Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Relja B[original query] |
---|
Salivary immune responses after COVID-19 vaccination
Nguyen K , Relja B , Epperson M , Park SH , Thornburg NJ , Costantini VP , Vinjé J . PLoS One 2024 19 (9) e0307936 mRNA-based COVID-19 vaccines have played a critical role in reducing severe outcomes of COVID-19. Humoral immune responses against SARS-CoV-2 after vaccination have been extensively studied in blood; however, limited information is available on the presence and duration of SARS-CoV-2 specific antibodies in saliva and other mucosal fluids. Saliva offers a non-invasive sampling method that may also provide a better understanding of mucosal immunity at sites where the virus enters the body. Our objective was to evaluate the salivary immune response after vaccination with the COVID-19 Moderna mRNA-1273 vaccine. Two hundred three staff members of the U.S. Centers for Disease Control and Prevention were enrolled prior to receiving their first dose of the mRNA-1273 vaccine. Participants were asked to self-collect 6 saliva specimens at days 0 (prior to first dose), 14, 28 (prior to second dose), 42, and 56 using a SalivaBio saliva collection device. Saliva specimens were tested for anti-spike protein SARS-CoV-2 specific IgA and IgG enzyme immunoassays. Overall, SARS-CoV-2-specific salivary IgA titers peaked 2 weeks after each vaccine dose, followed by a sharp decrease during the following weeks. In contrast to IgA titers, IgG antibody titers increased substantially 2 weeks after the first vaccine dose, peaked 2 weeks after the second dose and persisted at an elevated level until at least 8 weeks after the first vaccine dose. Additionally, no significant differences in IgA/IgG titers were observed based on age, sex, or race/ethnicity. All participants mounted salivary IgA and IgG immune responses against SARS-CoV-2 after receiving the mRNA-1273 COVID-19 vaccine. Because of the limited follow-up time for this study, more data are needed to assess the antibody levels beyond 2 months after the first dose. Our results confirm the potential utility of saliva in assessing immune responses elicited by immunization and possibly by infection. |
SARS-CoV-2 surface contamination in metro-Atlanta grocery stores
Brown TW , Park GW , Wittry B , Barclay L , Person M , Relja B , Daly S , Chhabra P , Kincaid E , Johnson J , Ahmad A , Herzegh O , Vinjé J , Murphy J . PLoS One 2023 18 (9) e0291747 ![]() While the COVID-19 pandemic has had a detrimental impact on many businesses worldwide, essential businesses, such as grocery stores, continued to operate despite potential disease transmission. Although the principal mode by which people are infected with SARS-CoV-2, the virus that causes COVID-19, is through exposure to respiratory droplets and very small particles carrying infectious virus, contaminated surfaces might play a role in transmission. We collected swab samples from frequently touched surfaces, including grocery carts, touchscreen monitors, credit card keypads, pharmacy counters, self-service food utensils, and refrigerator and freezer handles, in two metro-Atlanta grocery stores over the course of two sampling events in March 2021. Of the 260 swab samples collected, 6 (2.3%) samples were positive for SARS-CoV-2 RNA by reverse transcriptase quantitative polymerase chain reaction. Positive samples were collected from pharmacy (12.0% [3/25] samples), refrigerator/freezer aisles (2.5% [1/39] samples), and self-service food court (5.0% [2/40] samples) areas. Table/counter edge and underside surfaces represented 33% (2/6) of positive samples. These data suggest that risk of exposure to SARS-CoV-2 from frequently touched surfaces in grocery store settings is likely low; however, more frequent cleaning of surfaces in pharmacy and self-service food courts might be warranted. |
Household characteristics associated with surface contamination of SARS-CoV-2 and frequency of RT-PCR and viral culture positivity-California and Colorado, 2021.
Shragai T , Pratt C , Castro Georgi J , Donnelly MAP , Schwartz NG , Soto R , Chuey M , Chu VT , Marcenac P , Park GW , Ahmad A , Albanese B , Totten SE , Austin B , Bunkley P , Cherney B , Dietrich EA , Figueroa E , Folster JM , Godino C , Herzegh O , Lindell K , Relja B , Sheldon SW , Tong S , Vinjé J , Thornburg NJ , Matanock AM , Hughes LJ , Stringer G , Hudziec M , Beatty ME , Tate JE , Kirking HL , Hsu CH . PLoS One 2022 17 (10) e0274946 ![]() ![]() While risk of fomite transmission of SARS-CoV-2 is considered low, there is limited environmental data within households. This January-April 2021 investigation describes frequency and types of surfaces positive for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) among residences with ≥1 SARS-CoV-2 infection, and associations of household characteristics with surface RT-PCR and viable virus positivity. Of 1232 samples from 124 households, 27.8% (n = 342) were RT-PCR positive with nightstands (44.1%) and pillows (40.9%) most frequently positive. SARS-CoV-2 lineage, documented household transmission, greater number of infected persons, shorter interval between illness onset and sampling, total household symptoms, proportion of infected persons ≤12 years old, and persons exhibiting upper respiratory symptoms or diarrhea were associated with more positive surfaces. Viable virus was isolated from 0.2% (n = 3 samples from one household) of all samples. This investigation suggests that while SARS-CoV-2 on surfaces is common, fomite transmission risk in households is low. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure