Last data update: Jan 13, 2025. (Total: 48570 publications since 2009)
Records 1-30 (of 88 Records) |
Query Trace: Reingold A[original query] |
---|
Estimating community-wide indirect effects of influenza vaccination: triangulation using mathematical models and bias analysis
Arinaminpathy N , Reed C , Biggerstaff M , Nguyen AT , Athni TS , Arnold BF , Hubbard A , Reingold A , Benjamin-Chung J . Am J Epidemiol 2024 Understanding whether influenza vaccine promotion strategies produce community-wide indirect effects is important for establishing vaccine coverage targets and optimizing vaccine delivery. Empirical epidemiologic studies and mathematical models have been used to estimate indirect effects of vaccines but rarely for the same estimand in the same dataset. Using these approaches together could be a powerful tool for triangulation in infectious disease epidemiology because each approach is subject to distinct sources of bias. We triangulated evidence about indirect effects from a school-located influenza vaccination program using two approaches: a difference-in-difference (DID) analysis, and an age-structured, deterministic, compartmental model. The estimated indirect effect was substantially lower in the mathematical model than in the DID analysis (2.1% (95% Bayesian credible intervals 0.4 - 4.4%) vs. 22.3% (95% CI 7.6% - 37.1%)). To explore reasons for differing estimates, we used sensitivity analyses and probabilistic bias analyses. When we constrained model parameters such that projections matched the DID analysis, results only aligned with the DID analysis with substantially lower pre-existing immunity among school-age children and older adults. Conversely, DID estimates corrected for potential bias only aligned with mathematical model estimates under differential outcome misclassification. We discuss how triangulation using empirical and mathematical modelling approaches could strengthen future studies. |
Meningococcal disease in persons with HIV reported through active surveillance in the United States, 2009-2019
Rudmann KC , Cooper G , Marjuki H , Reingold A , Barnes M , Petit S , Moore A , Harrison LH , Lynfield R , Khanlian SA , Anderson BJ , Martin T , Schaffner W , McNamara LA , Rubis AB . Open Forum Infect Dis 2024 11 (1) ofad696 Persons with HIV (PWH) are at increased risk for bacterial infections, and previous publications document an increased risk for invasive meningococcal disease (IMD) in particular. This analysis provides evidence that PWH face a 6-fold increase in risk for IMD based on Active Bacterial Core surveillance data collected during 2009-2019. |
COVID-19-associated hospitalizations among U.S. Adults aged ≥65 years - COVID-NET, 13 States, January-August 2023
Taylor CA , Patel K , Patton ME , Reingold A , Kawasaki B , Meek J , Openo K , Ryan PA , Falkowski A , Bye E , Plymesser K , Spina N , Tesini BL , Moran NE , Sutton M , Talbot HK , George A , Havers FP . MMWR Morb Mortal Wkly Rep 2023 72 (40) 1089-1094 Adults aged ≥65 years remain at elevated risk for severe COVID-19 disease and have higher COVID-19-associated hospitalization rates compared with those in younger age groups. Data from the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) were analyzed to estimate COVID-19-associated hospitalization rates during January-August 2023 and identify demographic and clinical characteristics of hospitalized patients aged ≥65 years during January-June 2023. Among adults aged ≥65 years, hospitalization rates more than doubled, from 6.8 per 100,000 during the week ending July 15 to 16.4 per 100,000 during the week ending August 26, 2023. Across all age groups, adults aged ≥65 years accounted for 62.9% (95% CI = 60.1%-65.7%) of COVID-19-associated hospitalizations, 61.3% (95% CI = 54.7%-67.6%) of intensive care unit admissions, and 87.9% (95% CI = 80.5%-93.2%) of in-hospital deaths associated with COVID-19 hospitalizations. Most hospitalized adults aged ≥65 years (90.3%; 95% CI = 87.2%-92.8%) had multiple underlying conditions, and fewer than one quarter (23.5%; 95% CI = 19.5%-27.7%) had received the recommended COVID-19 bivalent vaccine. Because adults aged ≥65 years remain at increased risk for COVID-19-associated hospitalization and severe outcomes, guidance for this age group should continue to focus on measures to prevent SARS-CoV-2 infection, encourage vaccination, and promote early treatment for persons who receive a positive SARS-CoV-2 test result to reduce their risk for severe COVID-19-associated outcomes. |
Severity of influenza-associated hospitalisations by influenza virus type and subtype in the USA, 2010-19: a repeated cross-sectional study
Sumner KM , Masalovich S , O'Halloran A , Holstein R , Reingold A , Kirley PD , Alden NB , Herlihy RK , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Monroe ML , Leegwater L , Henderson J , Lynfield R , McMahon M , McMullen C , Angeles KM , Spina NL , Engesser K , Bennett NM , Felsen CB , Lung K , Shiltz E , Thomas A , Talbot HK , Schaffner W , Swain A , George A , Rolfes MA , Reed C , Garg S . Lancet Microbe 2023 4 (11) e903-e912 BACKGROUND: Influenza burden varies across seasons, partly due to differences in circulating influenza virus types or subtypes. Using data from the US population-based surveillance system, Influenza Hospitalization Surveillance Network (FluSurv-NET), we aimed to assess the severity of influenza-associated outcomes in individuals hospitalised with laboratory-confirmed influenza virus infections during the 2010-11 to 2018-19 influenza seasons. METHODS: To evaluate the association between influenza virus type or subtype causing the infection (influenza A H3N2, A H1N1pdm09, and B viruses) and in-hospital severity outcomes (intensive care unit [ICU] admission, use of mechanical ventilation or extracorporeal membrane oxygenation [ECMO], and death), we used FluSurv-NET to capture data for laboratory-confirmed influenza-associated hospitalisations from the 2010-11 to 2018-19 influenza seasons for individuals of all ages living in select counties in 13 US states. All individuals had to have an influenza virus test within 14 days before or during their hospital stay and an admission date between Oct 1 and April 30 of an influenza season. Exclusion criteria were individuals who did not have a complete chart review; cases from sites that contributed data for three or fewer seasons; hospital-onset cases; cases with unidentified influenza type; cases of multiple influenza virus type or subtype co-infection; or individuals younger than 6 months and ineligible for the influenza vaccine. Logistic regression models adjusted for influenza season, influenza vaccination status, age, and FluSurv-NET site compared odds of in-hospital severity by virus type or subtype. When missing, influenza A subtypes were imputed using chained equations of known subtypes by season. FINDINGS: Data for 122 941 individuals hospitalised with influenza were captured in FluSurv-NET from the 2010-11 to 2018-19 seasons; after exclusions were applied, 107 941 individuals remained and underwent influenza A virus imputation when missing A subtype (43·4%). After imputation, data for 104 969 remained and were included in the final analytic sample. Averaging across imputed datasets, 57·7% (weighted percentage) had influenza A H3N2, 24·6% had influenza A H1N1pdm09, and 17·7% had influenza B virus infections; 16·7% required ICU admission, 6·5% received mechanical ventilation or ECMO, and 3·0% died (95% CIs had a range of less than 0·1% and are not displayed). Individuals with A H1N1pdm09 had higher odds of in-hospital severe outcomes than those with A H3N2: adjusted odds ratios (ORs) for A H1N1pdm09 versus A H3N2 were 1·42 (95% CI 1·32-1·52) for ICU admission; 1·79 (1·60-2·00) for mechanical ventilation or ECMO use; and 1·25 (1·07-1·46) for death. The adjusted ORs for individuals infected with influenza B versus influenza A H3N2 were 1·06 (95% CI 1·01-1·12) for ICU admission, 1·14 (1·05-1·24) for mechanical ventilation or ECMO use, and 1·18 (1·07-1·31) for death. INTERPRETATION: Despite a higher burden of hospitalisations with influenza A H3N2, we found an increased likelihood of in-hospital severe outcomes in individuals hospitalised with influenza A H1N1pdm09 or influenza B virus. Thus, it is important for individuals to receive an annual influenza vaccine and for health-care providers to provide early antiviral treatment for patients with suspected influenza who are at increased risk of severe outcomes, not only when there is high influenza A H3N2 virus circulation but also when influenza A H1N1pdm09 and influenza B viruses are circulating. FUNDING: The US Centers for Disease Control and Prevention. |
Clinical Trends Among U.S. Adults Hospitalized with COVID-19, March-December 2020 (preprint)
Garg S , Patel K , Pham H , Whitaker M , O'Halloran A , Milucky J , Anglin O , Kirley PD , Reingold A , Kawasaki B , Herlihy R , Yousey-Hindes K , Maslar A , Anderson EJ , Openo KP , Weigel A , Teno K , Ryan PA , Monroe ML , Reeg L , Kim S , Como-Sabetti K , Bye E , Shrum Davis S , Eisenberg N , Muse A , Barney G , Bennett NM , Felsen CB , Billing L , Shiltz J , Sutton M , Abdullah N , Talbot HK , Schaffner W , Hill M , Chatelain R , Wortham J , Taylor C , Hall A , Fry AM , Kim L , Havers FP . medRxiv 2021 2021.04.21.21255473 Background The COVID-19 pandemic has caused substantial morbidity and mortality.Objectives To describe monthly demographic and clinical trends among adults hospitalized with COVID-19.Design Pooled cross-sectional.Setting 99 counties within 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET).Patients U.S. adults (aged ≥18 years) hospitalized with laboratory-confirmed COVID-19 during March 1-December 31, 2020.Measurements Monthly trends in weighted percentages of interventions and outcomes including length of stay (LOS), intensive care unit admissions (ICU), invasive mechanical ventilation (IMV), vasopressor use and in-hospital death (death). Monthly hospitalization, ICU and death rates per 100,000 population.Results Among 116,743 hospitalized adults, median age was 62 years. Among 18,508 sampled adults, median LOS decreased from 6.4 (March) to 4.6 days (December). Remdesivir and systemic corticosteroid use increased from 1.7% and 18.9% (March) to 53.8% and 74.2% (December), respectively. Frequency of ICU decreased from 37.8% (March) to 20.5% (December). IMV (27.8% to 8.7%), vasopressors (22.7% to 8.8%) and deaths (13.9% to 8.7%) decreased from March to October; however, percentages of these interventions and outcomes remained stable or increased in November and December. Percentage of deaths significantly decreased over time for non-Hispanic White patients (p-value <0.01) but not non-Hispanic Black or Hispanic patients. Rates of hospitalization (105.3 per 100,000), ICU (20.2) and death (11.7) were highest during December.Limitations COVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country.Conclusions After initial improvement during April-October 2020, trends in interventions and outcomes worsened during November-December, corresponding with the 3rd peak of the U.S. pandemic. These data provide a longitudinal assessment of trends in COVID-19-associated outcomes prior to widespread COVID-19 vaccine implementation.Competing Interest StatementDr. Evan Anderson reports grants from Pfizer, grants from Merck, grants from PaxVax, grants from Micron, grants from Sanofi-Pasteur, grants from Janssen, grants from MedImmune, grants from GSK, personal fees from Sanofi-Pasteur, personal fees from Pfizer, personal fees from Medscape, personal fees from Kentucky Bioprocessing, Inc, personal fees from Sanofi-Pasteur, outside the submitted work. Dr. William Schaffner reports personal fees from VBI Vaccines, outside the submitted work. Funding StatementThis work was supported by the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement (grant CK17-1701) and through a Council of State and Territorial Epidemiologists cooperative agreement (grant NU38OT000297-02-00).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy. Sites participating in COVID-NET obtained approval from their respective state and local Institutional Review Boards, as applicable.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting check ist(s) and other pertinent material as supplementary files, if applicable.YesPublicly available data referred to in this analysis can be found at: https://gis.cdc.gov/grasp/covidnet/covid19_3.html https://gis.cdc.gov/grasp/covidnet/covid19_3.html |
Interim Analysis of Risk Factors for Severe Outcomes among a Cohort of Hospitalized Adults Identified through the U.S. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET) (preprint)
Kim L , Garg S , O'Halloran A , Whitaker M , Pham H , Anderson EJ , Armistead I , Bennett NM , Billing L , Como-Sabetti K , Hill M , Kim S , Monroe ML , Muse A , Reingold AL , Schaffner W , Sutton M , Talbot HK , Torres SM , Yousey-Hindes K , Holstein R , Cummings C , Brammer L , Hall AJ , Fry AM , Langley GE . medRxiv 2020 2020.05.18.20103390 Background As of May 15, 2020, the United States has reported the greatest number of coronavirus disease 2019 (COVID-19) cases and deaths globally.Objective To describe risk factors for severe outcomes among adults hospitalized with COVID-19.Design Cohort study of patients identified through the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network.Setting 154 acute care hospitals in 74 counties in 13 states.Patients 2491 patients hospitalized with laboratory-confirmed COVID-19 during March 1-May 2, 2020.Measurements Age, sex, race/ethnicity, and underlying medical conditions.Results Ninety-two percent of patients had ≥1 underlying condition; 32% required intensive care unit (ICU) admission; 19% invasive mechanical ventilation; 15% vasopressors; and 17% died during hospitalization. Independent factors associated with ICU admission included ages 50-64, 65-74, 75-84 and ≥85 years versus 18-39 years (adjusted risk ratio (aRR) 1.53, 1.65, 1.84 and 1.43, respectively); male sex (aRR 1.34); obesity (aRR 1.31); immunosuppression (aRR 1.29); and diabetes (aRR 1.13). Independent factors associated with in-hospital mortality included ages 50-64, 65-74, 75-84 and ≥85 years versus 18-39 years (aRR 3.11, 5.77, 7.67 and 10.98, respectively); male sex (aRR 1.30); immunosuppression (aRR 1.39); renal disease (aRR 1.33); chronic lung disease (aRR 1.31); cardiovascular disease (aRR 1.28); neurologic disorders (aRR 1.25); and diabetes (aRR 1.19). Race/ethnicity was not associated with either ICU admission or death.Limitation Data were limited to patients who were discharged or died in-hospital and had complete chart abstractions; patients who were still hospitalized or did not have accessible medical records were excluded.Conclusion In-hospital mortality for COVID-19 increased markedly with increasing age. These data help to characterize persons at highest risk for severe COVID-19-associated outcomes and define target groups for prevention and treatment strategies.Funding Source This work was supported by grant CK17-1701 from the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement and by Cooperative Agreement Number NU38OT000297-02-00 awarded to the Council of State and Territorial Epidemiologists from the Centers for Disease Control and Prevention.Competing Interest StatementH. Keipp Talbot reports personal fees from Seqirus outside the submitted work. William Schaffner reports personal fees from Pfizer and personal fees from Roche Diagnostics outside the submitted work. Evan Anderson reports personal fees from Abbvie and Pfizer outside the submitted work. H. Keipp Talbot reports grants from Sanofi outside the submitted work; Mary Hill reports grants from CSTE, during the conduct of the study; Melissa Sutton reports grants from CDC Emerging Infections Program during the conduct of the study; William Schaffner reports grants from CDC during the conduct of the study. Sue Kim reports grants from CSTE during the conduct of the study. Evan Anderson reports grants from Pfizer, grants from MedImmune, grants from Regeneron, grants from PaxVax, grants from Merck, grants from Novavax, grants from Sanofi-Pasteur, grants from Micron, outside the submitted work. Laurie Billing reports grants from the Council of State and Territorial Epidemiologists (CSTE) and the Centers for Disease Control and Prevention (CDC) during the conduct of the study.Funding StatementThis work was supported by grant CK17-1701 from the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement and by Cooperative Agreement Number NU38OT000297-02-00 awarded to the Council of State and Territorial Epidemiologists from the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that al clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAggregate data is available on CDC’s COVID-NET Interactive website. https://gis.cdc.gov/grasp/COVIDNet/COVID19_3.html https://gis.cdc.gov/grasp/COVIDNet/COVID19_5.html |
School-located influenza vaccination and community-wide indirect effects: Reconciling mathematical models to epidemiologic models (preprint)
Arinaminpathy N , Reed C , Biggerstaff M , Nguyen A , Athni TS , Arnold BF , Hubbard A , Colford JM , Reingold A , Benjamin-Chung J . medRxiv 2022 13 Background: Mathematical models and empirical epidemiologic studies (e.g., randomized and observational studies) are complementary tools but may produce conflicting results for a given research question. We used sensitivity analyses and bias analyses to explore such discrepancies in a study of the indirect effects of influenza vaccination. Method(s): We fit an age-structured, deterministic, compartmental model to estimate indirect effects of a school-based influenza vaccination program in California that was evaluated in a previous matched cohort study. To understand discrepancies in their results, we used 1) a model with constrained parameters such that projections matched the cohort study; and 2) probabilistic bias analyses to identify potential biases (e.g., outcome misclassification due to incomplete influenza testing) that, if corrected, would align the empirical results with the mathematical model. Result(s): The indirect effect estimate (% reduction in influenza hospitalization among older adults in intervention vs. control) was 22.3% (95% CI 7.6% - 37.1%) in the cohort study but only 1.6% (95% Bayesian credible intervals 0.4 - 4.4%) in the mathematical model. When constrained, mathematical models aligned with the cohort study when there was substantially lower pre-existing immunity among school-age children and older adults. Conversely, empirical estimates corrected for potential bias aligned with mathematical model estimates only if influenza testing rates were 15-23% lower in the intervention vs. comparison site. Conclusion(s): Sensitivity and bias analysis can shed light on why results of mathematical models and empirical epidemiologic studies differ for the same research question, and in turn, can improve study and model design. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license. |
SARS-CoV-2 Delta variant genomic variation associated with breakthrough infection in Northern California: A retrospective cohort study
Skarbinski J , Nugent JR , Wood MS , Liu L , Bullick T , Schapiro JM , Arunleung P , Morales C , Amsden LB , Hsiao CA , Wadford DA , Chai SJ , Reingold A , Wyman SK . J Infect Dis 2023 228 (7) 878-888 BACKGROUND: The association between SARS-CoV-2 genomic variation and breakthrough infection is not well-defined among persons with Delta variant SARS-CoV-2 infection. METHODS: In a retrospective cohort we assessed whether individual non-lineage defining mutations and overall genomic variation (including low frequency alleles) were associated with breakthrough infection defined as SARS-CoV-2 infection after COVID-19 primary vaccine series. We identified all non-synonymous single nucleotide polymorphisms, insertions and deletions in SARS-CoV-2 genomes with ≥5% allelic frequency and population frequency of ≥5% and ≤95%. Using Poisson regression, we assessed the association with breakthrough infection for each individual mutation and a viral genomic risk score. RESULTS: Thirty-six mutations met our inclusion criteria. Among 12,744 persons infected with Delta variant SARS-CoV-2, 5,949 (47%) were vaccinated and 6,795 (53%) were unvaccinated. Viruses with a viral genomic risk score in the highest quintile were 9% more likely to be associated with breakthrough infection than viruses in the lowest quintile, but including the risk score improved overall predictive model performance (measured by c-statistic) by only +0.0006. CONCLUSIONS: Genomic variation within SARS-CoV-2 Delta variant was weakly associated with breakthrough infection, however several potential non-lineage defining mutations were identified that might contribute to immune evasion by SARS-CoV-2. |
Laboratory-Confirmed COVID-19-Associated Hospitalizations Among Adults During SARS-CoV-2 Omicron BA.2 Variant Predominance - COVID-19-Associated Hospitalization Surveillance Network, 14 States, June 20, 2021-May 31, 2022.
Havers FP , Patel K , Whitaker M , Milucky J , Reingold A , Armistead I , Meek J , Anderson EJ , Weigel A , Reeg L , Seys S , Ropp SL , Spina N , Felsen CB , Moran NE , Sutton M , Talbot HK , George A , Taylor CA , COVID-NET Surveillance Team . MMWR Morb Mortal Wkly Rep 2022 71 (34) 1085-1091 Beginning the week of March 20–26, 2022, the Omicron BA.2 variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating variant in the United States, accounting for >50% of sequenced isolates.* Data from the COVID-19–Associated Hospitalization Surveillance Network (COVID-NET) were analyzed to describe recent COVID-19–associated hospitalization rates among adults aged ≥18 years during the period coinciding with BA.2 predominance (BA.2 period [Omicron BA.2 and BA.2.12.1; March 20–May 31, 2022]). Weekly hospitalization rates (hospitalizations per 100,000 population) among adults aged ≥65 years increased threefold, from 6.9 (week ending April 2, 2022) to 27.6 (week ending May 28, 2022); hospitalization rates in adults aged 18–49 and 50–64 years both increased 1.7-fold during the same time interval. Hospitalization rates among unvaccinated adults were 3.4 times as high as those among vaccinated adults. Among hospitalized nonpregnant patients in this same period, 39.1% had received a primary vaccination series and 1 booster or additional dose; 5.0% had received a primary series and ≥2 boosters or additional doses. All adults should stay up to date† with COVID-19 vaccination, and multiple nonpharmaceutical and medical prevention measures should be used to protect those at high risk for severe COVID-19 illness, irrespective of vaccination status§ (1). Beginning the week of March 20–26, 2022, the Omicron BA.2 variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating variant in the United States, accounting for >50% of sequenced isolates.* Data from the COVID-19–Associated Hospitalization Surveillance Network (COVID-NET) were analyzed to describe recent COVID-19–associated hospitalization rates among adults aged ≥18 years during the period coinciding with BA.2 predominance (BA.2 period [Omicron BA.2 and BA.2.12.1; March 20–May 31, 2022]). Weekly hospitalization rates (hospitalizations per 100,000 population) among adults aged ≥65 years increased threefold, from 6.9 (week ending April 2, 2022) to 27.6 (week ending May 28, 2022); hospitalization rates in adults aged 18–49 and 50–64 years both increased 1.7-fold during the same time interval. Hospitalization rates among unvaccinated adults were 3.4 times as high as those among vaccinated adults. Among hospitalized nonpregnant patients in this same period, 39.1% had received a primary vaccination series and 1 booster or additional dose; 5.0% had received a primary series and ≥2 boosters or additional doses. All adults should stay up to date† with COVID-19 vaccination, and multiple nonpharmaceutical and medical prevention measures should be used to protect those at high risk for severe COVID-19 illness, irrespective of vaccination status§ (1). |
Secondary cases of invasive disease caused by encapsulated and nontypeable haemophilus influenzae - 10 U.S. Jurisdictions, 2011-2018
Oliver SE , Rubis AB , Soeters HM , Reingold A , Barnes M , Petit S , Moore AE , Harrison LH , Lynfield R , Angeles KM , Burzlaff KE , Thomas A , Schaffner W , Marjuki H , Wang X , Hariri S . MMWR Morb Mortal Wkly Rep 2023 72 (15) 386-390 Haemophilus influenzae (Hi) can cause meningitis and other serious invasive disease. Encapsulated Hi is classified into six serotypes (a-f) based on chemical composition of the polysaccharide capsule; unencapsulated strains are termed nontypeable Hi (NTHi). Hi serotype b (Hib) was the most common cause of bacterial meningitis in children in the pre-Hib vaccine era, and secondary transmission of Hi among children (e.g., to household contacts and in child care facilities) (1,2) led to the Advisory Committee on Immunization Practices (ACIP) recommendation for antibiotic chemoprophylaxis to prevent Hib disease in certain circumstances.* High Hib vaccination coverage since the 1990s has substantially reduced Hib disease, and other serotypes now account for most Hi-associated invasive disease in the United States (3). Nevertheless, CDC does not currently recommend chemoprophylaxis for contacts of persons with invasive disease caused by serotypes other than Hib and by NTHi (non-b Hi). Given this changing epidemiology, U.S. surveillance data were reviewed to investigate secondary cases of invasive disease caused by Hi. The estimated prevalence of secondary transmission was 0.32% among persons with encapsulated Hi disease (≤60 days of one another) and 0.12% among persons with NTHi disease (≤14 days of one another). Isolates from all Hi case pairs were genetically closely related, and all patients with potential secondary infection had underlying medical conditions. These results strongly suggest that secondary transmission of non-b Hi occurs. Expansion of Hi chemoprophylaxis recommendations might be warranted to control invasive Hi disease in certain populations in the United States, but further analysis is needed to evaluate the potential benefits against the risks, such as increased antibiotic use. |
Bacterial and viral infections among adults hospitalized with COVID-19, COVID-NET, 14 states, March 2020-April 2022
Shah MM , Patel K , Milucky J , Taylor CA , Reingold A , Armistead I , Meek J , Anderson EJ , Weigel A , Reeg L , Como-Sabetti K , Ropp SL , Muse A , Bushey S , Shiltz E , Sutton M , Talbot HK , Chatelain R , Havers FP . Influenza Other Respir Viruses 2023 17 (3) e13107 BACKGROUND: Bacterial and viral infections can occur with SARS-CoV-2 infection, but prevalence, risk factors, and associated clinical outcomes are not fully understood. METHODS: We used the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET), a population-based surveillance system, to investigate the occurrence of bacterial and viral infections among hospitalized adults with laboratory-confirmed SARS-CoV-2 infection between March 2020 and April 2022. Clinician-driven testing for bacterial pathogens from sputum, deep respiratory, and sterile sites were included. The demographic and clinical features of those with and without bacterial infections were compared. We also describe the prevalence of viral pathogens including respiratory syncytial virus, rhinovirus/enterovirus, influenza, adenovirus, human metapneumovirus, parainfluenza viruses, and non-SARS-CoV-2 endemic coronaviruses. RESULTS: Among 36 490 hospitalized adults with COVID-19, 53.3% had bacterial cultures taken within 7 days of admission and 6.0% of these had a clinically relevant bacterial pathogen. After adjustment for demographic factors and co-morbidities, bacterial infections in patients with COVID-19 within 7 days of admission were associated with an adjusted relative risk of death 2.3 times that of patients with negative bacterial testing. Staphylococcus aureus and Gram-negative rods were the most frequently isolated bacterial pathogens. Among hospitalized adults with COVID-19, 2766 (7.6%) were tested for seven virus groups. A non-SARS-CoV-2 virus was identified in 0.9% of tested patients. CONCLUSIONS: Among patients with clinician-driven testing, 6.0% of adults hospitalized with COVID-19 were identified to have bacterial coinfections and 0.9% were identified to have viral coinfections; identification of a bacterial coinfection within 7 days of admission was associated with increased mortality. |
Acute cardiac events during COVID-19-associated hospitalizations
Woodruff RC , Garg S , George MG , Patel K , Jackson SL , Loustalot F , Wortham JM , Taylor CA , Whitaker M , Reingold A , Alden NB , Meek J , Anderson EJ , Weigel A , Henderson J , Bye E , Davis SS , Barney G , Bennett NM , Shiltz E , Sutton M , Talbot HK , Price A , Sperling LS , Havers FP . J Am Coll Cardiol 2023 81 (6) 557-569 BACKGROUND: COVID-19 is associated with cardiac complications. OBJECTIVES: The purpose of this study was to estimate the prevalence, risk factors, and outcomes associated with acute cardiac events during COVID-19-associated hospitalizations among adults. METHODS: During January 2021 to November 2021, medical chart abstraction was conducted on a probability sample of adults hospitalized with laboratory-confirmed SARS-CoV-2 infection identified from 99 U.S. counties in 14 U.S. states in the COVID-19-Associated Hospitalization Surveillance Network. We calculated the prevalence of acute cardiac events (identified by International Classification of Diseases-10th Revision-Clinical Modification codes) by history of underlying cardiac disease and examined associated risk factors and disease outcomes. RESULTS: Among 8,460 adults, 11.4% (95% CI: 10.1%-12.9%) experienced an acute cardiac event during a COVID-19-associated hospitalization. Prevalence was higher among adults who had underlying cardiac disease (23.4%; 95% CI: 20.7%-26.3%) compared with those who did not (6.2%; 95% CI: 5.1%-7.6%). Acute ischemic heart disease (5.5%; 95% CI: 4.5%-6.5%) and acute heart failure (5.4%; 95% CI: 4.4%-6.6%) were the most prevalent events; 0.3% (95% CI: 0.1%-0.5%) experienced acute myocarditis or pericarditis. Risk factors varied by underlying cardiac disease status. Patients with ≥1 acute cardiac event had greater risk of intensive care unit admission (adjusted risk ratio: 1.9; 95% CI: 1.8-2.1) and in-hospital death (adjusted risk ratio: 1.7; 95% CI: 1.3-2.1) compared with those who did not. CONCLUSIONS: Acute cardiac events were common during COVID-19-associated hospitalizations, particularly among patients with underlying cardiac disease, and are associated with severe disease outcomes. Persons at greater risk for experiencing acute cardiac events during COVID-19-associated hospitalizations might benefit from more intensive clinical evaluation and monitoring during hospitalization. |
Epidemiology of invasive nontypeable Haemophilus influenzae disease-United States, 2008-2019.
Oliver SE , Rubis AB , Soeters HM , Reingold A , Barnes M , Petit S , Farley MM , Harrison LH , Como-Sabetti K , Khanlian SA , Wester R , Thomas A , Schaffner W , Marjuki H , Wang X , Hariri S . Clin Infect Dis 2023 76 (11) 1889-1895 BACKGROUND: Nontypeable Haemophilus influenzae (NTHi) is the most common cause of invasive H. influenzae disease in the United States. We evaluated the epidemiology of invasive NTHi disease in the United States, including among pregnant women, infants, and people with HIV (PWH). METHODS: We used data from population- and laboratory-based surveillance for invasive H. influenzae disease conducted in 10 sites to estimate national incidence of NTHi, and to describe epidemiology in women of childbearing age, infants aged ≤30 days (neonates), and PWH living in the surveillance catchment areas. H. influenzae isolates were sent to the Centers for Disease Control and Prevention for species confirmation, serotyping, and whole genome sequencing of select isolates. RESULTS: During 2008-2019, average annual NTHi incidence in the United States was 1.3/100,000 population overall, 5.8/100,000 among children aged <1 year and 10.2/100,000 among adults aged ≥80 years. Among 225 reported neonates with NTHi, 92% had a positive culture within the first week of life and 72% were preterm. NTHi risk was 23 times higher among preterm compared to term neonates, and 5.6 times higher in pregnant/postpartum compared to non-pregnant women. Over half of pregnant women with invasive NTHi had loss of pregnancy post-infection. Incidence among PWH aged ≥13 years was 9.5 cases per 100,000, compared to 1.1 cases per 100,000 for non-PWH (RR=8.3; 95% CI=7.1-9.7; p<0.0001). CONCLUSION: NTHi causes substantial invasive disease, especially among older adults, pregnant/postpartum women, and neonates. Enhanced surveillance and evaluation of targeted interventions to prevent perinatal NTHi infections may be warranted. |
Changes in the incidence of invasive bacterial disease during the COVID-19 pandemic in the United States, 2014-2020
Prasad N , Rhodes J , Deng L , McCarthy N , Moline HL , Baggs J , Reddy SC , Jernigan JA , Havers FP , Sosin D , Thomas A , Lynfield R , Schaffner W , Reingold A , Burzlaff K , Harrison LH , Petit S , Farley MM , Herlihy R , Nanduri S , Pilishvili T , McNamara LA , Schrag SJ , Fleming-Dutra KE , Kobayashi M , Arvay M . J Infect Dis 2023 227 (7) 907-916 BACKGROUND: Descriptions of changes in invasive bacterial disease (IBD) epidemiology during the COVID-19 pandemic in the United States are limited. METHODS: We investigated changes in the incidence of IBD due to Streptococcus pneumoniae, Haemophilus influenzae, group A Streptococcus (GAS), and group B Streptococcus (GBS). We defined the COVID-19 pandemic period as March 1-December 31, 2020. We compared observed IBD incidences during the pandemic to expected incidences, consistent with January 2014-February 2020 trends. We conducted secondary analysis of a healthcare database to assess changes in testing by blood and cerebrospinal fluid (CSF) culture during the pandemic. RESULTS: Compared with expected incidences, the observed incidences of IBD due to S. pneumoniae, H. influenzae, GAS, and GBS were 58%, 60%, 28%, and 12% lower during the pandemic period of 2020, respectively. Declines from expected incidences corresponded closely with implementation of COVID-19-associated non-pharmaceutical-interventions (NPIs). Significant declines were observed across all age, race groups and surveillance sites for S pneumoniae and H influenzae. Blood and CSF culture testing rates during the pandemic were comparable to previous years. CONCLUSIONS: NPIs likely contributed to the decline in IBD incidence in the United States in 2020; observed declines were unlikely to be driven by reductions in testing. |
Prevalence of SARS-CoV-2 and Influenza Coinfection and Clinical Characteristics Among Children and Adolescents Aged <18 Years Who Were Hospitalized or Died with Influenza - United States, 2021-22 Influenza Season.
Adams K , Tastad KJ , Huang S , Ujamaa D , Kniss K , Cummings C , Reingold A , Roland J , Austin E , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Reeg L , Leegwater L , McMahon M , Bye E , Poblete M , Landis Z , Spina NL , Engesser K , Bennett NM , Gaitan MA , Shiltz E , Moran N , Sutton M , Abdullah N , Schaffner W , Talbot HK , Olsen K , Staten H , Taylor CA , Havers FP , Reed C , Budd A , Garg S , O'Halloran A , Brammer L . MMWR Morb Mortal Wkly Rep 2022 71 (50) 1589-1596 The 2022-23 influenza season shows an early rise in pediatric influenza-associated hospitalizations (1). SARS-CoV-2 viruses also continue to circulate (2). The current influenza season is the first with substantial co-circulation of influenza viruses and SARS-CoV-2 (3). Although both seasonal influenza viruses and SARS-CoV-2 can contribute to substantial pediatric morbidity (3-5), whether coinfection increases disease severity compared with that associated with infection with one virus alone is unknown. This report describes characteristics and prevalence of laboratory-confirmed influenza virus and SARS-CoV-2 coinfections among patients aged <18 years who had been hospitalized or died with influenza as reported to three CDC surveillance platforms during the 2021-22 influenza season. Data from two Respiratory Virus Hospitalizations Surveillance Network (RESP-NET) platforms (October 1, 2021-April 30, 2022),(§) and notifiable pediatric deaths associated(¶) with influenza virus and SARS-CoV-2 coinfection (October 3, 2021-October 1, 2022)** were analyzed. SARS-CoV-2 coinfections occurred in 6% (32 of 575) of pediatric influenza-associated hospitalizations and in 16% (seven of 44) of pediatric influenza-associated deaths. Compared with patients without coinfection, a higher proportion of those hospitalized with coinfection received invasive mechanical ventilation (4% versus 13%; p = 0.03) and bilevel positive airway pressure or continuous positive airway pressure (BiPAP/CPAP) (6% versus 16%; p = 0.05). Among seven coinfected patients who died, none had completed influenza vaccination, and only one received influenza antivirals.(††) To help prevent severe outcomes, clinicians should follow recommended respiratory virus testing algorithms to guide treatment decisions and consider early antiviral treatment initiation for pediatric patients with suspected or confirmed influenza, including those with SARS-CoV-2 coinfection who are hospitalized or at increased risk for severe illness. The public and parents should adopt prevention strategies including considering wearing well-fitted, high-quality masks when respiratory virus circulation is high and staying up-to-date with recommended influenza and COVID-19 vaccinations for persons aged ≥6 months. |
Factors Associated with Severe Outcomes Among Immunocompromised Adults Hospitalized for COVID-19 - COVID-NET, 10 States, March 2020-February 2022.
Singson JRC , Kirley PD , Pham H , Rothrock G , Armistead I , Meek J , Anderson EJ , Reeg L , Lynfield R , Ropp S , Muse A , Felsen CB , Sutton M , Talbot HK , Havers FP , Taylor CA , Reingold A , Chai SJ . MMWR Morb Mortal Wkly Rep 2022 71 (27) 878-884 Immunocompromised persons are at increased risk for severe COVID-19-related outcomes, including intensive care unit (ICU) admission and death (1). Data on adults aged ≥18 years hospitalized with laboratory-confirmed COVID-19 from 10 U.S. states in the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) were analyzed to assess associations between immunocompromise and ICU admission and in-hospital death during March 1, 2020-February 28, 2022. Associations of COVID-19 vaccination status with ICU admission and in-hospital death were also examined during March 1, 2021-February 28, 2022. During March 1, 2020-February 28, 2022, among a sample of 22,345 adults hospitalized for COVID-19, 12.2% were immunocompromised. Among unvaccinated patients, those with immunocompromise had higher odds of ICU admission (adjusted odds ratio [aOR] = 1.26; 95% CI = 1.08-1.49) and in-hospital death (aOR = 1.34; 95% CI = 1.05-1.70) than did nonimmunocompromised patients. Among vaccinated patients,* those with immunocompromise had higher odds of ICU admission (aOR = 1.40; 95% CI = 1.01-1.92) and in-hospital death (aOR = 1.87; 95% CI = 1.28-2.75) than did nonimmunocompromised patients. During March 1, 2021-February 28, 2022, among nonimmunocompromised patients, patients who were vaccinated had lower odds of death (aOR = 0.58; 95% CI = 0.39-0.86) than did unvaccinated patients; among immunocompromised patients, odds of death between vaccinated and unvaccinated patients did not differ. Immunocompromised persons need additional protection from COVID-19 and using multiple known COVID-19 prevention strategies,(†) including nonpharmaceutical interventions, up-to-date vaccination of immunocompromised persons and their close contacts,(§) early testing, and COVID-19 prophylactic (Evusheld) and early antiviral treatment,(¶) can help prevent hospitalization and subsequent severe COVID-19 outcomes among immunocompromised persons. |
Comparison of influenza and COVID-19-associated hospitalizations among children < 18 years old in the United States-FluSurv-NET (October-April 2017-2021) and COVID-NET (October 2020-September 2021).
Delahoy MJ , Ujamaa D , Taylor CA , Cummings C , Anglin O , Holstein R , Milucky J , O'Halloran A , Patel K , Pham H , Whitaker M , Reingold A , Chai SJ , Alden NB , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Weigel A , Teno K , Reeg L , Leegwater L , Lynfield R , McMahon M , Ropp S , Rudin D , Muse A , Spina N , Bennett NM , Popham K , Billing LM , Shiltz E , Sutton M , Thomas A , Schaffner W , Talbot HK , Crossland MT , McCaffrey K , Hall AJ , Burns E , McMorrow M , Reed C , Havers FP , Garg S . Clin Infect Dis 2022 76 (3) e450-e459 BACKGROUND: Influenza virus and SARS-CoV-2 are significant causes of respiratory illness in children. METHODS: Influenza and COVID-19-associated hospitalizations among children <18 years old were analyzed from FluSurv-NET and COVID-NET, two population-based surveillance systems with similar catchment areas and methodology. The annual COVID-19-associated hospitalization rate per 100 000 during the ongoing COVID-19 pandemic (October 1, 2020-September 30, 2021) was compared to influenza-associated hospitalization rates during the 2017-18 through 2019-20 influenza seasons. In-hospital outcomes, including intensive care unit (ICU) admission and death, were compared. RESULTS: Among children <18 years old, the COVID-19-associated hospitalization rate (48.2) was higher than influenza-associated hospitalization rates: 2017-18 (33.5), 2018-19 (33.8), and 2019-20 (41.7). The COVID-19-associated hospitalization rate was higher among adolescents 12-17 years old (COVID-19: 59.9; influenza range: 12.2-14.1), but similar or lower among children 5-11 (COVID-19: 25.0; influenza range: 24.3-31.7) and 0-4 (COVID-19: 66.8; influenza range: 70.9-91.5) years old. Among children <18 years old, a higher proportion with COVID-19 required ICU admission compared with influenza (26.4% vs 21.6%; p<0.01). Pediatric deaths were uncommon during both COVID-19- and influenza-associated hospitalizations (0.7% vs 0.5%; p=0.28). CONCLUSIONS: In the setting of extensive mitigation measures during the COVID-19 pandemic, the annual COVID-19-associated hospitalization rate during 2020-2021 was higher among adolescents and similar or lower among children <12 years old compared with influenza during the three seasons before the COVID-19 pandemic. COVID-19 adds substantially to the existing burden of pediatric hospitalizations and severe outcomes caused by influenza and other respiratory viruses. |
Impact of pneumococcal conjugate vaccines on antibiotic-nonsusceptible invasive pneumococcal disease in the United States
Bajema KL , Gierke R , Farley MM , Schaffner W , Thomas A , Reingold AL , Harrison LH , Lynfield R , Burzlaff KE , Petit S , Barnes M , Torres S , Snippes Vagnone PM , Beall B , Pilishvili T . J Infect Dis 2022 226 (2) 342-351 BACKGROUND: Antibiotic-nonsusceptible invasive pneumococcal disease (NS-IPD) incidence declined dramatically in the United States following introduction of pneumococcal conjugate vaccines (PCVs) into the infant immunization schedule (7-valent PCV7 in 2000, replaced by the 13-valent PCV13 in 2010). We evaluated the long-term impact of PCVs on NS-IPD. METHODS: We identified IPD cases through the Centers for Disease Control Active Bacterial Core surveillance during 1998-2018. Isolates intermediate or resistant to ≥1 antibiotic class were classified as nonsusceptible. We calculated annual rates of IPD (cases per 100,000 persons). RESULTS: From 1998 through 2018, NS-IPD incidence decreased from 43.9 to 3.2 among children <5 years and from 19.8 to 9.4 among adults ≥65 years. Incidence of vaccine-type NS-IPD decreased in all age groups, while incidence of NVT NS-IPD increased in all age groups; the greatest absolute increase in NVT NS-IPD occurred among adults ≥65 years (2.3 to 7.2). During 2014-18, NVTs 35B, 33F, 22F, and 15A were the most common NS-IPD serotypes. CONCLUSIONS: NS-IPD incidence decreased following PCV7 and PCV13 introduction in the United States. However, recent increases in NVT NS-IPD, most pronounced among older adults, have been observed. New higher valency PCVs containing the most common nonsusceptible serotypes, including 22F and 33F, could help further reduce NS-IPD. |
Impact of 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease among adults with HIV-United States, 2008-2018
Kobayashi M , Matanock A , Xing W , Adih WK , Li J , Gierke R , Almendares O , Reingold A , Alden N , Petit S , Farley MM , Harrison LH , Holtzman C , Baumbach J , Thomas A , Schaffner W , McGee L , Pilishvili T . J Acquir Immune Defic Syndr 2022 90 (1) 6-14 BACKGROUND: People with HIV (PWH) are at increased risk for invasive pneumococcal disease (IPD). Thirteen-valent pneumococcal conjugate vaccine (PCV13) was recommended for use in US children in 2010 and for PWH aged 19 years or older in 2012. We evaluated the population-level impact of PCV13 on IPD among PWH and non-PWH aged 19 years or older. METHODS: We identified IPD cases from 2008 to 2018 through the Active Bacterial Core surveillance platform. We estimated IPD incidence using the National HIV Surveillance System and US Census Bureau data. We measured percent changes in IPD incidence from 2008 to 2009 to 2017-2018 by HIV status, age group, and vaccine serotype group, including serotypes in recently licensed 15-valent (PCV15) and 20-valent (PCV20) PCVs. RESULTS: In 2008-2009 and 2017-2018, 8.4% (552/6548) and 8.0% (416/5169) of adult IPD cases were among PWH, respectively. Compared with non-PWH, a larger proportion of IPD cases among PWH were in adults aged 19-64 years (94.7%-97.4% vs. 56.0%-60.1%) and non-Hispanic Black people (62.5%-73.0% vs. 16.7%-19.2%). Overall and PCV13-type IPD incidence in PWH declined by 40.3% (95% confidence interval: -47.7 to -32.3) and 72.5% (95% confidence interval: -78.8 to -65.6), respectively. In 2017-2018, IPD incidence was 16.8 (overall) and 12.6 (PCV13 type) times higher in PWH compared with non-PWH; PCV13, PCV15/non-PCV13, and PCV20/non-PCV15 serotypes comprised 21.5%, 11.2%, and 16.5% of IPD in PWH, respectively. CONCLUSIONS: Despite reductions post-PCV13 introduction, IPD incidence among PWH remained substantially higher than among non-PWH. Higher-valent PCVs provide opportunities to reduce remaining IPD burden in PWH. |
Rates of respiratory syncytial virus (RSV)-associated hospitalization among adults with congestive heart failure-United States, 2015-2017
Kujawski SA , Whitaker M , Ritchey MD , Reingold AL , Chai SJ , Anderson EJ , Openo KP , Monroe M , Ryan P , Bye E , Como-Sabetti K , Barney GR , Muse A , Bennett NM , Felsen CB , Thomas A , Crawford C , Talbot HK , Schaffner W , Gerber SI , Langley GE , Kim L . PLoS One 2022 17 (3) e0264890 BACKGROUND: Respiratory syncytial virus (RSV) can cause severe disease in adults with cardiopulmonary conditions, such as congestive heart failure (CHF). We quantified the rate of RSV-associated hospitalization in adults by CHF status using population-based surveillance in the United States. METHODS: Population-based surveillance for RSV (RSV-NET) was performed in 35 counties in seven sites during two respiratory seasons (2015-2017) from October 1-April 30. Adults (≥18 years) admitted to a hospital within the surveillance catchment area with laboratory-confirmed RSV identified by clinician-directed testing were included. Presence of underlying CHF was determined by medical chart abstraction. We calculated overall and age-stratified (<65 years and ≥65 years) RSV-associated hospitalization rates by CHF status. Estimates were adjusted for age and the under-detection of RSV. We also report rate differences (RD) and rate ratios (RR) by comparing the rates for those with and without CHF. RESULTS: 2042 hospitalized RSV cases with CHF status recorded were identified. Most (60.2%, n = 1230) were ≥65 years, and 28.3% (n = 577) had CHF. The adjusted RSV hospitalization rate was 26.7 (95% CI: 22.2, 31.8) per 10,000 population in adults with CHF versus 3.3 (95% CI: 3.3, 3.3) per 10,000 in adults without CHF (RR: 8.1, 95% CI: 6.8, 9.7; RD: 23.4, 95% CI: 18.9, 28.5). Adults with CHF had higher rates of RSV-associated hospitalization in both age groups (<65 years and ≥65 years). Adults ≥65 years with CHF had the highest rate (40.5 per 10,000 population, 95% CI: 35.1, 46.6). CONCLUSIONS: Adults with CHF had 8 times the rate of RSV-associated hospitalization compared with adults without CHF. Identifying high-risk populations for RSV infection can inform future RSV vaccination policies and recommendations. |
Hospital-acquired influenza in the United States, FluSurv-NET, 2011-2012 through 2018-2019
Cummings CN , O'Halloran AC , Azenkot T , Reingold A , Alden NB , Meek JI , Anderson EJ , Ryan PA , Kim S , McMahon M , McMullen C , Spina NL , Bennett NM , Billing LM , Thomas A , Schaffner W , Talbot HK , George A , Reed C , Garg S . Infect Control Hosp Epidemiol 2021 43 (10) 1-7 OBJECTIVE: To estimate population-based rates and to describe clinical characteristics of hospital-acquired (HA) influenza. DESIGN: Cross-sectional study. SETTING: US Influenza Hospitalization Surveillance Network (FluSurv-NET) during 2011-2012 through 2018-2019 seasons. METHODS: Patients were identified through provider-initiated or facility-based testing. HA influenza was defined as a positive influenza test date and respiratory symptom onset >3 days after admission. Patients with positive test date >3 days after admission but missing respiratory symptom onset date were classified as possible HA influenza. RESULTS: Among 94,158 influenza-associated hospitalizations, 353 (0.4%) had HA influenza. The overall adjusted rate of HA influenza was 0.4 per 100,000 persons. Among HA influenza cases, 50.7% were 65 years of age or older, and 52.0% of children and 95.7% of adults had underlying conditions; 44.9% overall had received influenza vaccine prior to hospitalization. Overall, 34.5% of HA cases received ICU care during hospitalization, 19.8% required mechanical ventilation, and 6.7% died. After including possible HA cases, prevalence among all influenza-associated hospitalizations increased to 1.3% and the adjusted rate increased to 1.5 per 100,000 persons. CONCLUSIONS: Over 8 seasons, rates of HA influenza were low but were likely underestimated because testing was not systematic. A high proportion of patients with HA influenza were unvaccinated and had severe outcomes. Annual influenza vaccination and implementation of robust hospital infection control measures may help to prevent HA influenza and its impacts on patient outcomes and the healthcare system. |
Census tract socioeconomic indicators and COVID-19-associated hospitalization rates-COVID-NET surveillance areas in 14 states, March 1-April 30, 2020.
Wortham JM , Meador SA , Hadler JL , Yousey-Hindes K , See I , Whitaker M , O'Halloran A , Milucky J , Chai SJ , Reingold A , Alden NB , Kawasaki B , Anderson EJ , Openo KP , Weigel A , Monroe ML , Ryan PA , Kim S , Reeg L , Lynfield R , McMahon M , Sosin DM , Eisenberg N , Rowe A , Barney G , Bennett NM , Bushey S , Billing LM , Shiltz J , Sutton M , West N , Talbot HK , Schaffner W , McCaffrey K , Spencer M , Kambhampati AK , Anglin O , Piasecki AM , Holstein R , Hall AJ , Fry AM , Garg S , Kim L . PLoS One 2021 16 (9) e0257622 OBJECTIVES: Some studies suggested more COVID-19-associated hospitalizations among racial and ethnic minorities. To inform public health practice, the COVID-19-associated Hospitalization Surveillance Network (COVID-NET) quantified associations between race/ethnicity, census tract socioeconomic indicators, and COVID-19-associated hospitalization rates. METHODS: Using data from COVID-NET population-based surveillance reported during March 1-April 30, 2020 along with socioeconomic and denominator data from the US Census Bureau, we calculated COVID-19-associated hospitalization rates by racial/ethnic and census tract-level socioeconomic strata. RESULTS: Among 16,000 COVID-19-associated hospitalizations, 34.8% occurred among non-Hispanic White (White) persons, 36.3% among non-Hispanic Black (Black) persons, and 18.2% among Hispanic or Latino (Hispanic) persons. Age-adjusted COVID-19-associated hospitalization rate were 151.6 (95% Confidence Interval (CI): 147.1-156.1) in census tracts with >15.2%-83.2% of persons living below the federal poverty level (high-poverty census tracts) and 75.5 (95% CI: 72.9-78.1) in census tracts with 0%-4.9% of persons living below the federal poverty level (low-poverty census tracts). Among White, Black, and Hispanic persons living in high-poverty census tracts, age-adjusted hospitalization rates were 120.3 (95% CI: 112.3-128.2), 252.2 (95% CI: 241.4-263.0), and 341.1 (95% CI: 317.3-365.0), respectively, compared with 58.2 (95% CI: 55.4-61.1), 304.0 (95%: 282.4-325.6), and 540.3 (95% CI: 477.0-603.6), respectively, in low-poverty census tracts. CONCLUSIONS: Overall, COVID-19-associated hospitalization rates were highest in high-poverty census tracts, but rates among Black and Hispanic persons were high regardless of poverty level. Public health practitioners must ensure mitigation measures and vaccination campaigns address needs of racial/ethnic minority groups and people living in high-poverty census tracts. |
Hospitalizations Associated with COVID-19 Among Children and Adolescents - COVID-NET, 14 States, March 1, 2020-August 14, 2021.
Delahoy MJ , Ujamaa D , Whitaker M , O'Halloran A , Anglin O , Burns E , Cummings C , Holstein R , Kambhampati AK , Milucky J , Patel K , Pham H , Taylor CA , Chai SJ , Reingold A , Alden NB , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Teno K , Weigel A , Kim S , Leegwater L , Bye E , Como-Sabetti K , Ropp S , Rudin D , Muse A , Spina N , Bennett NM , Popham K , Billing LM , Shiltz E , Sutton M , Thomas A , Schaffner W , Talbot HK , Crossland MT , McCaffrey K , Hall AJ , Fry AM , McMorrow M , Reed C , Garg S , Havers FP . MMWR Morb Mortal Wkly Rep 2021 70 (36) 1255-1260 Although COVID-19-associated hospitalizations and deaths have occurred more frequently in adults,(†) COVID-19 can also lead to severe outcomes in children and adolescents (1,2). Schools are opening for in-person learning, and many prekindergarten children are returning to early care and education programs during a time when the number of COVID-19 cases caused by the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, is increasing.(§) Therefore, it is important to monitor indicators of severe COVID-19 among children and adolescents. This analysis uses Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET)(¶) data to describe COVID-19-associated hospitalizations among U.S. children and adolescents aged 0-17 years. During March 1, 2020-August 14, 2021, the cumulative incidence of COVID-19-associated hospitalizations was 49.7 per 100,000 children and adolescents. The weekly COVID-19-associated hospitalization rate per 100,000 children and adolescents during the week ending August 14, 2021 (1.4) was nearly five times the rate during the week ending June 26, 2021 (0.3); among children aged 0-4 years, the weekly hospitalization rate during the week ending August 14, 2021, was nearly 10 times that during the week ending June 26, 2021.** During June 20-July 31, 2021, the hospitalization rate among unvaccinated adolescents (aged 12-17 years) was 10.1 times higher than that among fully vaccinated adolescents. Among all hospitalized children and adolescents with COVID-19, the proportions with indicators of severe disease (such as intensive care unit [ICU] admission) after the Delta variant became predominant (June 20-July 31, 2021) were similar to those earlier in the pandemic (March 1, 2020-June 19, 2021). Implementation of preventive measures to reduce transmission and severe outcomes in children is critical, including vaccination of eligible persons, universal mask wearing in schools, recommended mask wearing by persons aged ≥2 years in other indoor public spaces and child care centers,(††) and quarantining as recommended after exposure to persons with COVID-19.(§§). |
Clinical Trends Among U.S. Adults Hospitalized With COVID-19, March to December 2020 : A Cross-Sectional Study.
Garg S , Patel K , Pham H , Whitaker M , O'Halloran A , Milucky J , Anglin O , Kirley PD , Reingold A , Kawasaki B , Herlihy R , Yousey-Hindes K , Maslar A , Anderson EJ , Openo KP , Weigel A , Teno K , Ryan PA , Monroe ML , Reeg L , Kim S , Como-Sabetti K , Bye E , Shrum Davis S , Eisenberg N , Muse A , Barney G , Bennett NM , Felsen CB , Billing L , Shiltz J , Sutton M , Abdullah N , Talbot HK , Schaffner W , Hill M , Chatelain R , Wortham J , Taylor C , Hall A , Fry AM , Kim L , Havers FP . Ann Intern Med 2021 174 (10) 1409-1419 BACKGROUND: The COVID-19 pandemic has caused substantial morbidity and mortality. OBJECTIVE: To describe monthly clinical trends among adults hospitalized with COVID-19. DESIGN: Pooled cross-sectional study. SETTING: 99 counties in 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET). PATIENTS: U.S. adults (aged ≥18 years) hospitalized with laboratory-confirmed COVID-19 during 1 March to 31 December 2020. MEASUREMENTS: Monthly hospitalizations, intensive care unit (ICU) admissions, and in-hospital death rates per 100 000 persons in the population; monthly trends in weighted percentages of interventions, including ICU admission, mechanical ventilation, and vasopressor use, among an age- and site-stratified random sample of hospitalized case patients. RESULTS: Among 116 743 hospitalized adults with COVID-19, the median age was 62 years, 50.7% were male, and 40.8% were non-Hispanic White. Monthly rates of hospitalization (105.3 per 100 000 persons), ICU admission (20.2 per 100 000 persons), and death (11.7 per 100 000 persons) peaked during December 2020. Rates of all 3 outcomes were highest among adults aged 65 years or older, males, and Hispanic or non-Hispanic Black persons. Among 18 508 sampled hospitalized adults, use of remdesivir and systemic corticosteroids increased from 1.7% and 18.9%, respectively, in March to 53.8% and 74.2%, respectively, in December. Frequency of ICU admission, mechanical ventilation, and vasopressor use decreased from March (37.8%, 27.8%, and 22.7%, respectively) to December (20.5%, 12.3%, and 12.8%, respectively); use of noninvasive respiratory support increased from March to December. LIMITATION: COVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country. CONCLUSION: Rates of COVID-19-associated hospitalization, ICU admission, and death were highest in December 2020, corresponding with the third peak of the U.S. pandemic. The frequency of intensive interventions for management of hospitalized patients decreased over time. These data provide a longitudinal assessment of clinical trends among adults hospitalized with COVID-19 before widespread implementation of COVID-19 vaccines. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention. |
Effectiveness of COVID-19 Vaccines in Preventing Hospitalization Among Adults Aged ≥65 Years - COVID-NET, 13 States, February-April 2021.
Moline HL , Whitaker M , Deng L , Rhodes JC , Milucky J , Pham H , Patel K , Anglin O , Reingold A , Chai SJ , Alden NB , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Farley MM , Ryan PA , Kim S , Nunez VT , Como-Sabetti K , Lynfield R , Sosin DM , McMullen C , Muse A , Barney G , Bennett NM , Bushey S , Shiltz J , Sutton M , Abdullah N , Talbot HK , Schaffner W , Chatelain R , Ortega J , Murthy BP , Zell E , Schrag SJ , Taylor C , Shang N , Verani JR , Havers FP . MMWR Morb Mortal Wkly Rep 2021 70 (32) 1088-1093 Clinical trials of COVID-19 vaccines currently authorized for emergency use in the United States (Pfizer-BioNTech, Moderna, and Janssen [Johnson & Johnson]) indicate that these vaccines have high efficacy against symptomatic disease, including moderate to severe illness (1-3). In addition to clinical trials, real-world assessments of COVID-19 vaccine effectiveness are critical in guiding vaccine policy and building vaccine confidence, particularly among populations at higher risk for more severe illness from COVID-19, including older adults. To determine the real-world effectiveness of the three currently authorized COVID-19 vaccines among persons aged ≥65 years during February 1-April 30, 2021, data on 7,280 patients from the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) were analyzed with vaccination coverage data from state immunization information systems (IISs) for the COVID-NET catchment area (approximately 4.8 million persons). Among adults aged 65-74 years, effectiveness of full vaccination in preventing COVID-19-associated hospitalization was 96% (95% confidence interval [CI] = 94%-98%) for Pfizer-BioNTech, 96% (95% CI = 95%-98%) for Moderna, and 84% (95% CI = 64%-93%) for Janssen vaccine products. Effectiveness of full vaccination in preventing COVID-19-associated hospitalization among adults aged ≥75 years was 91% (95% CI = 87%-94%) for Pfizer-BioNTech, 96% (95% CI = 93%-98%) for Moderna, and 85% (95% CI = 72%-92%) for Janssen vaccine products. COVID-19 vaccines currently authorized in the United States are highly effective in preventing COVID-19-associated hospitalizations in older adults. In light of real-world data demonstrating high effectiveness of COVID-19 vaccines among older adults, efforts to increase vaccination coverage in this age group are critical to reducing the risk for COVID-19-related hospitalization. |
Relationship between neighborhood census-tract level socioeconomic status and respiratory syncytial virus-associated hospitalizations in U.S. adults, 2015-2017
Holmen JE , Kim L , Cikesh B , Kirley PD , Chai SJ , Bennett NM , Felsen CB , Ryan P , Monroe M , Anderson EJ , Openo KP , Como-Sabetti K , Bye E , Talbot HK , Schaffner W , Muse A , Barney GR , Whitaker M , Ahern J , Rowe C , Langley G , Reingold A . BMC Infect Dis 2021 21 (1) 293 BACKGROUND: Respiratory syncytial virus (RSV) infection causes substantial morbidity and mortality in children and adults. Socioeconomic status (SES) is known to influence many health outcomes, but there have been few studies of the relationship between RSV-associated illness and SES, particularly in adults. Understanding this association is important in order to identify and address disparities and to prioritize resources for prevention. METHODS: Adults hospitalized with a laboratory-confirmed RSV infection were identified through population-based surveillance at multiple sites in the U.S. The incidence of RSV-associated hospitalizations was calculated by census-tract (CT) poverty and crowding, adjusted for age. Log binomial regression was used to evaluate the association between Intensive Care Unit (ICU) admission or death and CT poverty and crowding. RESULTS: Among the 1713 cases, RSV-associated hospitalization correlated with increased CT level poverty and crowding. The incidence rate of RSV-associated hospitalization was 2.58 (CI 2.23, 2.98) times higher in CTs with the highest as compared to the lowest percentages of individuals living below the poverty level (≥ 20 and < 5%, respectively). The incidence rate of RSV-associated hospitalization was 1.52 (CI 1.33, 1.73) times higher in CTs with the highest as compared to the lowest levels of crowding (≥5 and < 1% of households with > 1 occupant/room, respectively). Neither CT level poverty nor crowding had a correlation with ICU admission or death. CONCLUSIONS: Poverty and crowding at CT level were associated with increased incidence of RSV-associated hospitalization, but not with more severe RSV disease. Efforts to reduce the incidence of RSV disease should consider SES. |
Characteristics of Adults aged 18-49 Years without Underlying Conditions Hospitalized with Laboratory-Confirmed COVID-19 in the United States, COVID-NET - March-August 2020.
Owusu D , Kim L , O'Halloran A , Whitaker M , Piasecki AM , Reingold A , Alden NB , Maslar A , Anderson EJ , Ryan PA , Kim S , Como-Sabetti K , Hancock EB , Muse A , Bennett NM , Billing LM , Sutton M , Talbot K , Ortega J , Brammer L , Fry AM , Hall AJ , Garg S . Clin Infect Dis 2020 72 (5) e162-e166 Among 513 adults aged 18-49 years without underlying medical conditions hospitalized with COVID-19 during March-August 2020, 22% were admitted to intensive care unit; 10% required mechanical ventilation; and three patients died (0.6%). These data demonstrate that healthy younger adults can develop severe COVID-19. |
Hospitalization Rates and Characteristics of Children Aged <18 Years Hospitalized with Laboratory-Confirmed COVID-19 - COVID-NET, 14 States, March 1-July 25, 2020.
Kim L , Whitaker M , O'Halloran A , Kambhampati A , Chai SJ , Reingold A , Armistead I , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Weigel A , Ryan P , Monroe ML , Fox K , Kim S , Lynfield R , Bye E , Shrum Davis S , Smelser C , Barney G , Spina NL , Bennett NM , Felsen CB , Billing LM , Shiltz J , Sutton M , West N , Talbot HK , Schaffner W , Risk I , Price A , Brammer L , Fry AM , Hall AJ , Langley GE , Garg S . MMWR Morb Mortal Wkly Rep 2020 69 (32) 1081-1088 Most reported cases of coronavirus disease 2019 (COVID-19) in children aged <18 years appear to be asymptomatic or mild (1). Less is known about severe COVID-19 illness requiring hospitalization in children. During March 1-July 25, 2020, 576 pediatric COVID-19 cases were reported to the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), a population-based surveillance system that collects data on laboratory-confirmed COVID-19-associated hospitalizations in 14 states (2,3). Based on these data, the cumulative COVID-19-associated hospitalization rate among children aged <18 years during March 1-July 25, 2020, was 8.0 per 100,000 population, with the highest rate among children aged <2 years (24.8). During March 21-July 25, weekly hospitalization rates steadily increased among children (from 0.1 to 0.4 per 100,000, with a weekly high of 0.7 per 100,000). Overall, Hispanic or Latino (Hispanic) and non-Hispanic black (black) children had higher cumulative rates of COVID-19-associated hospitalizations (16.4 and 10.5 per 100,000, respectively) than did non-Hispanic white (white) children (2.1). Among 208 (36.1%) hospitalized children with complete medical chart reviews, 69 (33.2%) were admitted to an intensive care unit (ICU); 12 of 207 (5.8%) required invasive mechanical ventilation, and one patient died during hospitalization. Although the cumulative rate of pediatric COVID-19-associated hospitalization remains low (8.0 per 100,000 population) compared with that among adults (164.5),* weekly rates increased during the surveillance period, and one in three hospitalized children were admitted to the ICU, similar to the proportion among adults. Continued tracking of SARS-CoV-2 infections among children is important to characterize morbidity and mortality. Reinforcement of prevention efforts is essential in congregate settings that serve children, including childcare centers and schools. |
Risk Factors for Intensive Care Unit Admission and In-hospital Mortality among Hospitalized Adults Identified through the U.S. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET).
Kim L , Garg S , O'Halloran A , Whitaker M , Pham H , Anderson EJ , Armistead I , Bennett NM , Billing L , Como-Sabetti K , Hill M , Kim S , Monroe ML , Muse A , Reingold AL , Schaffner W , Sutton M , Talbot HK , Torres SM , Yousey-Hindes K , Holstein R , Cummings C , Brammer L , Hall AJ , Fry AM , Langley GE . Clin Infect Dis 2020 72 (9) e206-e214 BACKGROUND: Currently, the United States has the largest number of reported coronavirus disease 2019 (COVID-19) cases and deaths globally. Using a geographically diverse surveillance network, we describe risk factors for severe outcomes among adults hospitalized with COVID-19. METHODS: We analyzed data from 2,491 adults hospitalized with laboratory-confirmed COVID-19 during March 1-May 2, 2020 identified through the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network comprising 154 acute care hospitals in 74 counties in 13 states. We used multivariable analyses to assess associations between age, sex, race and ethnicity, and underlying conditions with intensive care unit (ICU) admission and in-hospital mortality. RESULTS: Ninety-two percent of patients had >/=1 underlying condition; 32% required ICU admission; 19% invasive mechanical ventilation; and 17% died. Independent factors associated with ICU admission included ages 50-64, 65-74, 75-84 and >/=85 years versus 18-39 years (adjusted risk ratio (aRR) 1.53, 1.65, 1.84 and 1.43, respectively); male sex (aRR 1.34); obesity (aRR 1.31); immunosuppression (aRR 1.29); and diabetes (aRR 1.13). Independent factors associated with in-hospital mortality included ages 50-64, 65-74, 75-84 and >/=85 years versus 18-39 years (aRR 3.11, 5.77, 7.67 and 10.98, respectively); male sex (aRR 1.30); immunosuppression (aRR 1.39); renal disease (aRR 1.33); chronic lung disease (aRR 1.31); cardiovascular disease (aRR 1.28); neurologic disorders (aRR 1.25); and diabetes (aRR 1.19). CONCLUSION: In-hospital mortality increased markedly with increasing age. Aggressive implementation of prevention strategies, including social distancing and rigorous hand hygiene, may benefit the population as a whole, as well as those at highest risk for COVID-19-related complications. |
Estimated burden of community-onset respiratory syncytial virus-associated hospitalizations among children aged <2 years in the United States, 2014-15
Arriola CS , Kim L , Langley G , Anderson EJ , Openo K , Martin AM , Lynfield R , Bye E , Como-Sabetti K , Reingold A , Chai S , Daily P , Thomas A , Crawford C , Reed C , Garg S , Chaves SS . J Pediatric Infect Dis Soc 2019 9 (5) 587-595 BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of hospitalizations in young children. We estimated the burden of community-onset RSV-associated hospitalizations among US children aged <2 years by extrapolating rates of RSV-confirmed hospitalizations in 4 surveillance states and using probabilistic multipliers to adjust for ascertainment biases. METHODS: From October 2014 through April 2015, clinician-ordered RSV tests identified laboratory-confirmed RSV hospitalizations among children aged <2 years at 4 influenza hospitalization surveillance network sites. Surveillance populations were used to estimate age-specific rates of RSV-associated hospitalization, after adjusting for detection probabilities. We extrapolated these rates using US census data. RESULTS: We identified 1554 RSV-associated hospitalizations in children aged <2 years. Of these, 27% were admitted to an intensive care unit, 6% needed mechanical ventilation, and 5 died. Most cases (1047/1554; 67%) had no underlying condition. Adjusted age-specific RSV hospitalization rates per 100 000 population were 1970 (95% confidence interval [CI],1787 to 2177), 897 (95% CI, 761 to 1073), 531 (95% CI, 459 to 624), and 358 (95% CI, 317 to 405) for ages 0-2, 3-5, 6-11, and 12-23 months, respectively. Extrapolating to the US population, an estimated 49 509-59 867 community-onset RSV-associated hospitalizations among children aged <2 years occurred during the 2014-2015 season. CONCLUSIONS: Our findings highlight the importance of RSV as a cause of hospitalization, especially among children aged <2 months. Our approach to estimating RSV-related hospitalizations could be used to provide a US baseline for assessing the impact of future interventions. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 13, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure