Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-8 (of 8 Records) |
Query Trace: Rivera AJ[original query] |
---|
What Can We Learn about the Bias of Microbiome Studies from Analyzing Data from Mock Communities?
Li M , Tyx RE , Rivera AJ , Zhao N , Satten GA . Genes (Basel) 2022 13 (10) It is known that data from both 16S and shotgun metagenomics studies are subject to biases that cause the observed relative abundances of taxa to differ from their true values. Model community analyses, in which the relative abundances of all taxa in the sample are known by construction, seem to offer the hope that these biases can be measured. However, it is unclear whether the bias we measure in a mock community analysis is the same as we measure in a sample in which taxa are spiked in at known relative abundance, or if the biases we measure in spike-in samples is the same as the bias we would measure in a real (e.g., biological) sample. Here, we consider these questions in the context of 16S rRNA measurements on three sets of samples: the commercially available Zymo cells model community; the Zymo model community mixed with Swedish Snus, a smokeless tobacco product that is virtually bacteria-free; and a set of commercially available smokeless tobacco products. Each set of samples was subject to four different extraction protocols. The goal of our analysis is to determine whether the patterns of bias observed in each set of samples are the same, i.e., can we learn about the bias in the commercially available smokeless tobacco products by studying the Zymo cells model community? |
Associations between microbial communities and key chemical constituents in U.S. domestic moist snuff.
Tyxobert RE , Rivera AJ , Satten GA , Keong LM , Kuklenyik P , Lee GE , Lawler TS , Kimbrell JB , Stanfill SB , Valentin-Blasini L , Watson CH . PLoS One 2022 17 (5) e0267104 BACKGROUND: Smokeless tobacco (ST) products are widely used throughout the world and contribute to morbidity and mortality in users through an increased risk of cancers and oral diseases. Bacterial populations in ST contribute to taste, but their presence can also create carcinogenic, Tobacco-Specific N-nitrosamines (TSNAs). Previous studies of microbial communities in tobacco products lacked chemistry data (e.g. nicotine, TSNAs) to characterize the products and identify associations between carcinogen levels and taxonomic groups. This study uses statistical analysis to identify potential associations between microbial and chemical constituents in moist snuff products. METHODS: We quantitatively analyzed 38 smokeless tobacco products for TSNAs using liquid chromatography with tandem mass spectrometry (LC-MS/MS), and nicotine using gas chromatography with mass spectrometry (GC-MS). Moisture content determinations (by weight loss on drying), and pH measurements were also performed. We used 16S rRNA gene sequencing to characterize the microbial composition, and additionally measured total 16S bacterial counts using a quantitative PCR assay. RESULTS: Our findings link chemical constituents to their associated bacterial populations. We found core taxonomic groups often varied between manufacturers. When manufacturer and flavor were controlled for as confounding variables, the genus Lactobacillus was found to be positively associated with TSNAs. while the genera Enteractinococcus and Brevibacterium were negatively associated. Three genera (Corynebacterium, Brachybacterium, and Xanthomonas) were found to be negatively associated with nicotine concentrations. Associations were also investigated separately for products from each manufacturer. Products from one manufacturer had a positive association between TSNAs and bacteria in the genus Marinilactibacillus. Additionally, we found that TSNA levels in many products were lower compared with previously published chemical surveys. Finally, we observed consistent results when either relative or absolute abundance data were analyzed, while results from analyses of log-ratio-transformed abundances were divergent. |
Shotgun metagenome sequencing of a Sudanese toombak snuff tobacco: Genetic attributes of a high tobacco-specific nitrosamine (TSNA) containing smokeless tobacco product.
Tyx RE , Rivera AJ , Stanfill SB , Zaatari GS , Watson CH . Lett Appl Microbiol 2021 74 (3) 444-451 The most alarming aspect of the Sudanese toombak smokeless tobacco is that it contains high levels of highly toxic Tobacco-Specific Nitrosamines (TSNAs). Understanding the microbiology of toombak is of relevance because TSNAs are an indirect result of microbial-mediated nitrate reductions. We conducted shotgun metagenomic sequencing on a toombak product for which relevant features are presented here. The microbiota was composed of over 99% Bacteria. The most abundant taxa included Actinobacteria, specifically genera Enteractinococcus and Corynebacterium, while Firmicutes were represented by Family Bacillaceae and the genus Staphylococcus. Selected gene targets were nitrate reduction and transport, antimicrobial resistance, and other genetic transference mechanisms. Canonical nitrate reduction and transport genes (i.e., nar) were found for Enteractinococcus and Corynebacterium while various species of Staphylococcus exhibited a notable number of antimicrobial resistance and genetic transference genes. The nitrate reduction activity of the microbiota in toombak is suspected to be a contributing factor to its high levels of TSNAs. Additionally, the presence of antimicrobial resistance and transference genes could contribute to deleterious effects on oral and gastrointestinal health of the end user. Overall, the high toxicity and increased incidences of cancer and oral disease of toombak users warrants further investigation into the microbiology of toombak. |
Microbiology of the American Smokeless Tobacco.
Rivera AJ , Tyx RE . Appl Microbiol Biotechnol 2021 105 (12) 4843-4853 Smokeless tobacco products (STP) contain diverse microbial communities that contribute to the formation of harmful chemical byproducts. This is concerning since 300 million individuals around the globe are users of smokeless tobacco. Significant evidence has shown that microbial metabolic activities mediate the formation of carcinogens during manufacturing. In recent years, studies have revealed a series of additional health impacts that include lesions and inflammation of the oral mucosa and the gastrointestinal tract, as well as alterations of the endogenous microbiota. These findings are due to recent developments in molecular technologies that allowed researchers to better examine the microbial component of these products. This new information illustrates the scale of the STP microbiota and its diversity in the finished product that is sold for consumption. Additionally, the application of metagenomics and metatranscriptomics has provided the tools to look at phylogenies across bacterial, viral, and eukaryotic groups, their functional capacities, and viability. Here we present key examples of tobacco microbiology research that utilizes newer approaches and strategies to define the microbial component of smokeless tobacco products. We also highlight challenges in these approaches, the knowledge gaps being filled, and those gaps that warrant further study. A better understanding of the microbiology of STP brings vast public health benefits. It will provide important information for the product consumer, impact manufacturing practices, and provide support for the development of attainable and more meaningful regulatory goals. KEY POINTS: Newer technologies allowed quicker and more comprehensive identification of microbes in tobacco samples, encapsulating microorganisms difficult or impossible to culture. Current research in smokeless tobacco microbiology is filling knowledge gaps previously unfilled due to the lack of suitable approaches. The microbial ecology of smokeless tobacco presents a clearer picture of diversity and variability not considered before. |
Microbial communities and gene contributions in smokeless tobacco products.
Rivera AJ , Tyx RE , Keong LM , Stanfill SB , Watson CH . Appl Microbiol Biotechnol 2020 104 (24) 10613-10629 Smokeless tobacco products (STP) contain bacteria, mold, and fungi due to exposure from surrounding environments and tobacco processing. This has been a cause for concern since the presence of microorganisms has been linked to the formation of highly carcinogenic tobacco-specific nitrosamines. These communities have also been reported to produce toxins and other pro-inflammatory molecules that can cause mouth lesions and elicit inflammatory responses in STP users. Moreover, microbial species in these products could transfer to the mouth and gastrointestinal tract, potentially altering the established respective microbiotas of the consumer. Here, we present the first metagenomic analysis of select smokeless tobacco products, specifically US domestic moist and dry snuff. Bacterial, eukaryotic, and viral species were found in all tobacco products where 68% of the total species was comprised of Bacteria with 3 dominant phyla but also included 32% Eukarya and 1% share abundance for Archaea and Viruses. Furthermore, 693,318 genes were found to be present and included nitrate and nitrite reduction and transport enzymes, antibiotic resistance genes associated with resistance to vancomycin, β-lactamases, their derivatives, and other antibiotics, as well as genes encoding multi-drug transporters and efflux pumps. Additional analyses showed the presence of endo- and exotoxin genes in addition to other molecules associated with inflammatory responses. Our results present a novel aspect of the smokeless tobacco microbiome and provide a better understanding of these products' microbiology. KEY POINTS: The findings presented will help understand microbial contributions to overall STP chemistries. Gene function categorization reveals harmful constituents outside canonical forms. Pathway genes for TSNA precursor activity may occur at early stages of production. Bacteria in STPs carry antibiotic resistance genes and gene transfer mechanisms. |
An exploration of smokeless tobacco product nucleic acids: a combined metagenome and metatranscriptome analysis.
Tyx RE , Rivera AJ , Keong LM , Stanfill SB . Appl Microbiol Biotechnol 2019 104 (2) 751-763 Smokeless tobacco (ST) products are used worldwide and are a major public health concern. In addition to harmful chemicals found in these products, microbes found in ST products are believed to be responsible for generating harmful tobacco-specific nitrosamines (TSNAs), the most abundant carcinogens in ST. These microbes also contribute endotoxins and other pro-inflammatory components. A greater understanding of the microbial constituents in these products is sought in order to potentially link select design aspects or manufacturing processes to avoidable increases in harmful constituents. Previous studies looked primarily at bacterial constituents and had not differentiated between viable vs nonviable organisms, so in this study, we sought to use a dual metatranscriptomic and metagenomic analysis to see if differences exist. Using high-throughput sequencing, we observed that there were differences in taxonomic abundances between the metagenome and metatranscriptome, and in the metatranscriptome, we also observed an abundance of plant virus RNA not previously reported in DNA-only studies. We also found in the product tested, that there were no viable bacteria capable of metabolizing nitrate to nitrite. Therefore, the product tested would not be likely to increase TSNAs during shelf storage. We tested only a single product to date using the strategy presented here, but succeeded in demonstrating the value of using of these methods in tobacco products. These results present novel findings from the first combined metagenome and metatranscriptome of a commercial tobacco product. |
Restoring the Duality between Principal Components of a Distance Matrix and Linear Combinations of Predictors, with Application to Studies of the Microbiome.
Satten GA , Tyx RE , Rivera AJ , Stanfill S . PLoS One 2017 12 (1) e0168131 Appreciation of the importance of the microbiome is increasing, as sequencing technology has made it possible to ascertain the microbial content of a variety of samples. Studies that sequence the 16S rRNA gene, ubiquitous in and nearly exclusive to bacteria, have proliferated in the medical literature. After sequences are binned into operational taxonomic units (OTUs) or species, data from these studies are summarized in a data matrix with the observed counts from each OTU for each sample. Analysis often reduces these data further to a matrix of pairwise distances or dissimilarities; plotting the first two or three principal components (PCs) of this distance matrix often reveals meaningful groupings in the data. However, once the distance matrix is calculated, it is no longer clear which OTUs or species are important to the observed clustering; further, the PCs are hard to interpret and cannot be calculated for subsequent observations. We show how to construct approximate decompositions of the data matrix that pair PCs with linear combinations of OTU or species frequencies, and show how these decompositions can be used to construct biplots, select important OTUs and partition the variability in the data matrix into contributions corresponding to PCs of an arbitrary distance or dissimilarity matrix. To illustrate our approach, we conduct an analysis of the bacteria found in 45 smokeless tobacco samples. |
Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis.
Tyx RE , Stanfill SB , Keong LM , Rivera AJ , Satten GA , Watson CH . PLoS One 2016 11 (1) e0146939 The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure