ T-cells decreased in the LLNs. In the bronchoalveolar lavage, B-cell number and frequency increased at 1 d post-exposure, Natural Killer cell number and frequency decreased at 7 d post-exposure, and at 27 d post-exposure CD8+ T-cell and CD11b+ cell number and frequency decreased with 0.2 mg/m(3) exposure. In the spleen, 0.2 mg/m(3) increased CD4+ T-cell frequency at 1 and 7 d post-exposure and at 27 d post-exposure increased CD4+ and CD8+ T-cell number and CD8+ T-cell frequency. B-cells were the only immune cell subset altered in the three tissues (spleen, LLNs, and BALF), suggesting the induction of the adaptive immune response. The increase in lymphocytes in several different organ types also suggests an induction of a systemic inflammatory response occurring following DE exposure. These results show that DE exposure induced modifications of cellularity of phenotypic subsets that may impair immune function and contribute to airway inflammation induced by DE exposure in rats. |
Toxicological effects of inhaled crude oil vapor
Fedan JS , Thompson JA , Sager TM , Roberts JR , Joseph P , Krajnak K , Kan H , Sriram K , Weatherly LM , Anderson SE . Curr Environ Health Rep 2024 PURPOSE OF REVIEW: The purpose of this review is to assess the toxicological consequences of crude oil vapor (COV) exposure in the workplace through evaluation of the most current epidemiologic and laboratory-based studies in the literature. RECENT FINDINGS: Crude oil is a naturally occuring mixture of hydrocarbon deposits, inorganic and organic chemical compounds. Workers engaged in upstream processes of oil extraction are exposed to a number of risks and hazards, including getting crude oil on their skin or inhaling crude oil vapor. There have been several reports of workers who died as a result of inhalation of high levels of COV released upon opening thief hatches atop oil storage tanks. Although many investigations into the toxicity of specific hydrocarbons following inhalation during downstream oil processing have been conducted, there is a paucity of information on the potential toxicity of COV exposure itself. This review assesses current knowledge of the toxicological consequences of exposures to COV in the workplace. |
Biological effects of inhaled crude oil vapor. III. Pulmonary inflammation, cytotoxicity, and gene expression profile
Sager TM , Joseph P , Umbright CM , Hubbs AF , Barger M , Kashon ML , Fedan JS , Roberts JR . Inhal Toxicol 2023 35 1-13 ![]() OBJECTIVE: Workers may be exposed to vapors emitted from crude oil in upstream operations in the oil and gas industry. Although the toxicity of crude oil constituents has been studied, there are very few in vivo investigations designed to mimic crude oil vapor (COV) exposures that occur in these operations. The goal of the current investigation was to examine lung injury, inflammation, oxidant generation, and effects on the lung global gene expression profile following a whole-body acute or sub-chronic inhalation exposure to COV. MATERIALS AND METHODS: To conduct this investigation, rats were subjected to either a whole-body acute (6 hr) or a sub-chronic (28 d) inhalation exposure (6 hr/d × 4 d/wk × 4 wk) to COV (300 ppm; Macondo well surrogate oil). Control rats were exposed to filtered air. One and 28 d after acute exposure, and 1, 28, and 90 d following sub-chronic exposure, bronchoalveolar lavage was performed on the left lung to collect cells and fluid for analyses, the apical right lobe was preserved for histopathology, and the right cardiac and diaphragmatic lobes were processed for gene expression analyses. RESULTS: No exposure-related changes were identified in histopathology, cytotoxicity, or lavage cell profiles. Changes in lavage fluid cytokines indicative of inflammation, immune function, and endothelial function after sub-chronic exposure were limited and varied over time. Minimal gene expression changes were detected only at the 28 d post-exposure time interval in both the exposure groups. CONCLUSION: Taken together, the results from this exposure paradigm, including concentration, duration, and exposure chamber parameters, did not indicate significant and toxicologically relevant changes in markers of injury, oxidant generation, inflammation, and gene expression profile in the lung. |
Examination of the exposome in an animal model: The impact of high fat diet and rat strain on local and systemic immune markers following occupational welding fume exposure.
Roach KA , Kodali V , Shoeb M , Meighan T , Kashon M , Stone S , McKinney W , Erdely A , Zeidler-Erdely PC , Roberts JR , Antonini JM . Toxicol Appl Pharmacol 2023 464 116436 ![]() The goal of this study was to investigate the impact of multiple exposomal factors (genetics, lifestyle factors, environmental/occupational exposures) on pulmonary inflammation and corresponding alterations in local/systemic immune parameters. Accordingly, male Sprague-Dawley (SD) and Brown Norway (BN) rats were maintained on either regular (Reg) or high fat (HF) diets for 24wk. Welding fume (WF) exposure (inhalation) occurred between 7 and 12wk. Rats were euthanized at 7, 12, and 24wk to evaluate local and systemic immune markers corresponding to the baseline, exposure, and recovery phases of the study, respectively. At 7wk, HF-fed animals exhibited several immune alterations (blood leukocyte/neutrophil number, lymph node B-cell proportionality)-effects which were more pronounced in SD rats. Indices of lung injury/inflammation were elevated in all WF-exposed animals at 12wk; however, diet appeared to preferentially impact SD rats at this time point, as several inflammatory markers (lymph node cellularity, lung neutrophils) were further elevated in HF over Reg animals. Overall, SD rats exhibited the greatest capacity for recovery by 24wk. In BN rats, resolution of immune alterations was further compromised by HF diet, as many exposure-induced alterations in local/systemic immune markers were still evident in HF/WF animals at 24wk. Collectively, HF diet appeared to have a greater impact on global immune status and exposure-induced lung injury in SD rats, but a more pronounced effect on inflammation resolution in BN rats. These results illustrate the combined impact of genetic, lifestyle, and environmental factors in modulating immunological responsivity and emphasize the importance of the exposome in shaping biological responses. |
Influence of impurities from manufacturing process on the toxicity profile of boron nitride nanotubes
Kodali V , Kim KS , Roberts JR , Bowers L , Wolfarth MG , Hubczak J , Xin X , Eye T , Friend S , Stefaniak AB , Leonard SS , Jakubinek M , Erdely A . Small 2022 18 (52) e2203259 The toxicity of boron nitride nanotubes (BNNTs) has been the subject of conflicting reports, likely due to differences in the residuals and impurities that can make up to 30-60% of the material produced based on the manufacturing processes and purification employed. Four BNNTs manufactured by induction thermal plasma process with a gradient of BNNT purity levels achieved through sequential gas purification, water and solvent washing, allowed assessing the influence of these residuals/impurities on the toxicity profile of BNNTs. Extensive characterization including infrared and X-ray spectroscopy, thermogravimetric analysis, size, charge, surface area, and density captured the alteration in physicochemical properties as the material went through sequential purification. The material from each step is screened using acellular and in vitro assays for evaluating general toxicity, mechanisms of toxicity, and macrophage function. As the material increased in purity, there are more high-aspect-ratio particulates and a corresponding distinct increase in cytotoxicity, nuclear factor-κB transcription, and inflammasome activation. There is no alteration in macrophage function after BNNT exposure with all purity grades. The cytotoxicity and mechanism of screening clustered with the purity grade of BNNTs, illustrating that greater purity of BNNT corresponds to greater toxicity. |
Understanding toxicity associated with boron nitride nanotubes: Review of toxicity studies, exposure assessment at manufacturing facilities, and read-across
Kodali V , Roberts JR , Glassford E , Gill R , Friend S , Dunn KL , Erdely A . J Mater Res 2022 37 (24) 4620-4638 Boron nitride nanotubes (BNNT) are produced by many different methods leading to variances in physicochemical characteristics and impurities in the final product. These differences can alter the toxicity profile. The importance of understanding the potential pathological implications of this high aspect ratio nanomaterial is increasing as new approaches to synthesize and purify in large scale are being developed. In this review, we discuss the various factors of BNNT production that can influence its toxicity followed by summarizing the toxicity findings from in vitro and in vivo studies conducted to date, including a review of particle clearance observed with various exposure routes. To understand the risk to workers and interpret relevance of toxicological findings, exposure assessment at manufacturing facilities was discussed. Workplace exposure assessment of BNNT from two manufacturing facilities measured boron concentrations in personal breathing zones from non-detectable to 0.95 µg/m3 and TEM structure counts of 0.0123 ± 0.0094 structures/cm3, concentrations well below what was found with other engineered high aspect ratio nanomaterials like carbon nanotubes and nanofibers. Finally, using a purified BNNT, a “read-across” toxicity assessment was performed to demonstrate how known hazard data and physicochemical characteristics can be utilized to evaluate potential inhalation toxicity concerns. Graphical [Figure not available: see fulltext.]. © 2022, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. |
Biological effects of inhaled crude oil. VI. Immunotoxicity
Weatherly LM , Shane HL , Baur R , Lukomska E , Roberts JR , Fedan JS , Anderson SE . Toxicol Appl Pharmacol 2022 449 116100 Crude oil is an unrefined petroleum product that is a mixture of hydrocarbons and other organic material. Studies on the individual components of crude oil and crude oil exposure itself suggest it has immunomodulatory potential. As investigations of the immunotoxicity of crude oil focus mainly on ingestion and dermal exposure, the effects of whole-body inhalation of 300ppm crude oil vapor [COV; acute inhalation exposure: (6h1 d); or a 28 d sub-chronic exposure (6h/d4 d/wk.4 wks)] was investigated 1, 28, and 90 d post-exposure in Sprague-Dawley rats. Acute exposure increased bronchoalveolar lavage (BAL) fluid cellularity, CD4+ and CD8+ cells, and absolute and percent CDllb+ cells only at 1 d post-exposure; additionally, NK cell activity was suppressed. Sub-chronic exposure resulted in a decreased frequency of CD4+ T-cells at 1 d post-exposure and an increased number and frequency of B-cells at 28 d post-exposure in the lung-associated lymph nodes. A significant increase in the number and frequency of B-cells was observed in the spleen at 1 d post-exposure; however, NK cell activity was suppressed at this time point. No effect on cellularity was identified in the BALF. No change in the IgM response to sheep red blood cells was observed. The findings indicate that crude oil inhalation exposure resulted in alterations in cellularity of phenotypic subsets that may impair immune function in rats. |
Pulmonary toxicity and gene expression changes in response to whole-body inhalation exposure to multi-walled carbon nanotubes in rats
Sager TM , Umbright CM , Mustafa GM , Roberts JR , Orandle MS , Cumpston JL , McKinney WG , Boots T , Kashon ML , Joseph P . Inhal Toxicol 2022 34 1-19 Purpose: To investigate the molecular mechanisms underlying the pulmonary toxicity induced by exposure to one form of multi-walled carbon nanotubes (MWCNT-7).Materials and methods: Rats were exposed, by whole-body inhalation, to air or an aerosol containing MWCNT-7 particles at target cumulative doses (concentration x time) ranging from 22.5 to 180 (mg/m(3))h over a three-day (6 hours/day) period and toxicity and global gene expression profiles were determined in the lungs.Results: MWCNT-7 particles, associated with alveolar macrophages (AMs), were detected in rat lungs following the exposure. Mild to moderate lung pathological changes consisting of increased cellularity, thickening of the alveolar wall, alveolitis, fibrosis, and granuloma formation were detected. Bronchoalveolar lavage (BAL) toxicity parameters such as lactate dehydrogenase activity, number of AMs and polymorphonuclear leukocytes (PMNs), intracellular oxidant generation by phagocytes, and levels of cytokines were significantly (p < 0.05) increased in response to exposure to MWCNT-7. Global gene expression profiling identified several significantly differentially expressed genes (fold change >1.5 and FDR p value <0.05) in all the MWCNT-7 exposed rats. Bioinformatic analysis of the gene expression data identified significant enrichment of several diseases/biological function categories (for example, cancer, leukocyte migration, inflammatory response, mitosis, and movement of phagocytes) and canonical pathways (for example, kinetochore metaphase signaling pathway, granulocyte and agranulocyte adhesion and diapedesis, acute phase response, and LXR/RXR activation). The alterations in the lung toxicity parameters and gene expression changes exhibited a dose-response to the MWCNT exposure.Conclusions: Taken together, the data provided insights into the molecular mechanisms underlying the pulmonary toxicity induced by inhalation exposure of rats to MWCNT-7. |
Lung toxicity and gene expression changes in response to whole-body inhalation exposure to cellulose nanocrystal in rats.
Joseph P , Umbright CM , Roberts JR , Cumpston JL , Orandle MS , McKinney WG , Sager TM . Inhal Toxicol 2021 33 (2) 1-15 ![]() OBJECTIVE: Human exposure to cellulose nanocrystal (CNC) is possible during the production and/or use of products containing CNC. The objectives of the current study were to determine the lung toxicity of CNC and the underlying molecular mechanisms of the toxicity. METHODS: Rats were exposed to air or CNC (20 mg/m(3), six hours/day, 14 d) by whole-body inhalation and lung toxicity and global gene expression profile were determined. RESULTS: Significant increases in lactate dehydrogenase activity, pro-inflammatory cytokine levels, phagocyte oxidant production, and macrophage and neutrophil counts were detected in the bronchoalveolar lavage cells or fluid from the CNC exposed rats. Mild lung histological changes, such as the accumulation of macrophages and neutrophils, were detected in the CNC exposed rats. Gene expression profiling by next generation sequencing identified 531 genes whose expressions were significantly different in the lungs of the CNC exposed rats, compared with the controls. Bioinformatic analysis of the lung gene expression data identified significant enrichment in several biological functions and canonical pathways including those related to inflammation (cellular movement, immune cell trafficking, inflammatory diseases and response, respiratory disease, complement system, acute phase response, leukocyte extravasation signaling, granulocyte and agranulocyte adhesion and diapedesis, IL-10 signaling, and phagosome formation and maturation) and oxidative stress (NRF2-mediated oxidative stress response, production of nitric oxide and reactive oxygen species in macrophages, and free radical scavenging). CONCLUSION: Our data demonstrated that inhalation exposure of rats to CNC resulted in lung toxicity mediated mainly through the induction of inflammation and oxidative stress. |
Biological effects of inhaled hydraulic fracturing sand dust. IX. Summary and significance
Anderson SE , Barger M , Batchelor TP , Bowers LN , Coyle J , Cumpston A , Cumpston JL , Cumpston JB , Dey RD , Dozier AK , Fedan JS , Friend S , Hubbs AF , Jackson M , Jefferson A , Joseph P , Kan H , Kashon ML , Knepp AK , Kodali V , Krajnak K , Leonard SS , Lin G , Long C , Lukomska E , Marrocco A , Marshall N , Mc Kinney W , Morris AM , Olgun NS , Park JH , Reynolds JS , Roberts JR , Russ KA , Sager TM , Shane H , Snawder JE , Sriram K , Thompson JA , Umbright CM , Waugh S , Zheng W . Toxicol Appl Pharmacol 2020 409 115330 An investigation into the potential toxicological effects of fracking sand dust (FSD), collected from unconventional gas drilling sites, has been undertaken, along with characterization of their chemical and biophysical properties. Using intratracheal instillation of nine FSDs in rats and a whole body 4-d inhalation model for one of the FSDs, i.e., FSD 8, and related in vivo and in vitro experiments, the effects of nine FSDs on the respiratory, cardiovascular and immune systems, brain and blood were reported in the preceding eight tandem papers. Here, a summary is given of the key observations made in the organ systems reported in the individual studies. The major finding that inhaled FSD 8 elicits responses in extra-pulmonary organ systems is unexpected, as is the observation that the pulmonary effects of inhaled FSD 8 are attenuated relative to forms of crystalline silica more frequently used in animal studies, i.e., MIN-U-SIL®. An attempt is made to understand the basis for the extra-pulmonary toxicity and comparatively attenuated pulmonary toxicity of FSD 8. |
Welding fume inhalation exposure and high-fat diet change lipid homeostasis in rat liver
Boyce GR , Shoeb M , Kodali V , Meighan TG , Roach KA , McKinney W , Stone S , Powell MJ , Roberts JR , Zeidler-Erdely PC , Erdely A , Antonini JM . Toxicol Rep 2020 7 1350-1355 It is estimated that greater than 1 million workers are exposed to welding fume (WF) by inhalation daily. The potentially toxic metals found in WF are known to cause multiple adverse pulmonary and systemic effects, including cardiovascular disease, and these metals have also been shown to translocate to the liver. This occupational exposure combined with a high fat (HF) Western diet, which has been shown to cause hyperlipidemia and non-alcoholic fatty liver disease (NAFLD), has the potential to cause significant mixed exposure metabolic changes in the liver. The goal of this study was to use matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) to analyze the spatial distribution and abundance changes of lipid species in Sprague Dawley rat liver maintained on a HF diet combined with WF inhalation. The results of the MALDI-IMS analysis revealed unique hepatic lipid profiles for each treatment group. The HF diet group had significantly increased abundance of triglycerides and phosphatidylinositol lipids, as well as decreased lysophosphatidic lipids and cardiolipin. Ceramide-1-phosphate was found at higher abundance in the regular (REG) diet WF-exposed group which has been shown to regulate the eicosanoid pathway involved in pro-inflammatory response. The results of this study showed that the combined effects of WF inhalation and a HF diet significantly altered the hepatic lipidome. Additionally, pulmonary exposure to WF alone increased lipid markers of inflammation. |
Biological effects of inhaled hydraulic fracturing sand dust. II. Particle characterization and pulmonary effects 30 d following intratracheal instillation
Fedan JS , Hubbs AF , Barger M , Schwegler-Berry D , Friend SA , Leonard SS , Thompson JA , Jackson MC , Snawder JE , Dozier AK , Coyle J , Kashon ML , Park JH , McKinney W , Roberts JR . Toxicol Appl Pharmacol 2020 409 115282 Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences. |
Biological effects of inhaled hydraulic fracturing sand dust. V. Pulmonary inflammatory, cytotoxic and oxidant effects.
Sager TM , Roberts JR , Umbright CM , Barger M , Kashon ML , Fedan JS , Joseph P . Toxicol Appl Pharmacol 2020 408 115280 ![]() The pulmonary inflammatory response to inhalation exposure to a fracking sand dust (FSD 8) was investigated in a rat model. Adult male Sprague-Dawley rats were exposed by whole-body inhalation to air or an aerosol of a FSD, i.e., FSD 8, at concentrations of 10 or 30 mg/m(3), 6 h/d for 4 d. The control and FSD 8-exposed rats were euthanized at post-exposure time intervals of 1, 7 or 27 d and pulmonary inflammatory, cytotoxic and oxidant responses were determined. Deposition of FSD 8 particles was detected in the lungs of all the FSD 8-exposed rats. Analysis of bronchoalveolar lavage parameters of toxicity, oxidant generation, and inflammation did not reveal any significant persistent pulmonary toxicity in the FSD 8-exposed rats. Similarly, the lung histology of the FSD 8-exposed rats showed only minimal changes in influx of macrophages following the exposure. Determination of global gene expression profiles detected statistically significant differential expressions of only six and five genes in the 10 mg/m(3), 1-d post-exposure, and the 30 mg/m(3), 7-d post-exposure FSD 8 groups, respectively. Taken together, data obtained from the present study demonstrated that FSD 8 inhalation exposure resulted in no statistically significant toxicity or gene expression changes in the lungs of the rats. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan, J.S., Toxicol Appl Pharmacol. 000, 000-000, 2020) has been designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems. |
Biological effects of inhaled hydraulic fracturing sand dust. VIII. Immunotoxicity
Anderson SE , Shane H , Long C , Marrocco A , Lukomska E , Roberts JR , Marshall N , Fedan JS . Toxicol Appl Pharmacol 2020 408 115256 Hydraulic fracturing ("fracking") is a process used to enhance retrieval of gas from subterranean natural gas-laden rock by fracturing it under pressure. Sand used to stabilize fissures and facilitate gas flow creates a potential occupational hazard from respirable fracking sand dust (FSD). As studies of the immunotoxicity of FSD are lacking, the effects of whole-body inhalation (6 h/d for 4 d) of a FSD, i.e., FSD 8, was investigated at 1, 7, and 27 d post-exposure in rats. Exposure to 10 mg/m(3) FSD 8 resulted in decreased lung-associated lymph node (LLN) cellularity, total B-cells, CD4+ T-cells, CD8+ T-cells and total natural killer (NK) cells at 7-d post exposure. The frequency of CD4+ T-cells decreased while the frequency of B-cells increased (7 and 27 d) in the LLN. In contrast, increases in LLN cellularity and increases in total CD4+ and CD8+ T-cells were observed in rats following 30 mg/m(3) FSD 8 at 1 d post-exposure. Increases in the frequency and number of CD4+ T-cells and NK cells were observed in bronchial alveolar lavage fluid at 7-d post-exposure (10 mg/m(3)) along with an increase in total CD4+ T-cells, CD11b + cells, and NK cells at 1-day post-exposure (30 mg/m(3)). Increases in the numbers of B-cells and CD8+ T-cells were observed in the spleen at 1-day post 30 mg/m(3) FSD 8 exposure. In addition, NK cell activity was suppressed at 1 d (30 mg/m(3)) and 27 d post-exposure (10 mg/m(3)). No change in the IgM response to sheep red blood cells was observed. The findings indicate that FSD 8 caused alterations in cellularity, phenotypic subsets, and impairment of immune function. |
Evaluation of the skin-sensitizing potential of gold nanoparticles and the impact of established dermal sensitivity on the pulmonary immune response to various forms of gold
Roach KA , Anderson SE , Stefaniak AB , Shane HL , Boyce GR , Roberts JR . Nanotoxicology 2020 14 (8) 1-22 Gold nanoparticles (AuNP) are largely biocompatible; however, many studies have demonstrated their potential to modulate various immune cell functions. The potential allergenicity of AuNP remains unclear despite the recognition of gold as a common contact allergen. In these studies, AuNP (29 nm) dermal sensitization potential was assessed via Local Lymph Node Assay (LLNA). Soluble gold (III) chloride (AuCl(3)) caused lymph node (LN) expansion (SI 10.9), whereas bulk particles (Au, 942 nm) and AuNP did not. Next, the pulmonary immune effects of AuNP (10, 30, 90 µg) were assessed 1, 4, and 8 days post-aspiration. All markers of lung injury and inflammation remained unaltered, but a dose-responsive increase in LN size was observed. Finally, mice were dermally-sensitized to AuCl(3) then aspirated once, twice, or three times with Au or AuNP in doses normalized for mass or surface area (SA) to assess the impact of existing contact sensitivity to gold on lung immune responses. Sensitized animals exhibited enhanced responsivity to the metal, wherein subsequent immune alterations were largely conserved with respect to dose SA. The greatest increase in bronchoalveolar lavage (BAL) lymphocyte number was observed in the high dose group - simultaneous to preferential expansion of BAL/LN CD8+ T-cells. Comparatively, the lower SA-based doses of Au/AuNP caused more modest elevations in BAL lymphocyte influx (predominantly CD4+ phenotype), exposure-dependent increases in serum IgE, and selective expansion/activation of LN CD4+ T-cells and B-cells. Overall, these findings suggest that AuNP are unlikely to cause sensitization; however, established contact sensitivity to gold may increase immune responsivity following pulmonary AuNP exposure. |
Toxicity evaluation following pulmonary exposure to an as-manufactured dispersed boron nitride nanotube (BNNT) material in vivo
Xin X , Barger M , Roach KA , Bowers L , Stefaniak AB , Kodali V , Glassford E , Dunn KL , Dunn KH , Wolfarth M , Friend S , Leonard SS , Kashon M , Porter DW , Erdely A , Roberts JR . NanoImpact 2020 19 Boron nitride nanotubes (BNNT) are multi-walled nanotubes composed of hexagonal B[sbnd]N bonds and possess many unique physical and chemical properties, creating a rapidly expanding market for this newly emerging nanomaterial which is still primarily in the research and development stage. The shape and high aspect ratio give rise to concern for the potential toxicity that may be associated with pulmonary exposure, especially in an occupational setting. The goal of this study was to assess lung toxicity using an in vivo time course model. The sample was manufactured to be 5 nm wide and up to 200 μm long, with ~50% purity covalently bound with hexagonal boron nitride (hBN) in the sample. Following preparation for in vivo studies, sonication of the material disrupted the longer tubes in the complex and the size distribution in dispersion medium (DM) of the structures was 13–23 nm in diameter and 0.6–1.6 μm in length. Male C57BL/6 J mice were exposed to 4 or 40 μg of BNNT or DM (vehicle control) by a single oropharyngeal aspiration. Pulmonary and systemic toxicity were investigated at 4 h, 1 d, 7 d, 1 mo and 2 mo post-exposure. Bronchoalveolar lavage (BAL) studies determined pulmonary inflammation (neutrophil influx) and cytotoxicity (lactate dehydrogenase activity) occurred at early time points and peaked at 7 d post-exposure in the high dose group. Histopathological analysis showed a minimal level of inflammatory cell infiltration in the high dose group with resolution over time and no fibrosis, and lung clearance analysis showed ~50% of the material cleared over the time course. The expression of inflammatory- and acute phase response-associated genes in the lung and liver were significantly increased by the high dose at 4 h and 1 d post-exposure. The increases in lung gene expression of Cxcl2, Ccl2, Il6, Ccl22, Ccl11, and Spp1 were significant up to 2 mo but decreased with time. The low dose exposure did not result in significant changes in any toxicological parameters measured. In summary, the BNNT-hBN sample used in this study caused acute pulmonary inflammation and injury at the higher dose, which peaked by 7 d post-exposure and showed resolution over time. Further studies are needed to determine if physicochemical properties and purity will impact the toxicity profile of BNNT and to investigate the underlying mechanisms of BNNT toxicity. |
Using liquid chromatography mass spectrometry (LC-MS) to assess the effect of age, high-fat diet, and rat strain on the liver metabolome
Boyce G , Shoeb M , Kodali V , Meighan T , Roberts JR , Erdely A , Kashon M , Antonini JM . PLoS One 2020 15 (7) e0235338 The goal of this study was to use liquid chromatography mass spectrometry to assess metabolic changes of two different diets in three distinct rat strains. Sprague-Dawley, Fischer 344, and Brown-Norway male rats were maintained on a high-fat, or regular diet for 24 weeks. Liver tissue was collected at 4, 12, and 24 weeks to assess global small molecule metabolite changes using high resolution accurate mass spectrometry coupled to ultra-high-performance liquid chromatography. The results of the global metabolomics analysis revealed significant changes based on both age and diet within all three strains. Principal component analysis revealed that the influence of diet caused a greater variation in significantly changing metabolites than that of age for the Brown Norway and Fisher 344 strains, whereas diet had the greatest influence in the Sprague Dawley strain only at the 4-week time point. As expected, metabolites involved in lipid metabolism were changed in the animals maintained on a high fat diet compared to the regular diet. There were also significant changes observed in the concentration of Tri carboxylic acid cycle intermediates that were extracted from the liver of all three strains based on diet. The results of this study showed that a high fat diet caused significant liver and metabolic changes compared to a regular diet in multiple rat strains. The inbred Fisher 344 and Brown Norway rats were more metabolically sensitive to the diet changes than outbred Sprague Dawley strain. The study also showed that age, as was the case for Sprague Dawley, is an important variable to consider when assessing metabolic changes. |
Effect of a high fat diet and occupational exposure in different rat strains on lung and systemic responses: examination of the exposome in an animal model
Antonini JM , Kodali V , Shoeb M , Kashon M , Roach KA , Boyce G , Meighan T , Stone S , McKinney W , Boots T , Roberts JR , Zeidler-Erdely PC , Erdely A . Toxicol Sci 2019 174 (1) 100-111 The exposome is the measure of all exposures of an individual in a lifetime and how those exposures relate to health. The goal was to examine an experimental model integrating multiple aspects of the exposome by collecting biological samples during critical life stages of an exposed animal that are applicable to worker populations. Genetic contributions were assessed using strains of male rats with different genetic backgrounds [Fischer-344, Sprague-Dawley, Brown-Norway] maintained on a regular (REG) or high fat (HF) diet for 24 wk. At wk 7 during diet maintenance, groups of rats from each strain were exposed to stainless steel welding fume (WF; 20 mg/m3 x 3 hr/d x 4 d/wk x 5 wk) or air until wk 12, at which time some animals were euthanized. A separate set of rats from each strain were allowed to recover from WF exposure until the end of the 24 wk period. Bronchoalveolar lavage fluid and serum were collected at 7, 12, and 24 wk to assess general health indices. Depending on animal strain, WF exposure and HF diet together worsened kidney toxicity as well as altered different serum enzymes and proteins. Diet had minimal interaction with WF exposure for pulmonary toxicity endpoints. Experimental factors of diet, exposure, and strain were all important, depending on the health outcome measured. Exposure had the most significant influence related to pulmonary responses. Strain was the most significant contributor regarding the other health indices examined, indicating that genetic differences possibly drive the exposome effect in each strain. |
Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model
Roach KA , Anderson SE , Stefaniak AB , Shane HL , Kodali V , Kashon M , Roberts JR . Inhal Toxicol 2019 31 (8) 1-26 Background: The correlation of physico-chemical properties with mechanisms of toxicity has been proposed as an approach to predict the toxic potential of the vast number of emerging nanomaterials. Although relationships have been established between properties and the acute pulmonary inflammation induced by nanomaterials, properties' effects on other responses, such as exacerbation of respiratory allergy, have been less frequently explored.Methods: In this study, the role of nickel oxide (NiO) physico-chemical properties in the modulation of ovalbumin (OVA) allergy was examined in a murine model. Results: 181 nm fine (NiO-F) and 42 nm ultrafine (NiO-UF) particles were characterized and incorporated into a time course study where measured markers of pulmonary injury and inflammation were associated with NiO particle surface area. In the OVA model, exposure to NiO, irrespective of any metric was associated with elevated circulating total IgE levels. Serum and lung cytokine levels were similar with respect to NiO surface area. The lower surface area was associated with an enhanced Th2 profile, whereas the higher surface area was associated with a Th1-dominant profile. Surface area-normalized groups also exhibited similar alterations in OVA-specific IgE levels and lung neutrophil number. However, lung eosinophil number and allergen challenge-induced alterations in lung function related more to particle size, wherein NiO-F was associated with an increased enhanced pause response and NiO-UF was associated with increased lung eosinophil burden.Conclusions: Collectively, these findings suggest that although NiO surface area correlates best with acute pulmonary injury and inflammation following respiratory exposure, other physico-chemical properties may contribute to the modulation of immune responses in the lung. |
A possible relationship between telomere length and markers of neurodegeneration in rat brain after welding fume inhalation exposure
Shoeb M , Mustafa GM , Kodali VK , Smith K , Roach KA , Boyce G , Meighan T , Roberts JR , Erdely A , Antonini JM . Environ Res 2019 180 108900 Inhalation of welding fume (WF) can result in the deposition of toxic metals, such as manganese (Mn), in the brain and may cause neurological changes in exposed workers. Alterations in telomere length are indicative of cellular aging and, possibly, neurodegeneration. Here, we investigated the effect of WF inhalation on telomere length and markers of neurodegeneration in whole brain tissue in rats. Male Fischer-344 (F-344) rats were exposed by inhalation to stainless steel WF (20mg/m(3) x 3h/d x 4d/wk x 5wk) or filtered air (control). Telomere length, DNA-methylation, gene expression of Trf1, Trf2, ATM, and APP, protein expression of p-Tau, alpha-synuclein, and presenilin 1 and 2 were assessed in whole brain tissue at 12wk after WF exposure ended. Results suggest that WF inhalation increased telomere length without affecting telomerase in whole brain. Moreover, we observed that components of the shelterin complex, Trf1 and Trf2, play an important role in telomere end protection, and their regulation may be responsible for the increase in telomere length. In addition, expression of different neurodegeneration markers, such as p-Tau, presenilin 1-2 and alpha-synuclein proteins, were increased in brain tissue from the WF-exposed rats as compared to control. These findings suggest a possible correlation between epigenetic modifications, telomere length alteration, and neurodegeneration because of the presence of factors in serum after WF exposure that may cause extra-pulmonary effects as well as the translocation of potentially neurotoxic metals associated with WF to the central nervous system (CNS). Further studies are needed to investigate the brain region specificity and temporal response of these effects. |
Grouping of carbonaceous nanomaterials based on association of patterns of inflammatory markers in BAL fluid with adverse outcomes in lungs
Yanamala N , Desai I , Miller W , Kodali V , Syamlal G , Roberts JR , Erdely A . Nanotoxicology 2019 13 (8) 1-38 ![]() Carbonaceous nanomaterials (CNMs) are universally being used to make commodities, as they present unique opportunities for development and innovation in the fields of engineering, biotechnology, etc. As technology advances to incorporate CNMs in industry, the potential exposures associated with these particles also increase. CNMs have been found to be associated with substantial pulmonary toxicity, including inflammation, fibrosis, and/or granuloma formation in animal models. This study attempts to categorize the toxicity profiles of various carbon allotropes, in particular, carbon black, different multi-walled carbon nanotubes, graphene-based materials and their derivatives. Statistical and machine learning based approaches were used to identify groups of CNMs with similar pulmonary toxicity responses from a panel of proteins measured in bronchoalveolar lavage (BAL) fluid samples and with similar pathological outcomes in the lungs. Thus, grouped particles, based on their pulmonary toxicity profiles, were used to select a small set of proteins that could potentially identify and discriminate between the toxicity profiles associated within each group. Specifically, MDC/CCL22 and MIP-3beta/CCL19 were identified as common protein markers associated with both toxicologically distinct groups of CNMs. In addition, the persistent expression of other selected protein markers in BAL fluid from each group suggested their ability to predict toxicity in the lungs, i.e., fibrosis and microgranuloma formation. The advantages of such approaches can have positive implications for further research in toxicity profiling. |
Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease
Roach KA , Stefaniak AB , Roberts JR . J Immunotoxicol 2019 16 (1) 87-124 The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided. |
Effect of Age, High-Fat Diet, and Rat Strain on Serum Biomarkers and Telomere Length and Global DNA Methylation in Peripheral Blood Mononuclear Cells.
Antonini JM , Kodali V , Meighan TG , Roach KA , Roberts JR , Salmen R , Boyce GR , Zeidler-Erdely PC , Kashon M , Erdely A , Shoeb M . Sci Rep 2019 9 (1) 1996 ![]() The objective of the current study was to determine if age, diet, and genetic disposition (animal strain) in an animal model had early effects on specific molecular markers in circulating peripheral blood mononuclear cells (PBMCs). Three strains [Sprague-Dawley (SD), Fischer 344 (F344), and Brown-Norway (BN)] of male rats were maintained on a high-fat (HF) or regular diet. Blood was collected at 4, 12, and 24 wk to assess chemistry and to recover PBMCs. Triglycerides and body weight gain increased at all time points in the HF diet group for each strain. Telomere length in PBMCs decreased in the HF diet group compared to the regular diet group up to 24 wk in all strains. Telomere length decreased in PBMCs at 24 wk compared to baseline in all strains, indicating an age-related effect. These findings highlight that diet and age cause changes in PBMCs recovered from different strains of rats. The next tier of studies will examine the contribution of an occupational exposure (e.g., welding fume inhalation) in combination with diet, age, and strain, to assess changes in the molecular responses of isolated PBMCs. In addition, studies involving lifestyle exposure (e.g., tobacco smoke) are in the planning stages and will assess the long-term effects of exposure in our animal model. |
Initiation of Pulmonary Fibrosis after Silica Inhalation in Rats is linked with Dysfunctional Shelterin Complex and DNA Damage Response.
Shoeb M , Mustafa GM , Joseph P , Umbright C , Kodali V , Roach KA , Meighan T , Roberts JR , Erdely A , Antonini JM . Sci Rep 2019 9 (1) 471 ![]() Occupational exposure to silica has been observed to cause pulmonary fibrosis and lung cancer through complex mechanisms. Telomeres, the nucleoprotein structures with repetitive (TTAGGG) sequences at the end of chromosomes, are a molecular "clock of life", and alterations are associated with chronic disease. The shelterin complex (POT1, TRF1, TRF2, Tin2, Rap1, and POT1 and TPP1) plays an important role in maintaining telomere length and integrity, and any alteration in telomeres may activate DNA damage response (DDR) machinery resulting in telomere attrition. The goal of this study was to assess the effect of silica exposure on the regulation of the shelterin complex in an animal model. Male Fisher 344 rats were exposed by inhalation to Min-U-Sil 5 silica for 3, 6, or 12 wk at a concentration of 15 mg/m(3) for 6 hr/d for 5 consecutive d/wk. Expression of shelterin complex genes was assessed in the lungs at 16 hr after the end of each exposure. Also, the relationship between increased DNA damage protein (gammaH2AX) and expression of silica-induced fibrotic marker, alphaSMA, was evaluated. Our findings reveal new information about the dysregulation of shelterin complex after silica inhalation in rats, and how this pathway may lead to the initiation of silica-induced pulmonary fibrosis. |
Silica inhalation altered telomere length and gene expression of telomere regulatory proteins in lung tissue of rats.
Shoeb M , Joseph P , Kodali V , Mustafa G , Farris BY , Umbright C , Roberts JR , Erdely A , Antonini JM . Sci Rep 2017 7 (1) 17284 ![]() Exposure to silica can cause lung fibrosis and cancer. Identification of molecular targets is important for the intervention and/or prevention of silica-induced lung diseases. Telomeres consist of tandem repeats of DNA sequences at the end of chromosomes, preventing chromosomal fusion and degradation. Regulator of telomere length-1 (RTEL1) and telomerase reverse transcriptase (TERT), genes involved in telomere regulation and function, play important roles in maintaining telomere integrity and length. The goal of this study was to assess the effect of silica inhalation on telomere length and the regulation of RTEL1 and TERT. Lung tissues and blood samples were collected from rats at 4, 32, and 44 wk after exposure to 15 mg/m(3) of silica x 6 h/d x 5 d. Controls were exposed to air. At all-time points, RTEL1 expression was significantly decreased in lung tissue of the silica-exposed animals compared to controls. Also, significant increases in telomere length and TERT were observed in the silica group at 4 and 32 wk. Telomere length, RTEL1 and TERT expression may serve as potential biomarkers related to silica exposure and may offer insight into the molecular mechanism of silica-induced lung disease and tumorigeneses. |
Pulmonary toxicity and global gene expression changes in response to sub-chronic inhalation exposure to crystalline silica in rats
Umbright C , Sellamuthu R , Roberts JR , Young SH , Richardson D , Schwegler-Berry D , McKinney W , Chen B , Gu JK , Kashon M , Joseph P . J Toxicol Environ Health A 2017 80 1349-1368 Exposure to crystalline silica results in serious adverse health effects, most notably, silicosis. An understanding of the mechanism(s) underlying silica-induced pulmonary toxicity is critical for the intervention and/or prevention of its adverse health effects. Rats were exposed by inhalation to crystalline silica at a concentration of 15 mg/m3, 6 hr/day, 5 days/week for 3, 6 or 12 weeks. Pulmonary toxicity and global gene expression profiles were determined in lungs at the end of each exposure period. Crystalline silica was visible in lungs of rats especially in the 12-week group. Pulmonary toxicity, as evidenced by an increase in lactate dehydrogenase (LDH) activity and albumin content and accumulation of macrophages and neutrophils in the bronchoalveolar lavage (BAL), was seen in animals depending upon silica exposure duration. The most severe histological changes, noted in the 12-week exposure group, consisted of chronic active inflammation, type II pneumocyte hyperplasia, and fibrosis. Microarray analysis of lung gene expression profiles detected significant differential expression of 38, 77, and 99 genes in rats exposed to silica for 3-, 6-, or 12-weeks, respectively, compared to time-matched controls. Among the significantly differentially expressed genes (SDEG), 32 genes were common in all exposure groups. Bioinformatics analysis of the SDEG identified enrichment of functions, networks and canonical pathways related to inflammation, cancer, oxidative stress, fibrosis, and tissue remodeling in response to silica exposure. Collectively, these results provided insights into the molecular mechanisms underlying pulmonary toxicity following sub-chronic inhalation exposure to crystalline silica in rats. |
Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture
Kodali VK , Roberts JR , Shoeb M , Wolfarth MG , Bishop L , Eye T , Barger M , Roach KA , Friend S , Schwegler-Berry D , Chen BT , Stefaniak A , Jordan KC , Whitney RR , Porter DW , Erdely AD . Nanotoxicology 2017 11 (8) 1-19 Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of approximately 50-60% BNNTs, and approximately 40-50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0-100 microg/ml and C57BL/6 J male mice were treated with 40 microg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1beta and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute inflammation and toxicity in vitro and in vivo following exposure to sonicated BNNT-M was in part due to NLRP3 inflammasome activation. |
Pulmonary toxicity following acute coexposures to diesel particulate matter and alpha-quartz crystalline silica in the Sprague-Dawley rat
Farris BY , Antonini JM , Fedan JS , Mercer RR , Roach KA , Chen BT , Schwegler-Berry D , Kashon ML , Barger MW , Roberts JR . Inhal Toxicol 2017 29 (7) 1-18 The effects of acute pulmonary coexposures to silica and diesel particulate matter (DPM), which may occur in various mining operations, were investigated in vivo. Rats were exposed by intratracheal instillation (IT) to silica (50 or 233 microg), DPM (7.89 or 50 microg) or silica and DPM combined in phosphate-buffered saline (PBS) or to PBS alone (control). At one day, one week, one month, two months and three months postexposure bronchoalveolar lavage and histopathology were performed to assess lung injury, inflammation and immune response. While higher doses of silica caused inflammation and injury at all time points, DPM exposure alone did not. DPM (50 microg) combined with silica (233 microg) increased inflammation at one week and one-month postexposure and caused an increase in the incidence of fibrosis at one month compared with exposure to silica alone. To assess susceptibility to lung infection following coexposure, rats were exposed by IT to 233 microg silica, 50 microg DPM, a combination of the two or PBS control one week before intratracheal inoculation with 5 x 105 Listeria monocytogenes. At 1, 3, 5, 7 and 14 days following infection, pulmonary immune response and bacterial clearance from the lung were evaluated. Coexposure to DPM and silica did not alter bacterial clearance from the lung compared to control. Although DPM and silica coexposure did not alter pulmonary susceptibility to infection in this model, the study showed that noninflammatory doses of DPM had the capacity to increase silica-induced lung injury, inflammation and onset/incidence of fibrosis. |
Sparse supervised classification methods predict and characterize nanomaterial exposures: Independent markers of MWCNT exposures
Yanamala N , Orandle MS , Kodali VK , Bishop L , Zeidler-Erdely PC , Roberts JR , Castranova V , Erdely A . Toxicol Pathol 2017 46 (1) 192623317730575 ![]() Recent experimental evidence indicates significant pulmonary toxicity of multiwalled carbon nanotubes (MWCNTs), such as inflammation, interstitial fibrosis, granuloma formation, and carcinogenicity. Although numerous studies explored the adverse potential of various CNTs, their comparability is often limited. This is due to differences in administered dose, physicochemical characteristics, exposure methods, and end points monitored. Here, we addressed the problem through sparse classification method, a supervised machine learning approach that can reduce the noise contained in redundant variables for discriminating among MWCNT-exposed and MWCNT-unexposed groups. A panel of proteins measured from bronchoalveolar lavage fluid (BAL) samples was used to predict exposure to various MWCNT and determine markers that are attributable to MWCNT exposure and toxicity in mice. Using sparse support vector machine-based classification technique, we identified a small subset of proteins clearly distinguishing each exposure. Macrophage-derived chemokine (MDC/CCL22), in particular, was associated with various MWCNT exposures and was independent of exposure method employed, that is, oropharyngeal aspiration versus inhalation exposure. Sustained expression of some of the selected protein markers identified also suggests their potential role in MWCNT-induced toxicity and proposes hypotheses for future mechanistic studies. Such approaches can be used more broadly for nanomaterial risk profiling studies to evaluate decisions related to dose/time-response relationships that could delineate experimental variables from exposure markers. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure