Last data update: Jul 08, 2025. (Total: 49524 publications since 2009)
Records 1-12 (of 12 Records) |
Query Trace: Ritchey Matthew[original query] |
---|
Potential indirect effects of the COVID-19 pandemic on use of emergency departments for acute life-threatening conditions - United States, January-May 2020.
Lange SJ , Ritchey MD , Goodman AB , Dias T , Twentyman E , Fuld J , Schieve LA , Imperatore G , Benoit SR , Kite-Powell A , Stein Z , Peacock G , Dowling NF , Briss PA , Hacker K , Gundlapalli AV , Yang Q . Am J Transplant 2020 20 (9) 2612-2617 This article describes a significant decline in emergency department visits for acute life-threatening conditions during the COVID-19 pandemic, suggesting that patients may be delaying or avoiding care or unable to access care during the pandemic. |
Disparities in COVID-19 Vaccination Coverage Between Urban and Rural Counties - United States, December 14, 2020-April 10, 2021.
Murthy BP , Sterrett N , Weller D , Zell E , Reynolds L , Toblin RL , Murthy N , Kriss J , Rose C , Cadwell B , Wang A , Ritchey MD , Gibbs-Scharf L , Qualters JR , Shaw L , Brookmeyer KA , Clayton H , Eke P , Adams L , Zajac J , Patel A , Fox K , Williams C , Stokley S , Flores S , Barbour KE , Harris LQ . MMWR Morb Mortal Wkly Rep 2021 70 (20) 759-764 Approximately 60 million persons in the United States live in rural counties, representing almost one fifth (19.3%) of the population.* In September 2020, COVID-19 incidence (cases per 100,000 population) in rural counties surpassed that in urban counties (1). Rural communities often have a higher proportion of residents who lack health insurance, live with comorbidities or disabilities, are aged ≥65 years, and have limited access to health care facilities with intensive care capabilities, which places these residents at increased risk for COVID-19-associated morbidity and mortality (2,3). To better understand COVID-19 vaccination disparities across the urban-rural continuum, CDC analyzed county-level vaccine administration data among adults aged ≥18 years who received their first dose of either the Pfizer-BioNTech or Moderna COVID-19 vaccine, or a single dose of the Janssen COVID-19 vaccine (Johnson & Johnson) during December 14, 2020-April 10, 2021 in 50 U.S. jurisdictions (49 states and the District of Columbia [DC]). Adult COVID-19 vaccination coverage was lower in rural counties (38.9%) than in urban counties (45.7%) overall and among adults aged 18-64 years (29.1% rural, 37.7% urban), those aged ≥65 years (67.6% rural, 76.1% urban), women (41.7% rural, 48.4% urban), and men (35.3% rural, 41.9% urban). Vaccination coverage varied among jurisdictions: 36 jurisdictions had higher coverage in urban counties, five had higher coverage in rural counties, and five had similar coverage (i.e., within 1%) in urban and rural counties; in four jurisdictions with no rural counties, the urban-rural comparison could not be assessed. A larger proportion of persons in the most rural counties (14.6%) traveled for vaccination to nonadjacent counties (i.e., farther from their county of residence) compared with persons in the most urban counties (10.3%). As availability of COVID-19 vaccines expands, public health practitioners should continue collaborating with health care providers, pharmacies, employers, faith leaders, and other community partners to identify and address barriers to COVID-19 vaccination in rural areas (2). |
Demographic and Social Factors Associated with COVID-19 Vaccination Initiation Among Adults Aged ≥65 Years - United States, December 14, 2020-April 10, 2021.
Whiteman A , Wang A , McCain K , Gunnels B , Toblin R , Lee JT , Bridges C , Reynolds L , Murthy BP , Qualters J , Singleton JA , Fox K , Stokley S , Harris L , Gibbs-Scharf L , Abad N , Brookmeyer KA , Farrall S , Pingali C , Patel A , Link-Gelles R , Dasgupta S , Gharpure R , Ritchey MD , Barbour KE . MMWR Morb Mortal Wkly Rep 2021 70 (19) 725-730 Compared with other age groups, older adults (defined here as persons aged ≥65 years) are at higher risk for COVID-19-associated morbidity and mortality and have therefore been prioritized for COVID-19 vaccination (1,2). Ensuring access to vaccines for older adults has been a focus of federal, state, and local response efforts, and CDC has been monitoring vaccination coverage to identify and address disparities among subpopulations of older adults (2). Vaccine administration data submitted to CDC were analyzed to determine the prevalence of COVID-19 vaccination initiation among adults aged ≥65 years by demographic characteristics and overall. Characteristics of counties with low vaccination initiation rates were quantified using indicators of social vulnerability data from the 2019 American Community Survey.* During December 14, 2020-April 10, 2021, nationwide, a total of 42,736,710 (79.1%) older adults had initiated vaccination. The initiation rate was higher among men than among women and varied by state. On average, counties with low vaccination initiation rates (<50% of older adults having received at least 1 vaccine dose), compared with those with high rates (≥75%), had higher percentages of older adults without a computer, living in poverty, without Internet access, and living alone. CDC, state, and local jurisdictions in partnerships with communities should continue to identify and implement strategies to improve access to COVID-19 vaccination for older adults, such as assistance with scheduling vaccination appointments and transportation to vaccination sites, or vaccination at home if needed for persons who are homebound.(†) Monitoring demographic and social factors affecting COVID-19 vaccine access for older adults and prioritizing efforts to ensure equitable access to COVID-19 vaccine are needed to ensure high coverage among this group. |
COVID-19 Vaccine Second-Dose Completion and Interval Between First and Second Doses Among Vaccinated Persons - United States, December 14, 2020-February 14, 2021.
Kriss JL , Reynolds LE , Wang A , Stokley S , Cole MM , Harris LQ , Shaw LK , Black CL , Singleton JA , Fitter DL , Rose DA , Ritchey MD , Toblin RL . MMWR Morb Mortal Wkly Rep 2021 70 (11) 389-395 In December 2020, two COVID-19 vaccines (Pfizer-BioNTech and Moderna) received Emergency Use Authorization from the Food and Drug Administration.*(,)(†) Both vaccines require 2 doses for a completed series. The recommended interval between doses is 21 days for Pfizer-BioNTech and 28 days for Moderna; however, up to 42 days between doses is permissible when a delay is unavoidable.(§) Two analyses of COVID-19 vaccine administration data were conducted among persons who initiated the vaccination series during December 14, 2020-February 14, 2021, and whose doses were reported to CDC through February 20, 2021. The first analysis was conducted to determine whether persons who received a first dose and had sufficient time to receive the second dose (i.e., as of February 14, 2021, >25 days from receipt of Pfizer-BioNTech vaccine or >32 days from receipt of Moderna vaccine had elapsed) had received the second dose. A second analysis was conducted among persons who received a second COVID-19 dose by February 14, 2021, to determine whether the dose was received during the recommended dosing interval, which in this study was defined as 17-25 days (Pfizer-BioNTech) and 24-32 days (Moderna) after the first dose. Analyses were stratified by jurisdiction and by demographic characteristics. In the first analysis, among 12,496,258 persons who received the first vaccine dose and for whom sufficient time had elapsed to receive the second dose, 88.0% had completed the series, 8.6% had not received the second dose but remained within the allowable interval (≤42 days since the first dose), and 3.4% had missed the second dose (outside the allowable interval, >42 days since the first dose). The percentage of persons who missed the second dose varied by jurisdiction (range = 0.0%-9.1%) and among demographic groups was highest among non-Hispanic American Indian/Alaska Native (AI/AN) persons (5.1%) and persons aged 16-44 years (4.0%). In the second analysis, among 14,205,768 persons who received a second dose, 95.6% received the dose within the recommended interval, although percentages varied by jurisdiction (range = 79.0%-99.9%). Public health officials should identify and address possible barriers to completing the COVID-19 vaccination series to ensure equitable coverage across communities and maximum health benefits for recipients. Strategies to ensure series completion could include scheduling second-dose appointments at the first-dose administration and sending reminders for second-dose visits. |
Demographic Characteristics of Persons Vaccinated During the First Month of the COVID-19 Vaccination Program - United States, December 14, 2020-January 14, 2021.
Painter EM , Ussery EN , Patel A , Hughes MM , Zell ER , Moulia DL , Scharf LG , Lynch M , Ritchey MD , Toblin RL , Murthy BP , Harris LQ , Wasley A , Rose DA , Cohn A , Messonnier NE . MMWR Morb Mortal Wkly Rep 2021 70 (5) 174-177 In December 2020, two COVID-19 vaccines (Pfizer-BioNTech and Moderna) were authorized for emergency use in the United States for the prevention of coronavirus disease 2019 (COVID-19).* Because of limited initial vaccine supply, the Advisory Committee on Immunization Practices (ACIP) prioritized vaccination of health care personnel(†) and residents and staff members of long-term care facilities (LTCF) during the first phase of the U.S. COVID-19 vaccination program (1). Both vaccines require 2 doses to complete the series. Data on vaccines administered during December 14, 2020-January 14, 2021, and reported to CDC by January 26, 2021, were analyzed to describe demographic characteristics, including sex, age, and race/ethnicity, of persons who received ≥1 dose of COVID-19 vaccine (i.e., initiated vaccination). During this period, 12,928,749 persons in the United States in 64 jurisdictions and five federal entities(§) initiated COVID-19 vaccination. Data on sex were reported for 97.0%, age for 99.9%, and race/ethnicity for 51.9% of vaccine recipients. Among persons who received the first vaccine dose and had reported demographic data, 63.0% were women, 55.0% were aged ≥50 years, and 60.4% were non-Hispanic White (White). More complete reporting of race and ethnicity data at the provider and jurisdictional levels is critical to ensure rapid detection of and response to potential disparities in COVID-19 vaccination. As the U.S. COVID-19 vaccination program expands, public health officials should ensure that vaccine is administered efficiently and equitably within each successive vaccination priority category, especially among those at highest risk for infection and severe adverse health outcomes, many of whom are non-Hispanic Black (Black), non-Hispanic American Indian/Alaska Native (AI/AN), and Hispanic persons (2,3). |
Opening of Large Institutions of Higher Education and County-Level COVID-19 Incidence - United States, July 6-September 17, 2020.
Leidner AJ , Barry V , Bowen VB , Silver R , Musial T , Kang GJ , Ritchey MD , Fletcher K , Barrios L , Pevzner E . MMWR Morb Mortal Wkly Rep 2021 70 (1) 14-19 During early August 2020, county-level incidence of coronavirus disease 2019 (COVID-19) generally decreased across the United States, compared with incidence earlier in the summer (1); however, among young adults aged 18-22 years, incidence increased (2). Increases in incidence among adults aged ≥60 years, who might be more susceptible to severe COVID-19-related illness, have followed increases in younger adults (aged 20-39 years) by an average of 8.7 days (3). Institutions of higher education (colleges and universities) have been identified as settings where incidence among young adults increased during August (4,5). Understanding the extent to which these settings have affected county-level COVID-19 incidence can inform ongoing college and university operations and future planning. To evaluate the effect of large colleges or universities and school instructional format* (remote or in-person) on COVID-19 incidence, start dates and instructional formats for the fall 2020 semester were identified for all not-for-profit large U.S. colleges and universities (≥20,000 total enrolled students). Among counties with large colleges and universities (university counties) included in the analysis, remote-instruction university counties (22) experienced a 17.9% decline in mean COVID-19 incidence during the 21 days before through 21 days after the start of classes (from 17.9 to 14.7 cases per 100,000), and in-person instruction university counties (79) experienced a 56.2% increase in COVID-19 incidence, from 15.3 to 23.9 cases per 100,000. Counties without large colleges and universities (nonuniversity counties) (3,009) experienced a 5.9% decline in COVID-19 incidence, from 15.3 to 14.4 cases per 100,000. Similar findings were observed for percentage of positive test results and hotspot status (i.e., increasing among in-person-instruction university counties). In-person instruction at colleges and universities was associated with increased county-level COVID-19 incidence and percentage test positivity. Implementation of increased mitigation efforts at colleges and universities could minimize on-campus COVID-19 transmission. |
Association Between Social Vulnerability and a County's Risk for Becoming a COVID-19 Hotspot - United States, June 1-July 25, 2020.
Dasgupta S , Bowen VB , Leidner A , Fletcher K , Musial T , Rose C , Cha A , Kang G , Dirlikov E , Pevzner E , Rose D , Ritchey MD , Villanueva J , Philip C , Liburd L , Oster AM . MMWR Morb Mortal Wkly Rep 2020 69 (42) 1535-1541 ![]() Poverty, crowded housing, and other community attributes associated with social vulnerability increase a community's risk for adverse health outcomes during and following a public health event (1). CDC uses standard criteria to identify U.S. counties with rapidly increasing coronavirus disease 2019 (COVID-19) incidence (hotspot counties) to support health departments in coordinating public health responses (2). County-level data on COVID-19 cases during June 1-July 25, 2020 and from the 2018 CDC social vulnerability index (SVI) were analyzed to examine associations between social vulnerability and hotspot detection and to describe incidence after hotspot detection. Areas with greater social vulnerabilities, particularly those related to higher representation of racial and ethnic minority residents (risk ratio [RR] = 5.3; 95% confidence interval [CI] = 4.4-6.4), density of housing units per structure (RR = 3.1; 95% CI = 2.7-3.6), and crowded housing units (i.e., more persons than rooms) (RR = 2.0; 95% CI = 1.8-2.3), were more likely to become hotspots, especially in less urban areas. Among hotspot counties, those with greater social vulnerability had higher COVID-19 incidence during the 14 days after detection (212-234 cases per 100,000 persons for highest SVI quartile versus 35-131 cases per 100,000 persons for other quartiles). Focused public health action at the federal, state, and local levels is needed not only to prevent communities with greater social vulnerability from becoming hotspots but also to decrease persistently high incidence among hotspot counties that are socially vulnerable. |
Trends in Number and Distribution of COVID-19 Hotspot Counties - United States, March 8-July 15, 2020.
Oster AM , Kang GJ , Cha AE , Beresovsky V , Rose CE , Rainisch G , Porter L , Valverde EE , Peterson EB , Driscoll AK , Norris T , Wilson N , Ritchey M , Walke HT , Rose DA , Oussayef NL , Parise ME , Moore ZS , Fleischauer AT , Honein MA , Dirlikov E , Villanueva J . MMWR Morb Mortal Wkly Rep 2020 69 (33) 1127-1132 The geographic areas in the United States most affected by the coronavirus disease 2019 (COVID-19) pandemic have changed over time. On May 7, 2020, CDC, with other federal agencies, began identifying counties with increasing COVID-19 incidence (hotspots) to better understand transmission dynamics and offer targeted support to health departments in affected communities. Data for January 22-July 15, 2020, were analyzed retrospectively (January 22-May 6) and prospectively (May 7-July 15) to detect hotspot counties. No counties met hotspot criteria during January 22-March 7, 2020. During March 8-July 15, 2020, 818 counties met hotspot criteria for ≥1 day; these counties included 80% of the U.S. population. The daily number of counties meeting hotspot criteria peaked in early April, decreased and stabilized during mid-April-early June, then increased again during late June-early July. The percentage of counties in the South and West Census regions* meeting hotspot criteria increased from 10% and 13%, respectively, during March-April to 28% and 22%, respectively, during June-July. Identification of community transmission as a contributing factor increased over time, whereas identification of outbreaks in long-term care facilities, food processing facilities, correctional facilities, or other workplaces as contributing factors decreased. Identification of hotspot counties and understanding how they change over time can help prioritize and target implementation of U.S. public health response activities. |
Potential Indirect Effects of the COVID-19 Pandemic on Use of Emergency Departments for Acute Life-Threatening Conditions - United States, January-May 2020.
Lange SJ , Ritchey MD , Goodman AB , Dias T , Twentyman E , Fuld J , Schieve LA , Imperatore G , Benoit SR , Kite-Powell A , Stein Z , Peacock G , Dowling NF , Briss PA , Hacker K , Gundlapalli AV , Yang Q . MMWR Morb Mortal Wkly Rep 2020 69 (25) 795-800 On March 13, 2020, the United States declared a national emergency in response to the coronavirus disease 2019 (COVID-19) pandemic. Subsequently, states enacted stay-at-home orders to slow the spread of SARS-CoV-2, the virus that causes COVID-19, and reduce the burden on the U.S. health care system. CDC* and the Centers for Medicare & Medicaid Services (CMS)(dagger) recommended that health care systems prioritize urgent visits and delay elective care to mitigate the spread of COVID-19 in health care settings. By May 2020, national syndromic surveillance data found that emergency department (ED) visits had declined 42% during the early months of the pandemic (1). This report describes trends in ED visits for three acute life-threatening health conditions (myocardial infarction [MI, also known as heart attack], stroke, and hyperglycemic crisis), immediately before and after declaration of the COVID-19 pandemic as a national emergency. These conditions represent acute events that always necessitate immediate emergency care, even during a public health emergency such as the COVID-19 pandemic. In the 10 weeks following the emergency declaration (March 15-May 23, 2020), ED visits declined 23% for MI, 20% for stroke, and 10% for hyperglycemic crisis, compared with the preceding 10-week period (January 5-March 14, 2020). EDs play a critical role in diagnosing and treating life-threatening conditions that might result in serious disability or death. Persons experiencing signs or symptoms of serious illness, such as severe chest pain, sudden or partial loss of motor function, altered mental state, signs of extreme hyperglycemia, or other life-threatening issues, should seek immediate emergency care, regardless of the pandemic. Clear, frequent, highly visible communication from public health and health care professionals is needed to reinforce the importance of timely care for medical emergencies and to assure the public that EDs are implementing infection prevention and control guidelines that help ensure the safety of their patients and health care personnel. |
Geographic Differences in COVID-19 Cases, Deaths, and Incidence - United States, February 12-April 7, 2020.
CDC COVID-19 Response Team , Bialek Stephanie , Bowen Virginia , Chow Nancy , Curns Aaron , Gierke Ryan , Hall Aron , Hughes Michelle , Pilishvili Tamara , Ritchey Matthew , Roguski Katherine , Silk Benjamin , Skoff Tami , Sundararaman Preethi , Ussery Emily , Vasser Michael , Whitham Hilary , Wen John . MMWR Morb Mortal Wkly Rep 2020 69 (15) 465-471 Community transmission of coronavirus disease 2019 (COVID-19) was first detected in the United States in February 2020. By mid-March, all 50 states, the District of Columbia (DC), New York City (NYC), and four U.S. territories had reported cases of COVID-19. This report describes the geographic distribution of laboratory-confirmed COVID-19 cases and related deaths reported by each U.S. state, each territory and freely associated state,* DC, and NYC during February 12-April 7, 2020, and estimates cumulative incidence for each jurisdiction. In addition, it projects the jurisdiction-level trajectory of this pandemic by estimating case doubling times on April 7 and changes in cumulative incidence during the most recent 7-day period (March 31-April 7). As of April 7, 2020, a total of 395,926 cases of COVID-19, including 12,757 related deaths, were reported in the United States. Cumulative COVID-19 incidence varied substantially by jurisdiction, ranging from 20.6 cases per 100,000 in Minnesota to 915.3 in NYC. On April 7, national case doubling time was approximately 6.5 days, although this ranged from 5.5 to 8.0 days in the 10 jurisdictions reporting the most cases. Absolute change in cumulative incidence during March 31-April 7 also varied widely, ranging from an increase of 8.3 cases per 100,000 in Minnesota to 418.0 in NYC. Geographic differences in numbers of COVID-19 cases and deaths, cumulative incidence, and changes in incidence likely reflect a combination of jurisdiction-specific epidemiologic and population-level factors, including 1) the timing of COVID-19 introductions; 2) population density; 3) age distribution and prevalence of underlying medical conditions among COVID-19 patients (1-3); 4) the timing and extent of community mitigation measures; 5) diagnostic testing capacity; and 6) public health reporting practices. Monitoring jurisdiction-level numbers of COVID-19 cases, deaths, and changes in incidence is critical for understanding community risk and making decisions about community mitigation, including social distancing, and strategic health care resource allocation. |
Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 - United States, February 12-March 28, 2020.
CDC COVID-19 Response Team , Chow Nancy , Fleming-Dutra Katherine , Gierke Ryan , Hall Aron , Hughes Michelle , Pilishvili Tamara , Ritchey Matthew , Roguski Katherine , Skoff Tami , Ussery Emily . MMWR Morb Mortal Wkly Rep 2020 69 (13) 382-386 On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic (1). As of March 28, 2020, a total of 571,678 confirmed COVID-19 cases and 26,494 deaths have been reported worldwide (2). Reports from China and Italy suggest that risk factors for severe disease include older age and the presence of at least one of several underlying health conditions (3,4). U.S. older adults, including those aged ≥65 years and particularly those aged ≥85 years, also appear to be at higher risk for severe COVID-19-associated outcomes; however, data describing underlying health conditions among U.S. COVID-19 patients have not yet been reported (5). As of March 28, 2020, U.S. states and territories have reported 122,653 U.S. COVID-19 cases to CDC, including 7,162 (5.8%) for whom data on underlying health conditions and other known risk factors for severe outcomes from respiratory infections were reported. Among these 7,162 cases, 2,692 (37.6%) patients had one or more underlying health condition or risk factor, and 4,470 (62.4%) had none of these conditions reported. The percentage of COVID-19 patients with at least one underlying health condition or risk factor was higher among those requiring intensive care unit (ICU) admission (358 of 457, 78%) and those requiring hospitalization without ICU admission (732 of 1,037, 71%) than that among those who were not hospitalized (1,388 of 5,143, 27%). The most commonly reported conditions were diabetes mellitus, chronic lung disease, and cardiovascular disease. These preliminary findings suggest that in the United States, persons with underlying health conditions or other recognized risk factors for severe outcomes from respiratory infections appear to be at a higher risk for severe disease from COVID-19 than are persons without these conditions. |
Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020.
CDC COVID-19 Response Team , Bialek Stephanie , Boundy Ellen , Bowen Virginia , Chow Nancy , Cohn Amanda , Dowling Nicole , Ellington Sascha , Gierke Ryan , Hall Aron , MacNeil Jessica , Patel Priti , Peacock Georgina , Pilishvili Tamara , Razzaghi Hilda , Reed Nia , Ritchey Matthew , Sauber-Schatz Erin . MMWR Morb Mortal Wkly Rep 2020 69 (12) 343-346 Globally, approximately 170,000 confirmed cases of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) have been reported, including an estimated 7,000 deaths in approximately 150 countries (1). On March 11, 2020, the World Health Organization declared the COVID-19 outbreak a pandemic (2). Data from China have indicated that older adults, particularly those with serious underlying health conditions, are at higher risk for severe COVID-19-associated illness and death than are younger persons (3). Although the majority of reported COVID-19 cases in China were mild (81%), approximately 80% of deaths occurred among adults aged ≥60 years; only one (0.1%) death occurred in a person aged ≤19 years (3). In this report, COVID-19 cases in the United States that occurred during February 12-March 16, 2020 and severity of disease (hospitalization, admission to intensive care unit [ICU], and death) were analyzed by age group. As of March 16, a total of 4,226 COVID-19 cases in the United States had been reported to CDC, with multiple cases reported among older adults living in long-term care facilities (4). Overall, 31% of cases, 45% of hospitalizations, 53% of ICU admissions, and 80% of deaths associated with COVID-19 were among adults aged ≥65 years with the highest percentage of severe outcomes among persons aged ≥85 years. In contrast, no ICU admissions or deaths were reported among persons aged ≤19 years. Similar to reports from other countries, this finding suggests that the risk for serious disease and death from COVID-19 is higher in older age groups. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jul 08, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure