Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-30 (of 35 Records) |
Query Trace: Reich NG[original query] |
---|
Infectious disease surveillance needs for the United States: lessons from Covid-19
Lipsitch M , Bassett MT , Brownstein JS , Elliott P , Eyre D , Grabowski MK , Hay JA , Johansson MA , Kissler SM , Larremore DB , Layden JE , Lessler J , Lynfield R , MacCannell D , Madoff LC , Metcalf CJE , Meyers LA , Ofori SK , Quinn C , Bento AI , Reich NG , Riley S , Rosenfeld R , Samore MH , Sampath R , Slayton RB , Swerdlow DL , Truelove S , Varma JK , Grad YH . Front Public Health 2024 12 1408193 ![]() ![]() The COVID-19 pandemic has highlighted the need to upgrade systems for infectious disease surveillance and forecasting and modeling of the spread of infection, both of which inform evidence-based public health guidance and policies. Here, we discuss requirements for an effective surveillance system to support decision making during a pandemic, drawing on the lessons of COVID-19 in the U.S., while looking to jurisdictions in the U.S. and beyond to learn lessons about the value of specific data types. In this report, we define the range of decisions for which surveillance data are required, the data elements needed to inform these decisions and to calibrate inputs and outputs of transmission-dynamic models, and the types of data needed to inform decisions by state, territorial, local, and tribal health authorities. We define actions needed to ensure that such data will be available and consider the contribution of such efforts to improving health equity. |
Title evaluation of FluSight influenza forecasting in the 2021-22 and 2022-23 seasons with a new target laboratory-confirmed influenza hospitalizations
Mathis SM , Webber AE , León TM , Murray EL , Sun M , White LA , Brooks LC , Green A , Hu AJ , Rosenfeld R , Shemetov D , Tibshirani RJ , McDonald DJ , Kandula S , Pei S , Yaari R , Yamana TK , Shaman J , Agarwal P , Balusu S , Gururajan G , Kamarthi H , Prakash BA , Raman R , Zhao Z , Rodríguez A , Meiyappan A , Omar S , Baccam P , Gurung HL , Suchoski BT , Stage SA , Ajelli M , Kummer AG , Litvinova M , Ventura PC , Wadsworth S , Niemi J , Carcelen E , Hill AL , Loo SL , McKee CD , Sato K , Smith C , Truelove S , Jung SM , Lemaitre JC , Lessler J , McAndrew T , Ye W , Bosse N , Hlavacek WS , Lin YT , Mallela A , Gibson GC , Chen Y , Lamm SM , Lee J , Posner RG , Perofsky AC , Viboud C , Clemente L , Lu F , Meyer AG , Santillana M , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Vespignani A , Xiong X , Ben-Nun M , Riley P , Turtle J , Hulme-Lowe C , Jessa S , Nagraj VP , Turner SD , Williams D , Basu A , Drake JM , Fox SJ , Suez E , Cojocaru MG , Thommes EW , Cramer EY , Gerding A , Stark A , Ray EL , Reich NG , Shandross L , Wattanachit N , Wang Y , Zorn MW , Aawar MA , Srivastava A , Meyers LA , Adiga A , Hurt B , Kaur G , Lewis BL , Marathe M , Venkatramanan S , Butler P , Farabow A , Ramakrishnan N , Muralidhar N , Reed C , Biggerstaff M , Borchering RK . Nat Commun 2024 15 (1) 6289 Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021-22 and 2022-23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021-22 and 12 out of 18 models in 2022-23. Averaging across all forecast targets, the FluSight ensemble is the 2(nd) most accurate model measured by WIS in 2021-22 and the 5(th) most accurate in the 2022-23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change. |
Challenges of COVID-19 case forecasting in the US, 2020-2021
Lopez VK , Cramer EY , Pagano R , Drake JM , O'Dea EB , Adee M , Ayer T , Chhatwal J , Dalgic OO , Ladd MA , Linas BP , Mueller PP , Xiao J , Bracher J , Castro Rivadeneira AJ , Gerding A , Gneiting T , Huang Y , Jayawardena D , Kanji AH , Le K , Mühlemann A , Niemi J , Ray EL , Stark A , Wang Y , Wattanachit N , Zorn MW , Pei S , Shaman J , Yamana TK , Tarasewicz SR , Wilson DJ , Baccam S , Gurung H , Stage S , Suchoski B , Gao L , Gu Z , Kim M , Li X , Wang G , Wang L , Wang Y , Yu S , Gardner L , Jindal S , Marshall M , Nixon K , Dent J , Hill AL , Kaminsky J , Lee EC , Lemaitre JC , Lessler J , Smith CP , Truelove S , Kinsey M , Mullany LC , Rainwater-Lovett K , Shin L , Tallaksen K , Wilson S , Karlen D , Castro L , Fairchild G , Michaud I , Osthus D , Bian J , Cao W , Gao Z , Lavista Ferres J , Li C , Liu TY , Xie X , Zhang S , Zheng S , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Vespignani A , Xiong X , Walraven R , Chen J , Gu Q , Wang L , Xu P , Zhang W , Zou D , Gibson GC , Sheldon D , Srivastava A , Adiga A , Hurt B , Kaur G , Lewis B , Marathe M , Peddireddy AS , Porebski P , Venkatramanan S , Wang L , Prasad PV , Walker JW , Webber AE , Slayton RB , Biggerstaff M , Reich NG , Johansson MA . PLoS Comput Biol 2024 20 (5) e1011200 During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. |
Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty
Howerton E , Contamin L , Mullany LC , Qin M , Reich NG , Bents S , Borchering RK , Jung SM , Loo SL , Smith CP , Levander J , Kerr J , Espino J , van Panhuis WG , Hochheiser H , Galanti M , Yamana T , Pei S , Shaman J , Rainwater-Lovett K , Kinsey M , Tallaksen K , Wilson S , Shin L , Lemaitre JC , Kaminsky J , Hulse JD , Lee EC , McKee CD , Hill A , Karlen D , Chinazzi M , Davis JT , Mu K , Xiong X , Pastore YPiontti A , Vespignani A , Rosenstrom ET , Ivy JS , Mayorga ME , Swann JL , España G , Cavany S , Moore S , Perkins A , Hladish T , Pillai A , Ben Toh K , Longini I Jr , Chen S , Paul R , Janies D , Thill JC , Bouchnita A , Bi K , Lachmann M , Fox SJ , Meyers LA , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Hurt B , Chen J , Mortveit H , Wilson A , Marathe M , Hoops S , Bhattacharya P , Machi D , Cadwell BL , Healy JM , Slayton RB , Johansson MA , Biggerstaff M , Truelove S , Runge MC , Shea K , Viboud C , Lessler J . Nat Commun 2023 14 (1) 7260 ![]() Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections. |
The United States COVID-19 Forecast Hub dataset (preprint)
Cramer EY , Huang Y , Wang Y , Ray EL , Cornell M , Bracher J , Brennen A , Rivadeneira AJC , Gerding A , House K , Jayawardena D , Kanji AH , Khandelwal A , Le K , Mody V , Mody V , Niemi J , Stark A , Shah A , Wattanchit N , Zorn MW , Reich NG , US COVID-19 Forecast Hub Consortium , Lopez VK , Walker JW , Slayton RB , Johansson MA , Biggerstaff M . medRxiv 2021 2021.11.04.21265886 ![]() Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident hospitalizations, incident cases, incident deaths, and cumulative deaths due to COVID-19 at national, state, and county levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages.Competing Interest StatementAV, MC, and APP report grants from Metabiota Inc outside the submitted work. Funding StatementFor teams that reported receiving funding for their work, we report the sources and disclosures below: AIpert-pwllnod: Natural Sciences and Engineering Research Council of Canada; Caltech-CS156: Gary Clinard Innovation Fund; CEID-Walk: University of Georgia; CMU-TimeSeries: CDC Center of Excellence, gifts from Google and Facebook; COVIDhub: This work has been supported by the US Centers for Disease Control and Prevention (1U01IP001122) and the National Institutes of General Medical Sciences (R35GM119582). The content is solely the responsibility of the authors and does not necessarily represent the official views of CDC, NIGMS or the National Institutes of Health; Johannes Bracher was supported by the Helmholtz Foundation via the SIMCARD Information & Data Science Pilot Project; Tilmann Gneiting gratefully acknowledges support by the Klaus Tschira Foundation; CU-select: NSF DMS-2027369 and a gift from the Morris-Singer Foundation; DDS-NBDS: NSF III-1812699; epiforecasts-ensemble1: Wellcome Trust (210758/Z/18/Z) FDANIHASU: supported by the Intramural Research Program of the NIH/NIDDK; GT_CHHS-COVID19: William W. George Endowment, Virginia C. and Joseph C. Mello Endowment, NSF DGE-1650044, NSF MRI 1828187, research cyberinfrastructure resources and services provided by the Partnership for an Advanced Computing Environment (PACE) at Georgia Tech, and the following benefactors at Georgia Tech: Andrea Laliberte, Joseph C. Mello, Richard Rick E. & Charlene Zalesky, and Claudia & Paul Raines, CDC MInD-Healthcare U01CK000531-Supplement; IHME: This work was supported by the Bill & Melinda Gates Foundation, as well as funding from the state of Washington and the National Science Foundation (award no. FAIN: 2031096); Imperial-ensemble1: SB acknowledges funding from the Wellcome Trust (219415); Institute of Business Forecasting: IBF; IowaStateLW-STEM: NSF DMS-1916204, Iowa State University Plant Sciences Institute Scholars Program, NSF DMS-1934884, Laurence H. Baker Center for Bioinformatics and Biological Statistics; IUPUI CIS: NSF; JHU_CSSE-DECOM: JHU CSSE: National Science Foundation (NSF) RAPID Real-time Forecasting of COVID-19 risk in the USA. 2021-2022. Award ID: 2108526. National Science Foundation (NSF) RAPID Development of an interactive web-based dashboard to track COVID-19 in real-time. 2020. Award ID: 2028604; JHU_IDD-CovidSP: State of California, US Dept of Health and Human Services, US Dept of Homeland Security, Johns Hopkins Health System, Office of the Dean at Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Modeling and Policy Hub, Centers for Disease Control and Prevention (5U01CK000538-03), University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant); JHU_UNC_GAS-StatMechP ol: NIH NIGMS: R01GM140564; JHUAPL-Bucky: US Dept of Health and Human Services; KITmetricslab-select_ensemble: Daniel Wolffram gratefully acknowledges support by the Klaus Tschira Foundation; LANL-GrowthRate: LANL LDRD 20200700ER; MIT-Cassandra: MIT Quest for Intelligence; MOBS-GLEAM_COVID: COVID Supplement CDC-HHS-6U01IP001137-01; CA NU38OT000297 from the Council of State and Territorial Epidemiologists (CSTE); NotreDame-FRED: NSF RAPID DEB 2027718; NotreDame-mobility: NSF RAPID DEB 2027718; PSI-DRAFT: NSF RAPID Grant # 2031536; QJHong-Encounter: NSF DMR-2001411 and DMR-1835939; SDSC_ISG-TrendModel: The development of the dashboard was partly funded by the Fondation Privee des Hopitaux Universitaires de Geneve; UA-EpiCovDA: NSF RAPID Grant # 2028401; UChicagoCHATTOPADHYAY-UnIT: Defense Advanced Research Projects Agency (DARPA) #HR00111890043/P00004 (I. Chattopadhyay, University of Chicago); UCSB-ACTS: NSF RAPID IIS 2029626; UCSD_NEU-DeepGLEAM: Google Faculty Award, W31P4Q-21-C-0014; UMass-MechBayes: NIGMS #R35GM119582, NSF #1749854, NIGMS #R35GM119582; UMich-RidgeTfReg: This project is funded by the University of Michigan Physics Department and the University of Michigan Office of Research; UVA-Ensemble: National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and Virginia Dept of Health Grant VDH-21-501-0141; Wadnwani_AI-BayesOpt: This study is made possible by the generous support of the American People through the United States Agency for International Development (USAID). The work described in this article was implemented under the TRACETB Project, managed by WIAI under the terms of Cooperative Agreement Number 72038620CA00006. The contents of this manuscript are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government; WalmartLabsML-LogForecasting: Team acknowledges Walmart to support this study Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced are available online at https://github.com/reichlab/covid19-forecast-hub https://github.com/reichlab/covid19-forecast-hub |
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US (preprint)
Cramer EY , Ray EL , Lopez VK , Bracher J , Brennen A , Castro Rivadeneira AJ , Gerding A , Gneiting T , House KH , Huang Y , Jayawardena D , Kanji AH , Khandelwal A , Le K , Mühlemann A , Niemi J , Shah A , Stark A , Wang Y , Wattanachit N , Zorn MW , Gu Y , Jain S , Bannur N , Deva A , Kulkarni M , Merugu S , Raval A , Shingi S , Tiwari A , White J , Abernethy NF , Woody S , Dahan M , Fox S , Gaither K , Lachmann M , Meyers LA , Scott JG , Tec M , Srivastava A , George GE , Cegan JC , Dettwiller ID , England WP , Farthing MW , Hunter RH , Lafferty B , Linkov I , Mayo ML , Parno MD , Rowland MA , Trump BD , Zhang-James Y , Chen S , Faraone SV , Hess J , Morley CP , Salekin A , Wang D , Corsetti SM , Baer TM , Eisenberg MC , Falb K , Huang Y , Martin ET , McCauley E , Myers RL , Schwarz T , Sheldon D , Gibson GC , Yu R , Gao L , Ma Y , Wu D , Yan X , Jin X , Wang YX , Chen Y , Guo L , Zhao Y , Gu Q , Chen J , Wang L , Xu P , Zhang W , Zou D , Biegel H , Lega J , McConnell S , Nagraj VP , Guertin SL , Hulme-Lowe C , Turner SD , Shi Y , Ban X , Walraven R , Hong QJ , Kong S , van de Walle A , Turtle JA , Ben-Nun M , Riley S , Riley P , Koyluoglu U , DesRoches D , Forli P , Hamory B , Kyriakides C , Leis H , Milliken J , Moloney M , Morgan J , Nirgudkar N , Ozcan G , Piwonka N , Ravi M , Schrader C , Shakhnovich E , Siegel D , Spatz R , Stiefeling C , Wilkinson B , Wong A , Cavany S , España G , Moore S , Oidtman R , Perkins A , Kraus D , Kraus A , Gao Z , Bian J , Cao W , Lavista Ferres J , Li C , Liu TY , Xie X , Zhang S , Zheng S , Vespignani A , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Xiong X , Zheng A , Baek J , Farias V , Georgescu A , Levi R , Sinha D , Wilde J , Perakis G , Bennouna MA , Nze-Ndong D , Singhvi D , Spantidakis I , Thayaparan L , Tsiourvas A , Sarker A , Jadbabaie A , Shah D , Della Penna N , Celi LA , Sundar S , Wolfinger R , Osthus D , Castro L , Fairchild G , Michaud I , Karlen D , Kinsey M , Mullany LC , Rainwater-Lovett K , Shin L , Tallaksen K , Wilson S , Lee EC , Dent J , Grantz KH , Hill AL , Kaminsky J , Kaminsky K , Keegan LT , Lauer SA , Lemaitre JC , Lessler J , Meredith HR , Perez-Saez J , Shah S , Smith CP , Truelove SA , Wills J , Marshall M , Gardner L , Nixon K , Burant JC , Wang L , Gao L , Gu Z , Kim M , Li X , Wang G , Wang Y , Yu S , Reiner RC , Barber R , Gakidou E , Hay SI , Lim S , Murray C , Pigott D , Gurung HL , Baccam P , Stage SA , Suchoski BT , Prakash BA , Adhikari B , Cui J , Rodríguez A , Tabassum A , Xie J , Keskinocak P , Asplund J , Baxter A , Oruc BE , Serban N , Arik SO , Dusenberry M , Epshteyn A , Kanal E , Le LT , Li CL , Pfister T , Sava D , Sinha R , Tsai T , Yoder N , Yoon J , Zhang L , Abbott S , Bosse NI , Funk S , Hellewell J , Meakin SR , Sherratt K , Zhou M , Kalantari R , Yamana TK , Pei S , Shaman J , Li ML , Bertsimas D , Skali Lami O , Soni S , Tazi Bouardi H , Ayer T , Adee M , Chhatwal J , Dalgic OO , Ladd MA , Linas BP , Mueller P , Xiao J , Wang Y , Wang Q , Xie S , Zeng D , Green A , Bien J , Brooks L , Hu AJ , Jahja M , McDonald D , Narasimhan B , Politsch C , Rajanala S , Rumack A , Simon N , Tibshirani RJ , Tibshirani R , Ventura V , Wasserman L , O'Dea EB , Drake JM , Pagano R , Tran QT , Ho LST , Huynh H , Walker JW , Slayton RB , Johansson MA , Biggerstaff M , Reich NG . medRxiv 2021 2021.02.03.21250974 ![]() Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. In 2020, the COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized hundreds of thousands of specific predictions from more than 50 different academic, industry, and independent research groups. This manuscript systematically evaluates 23 models that regularly submitted forecasts of reported weekly incident COVID-19 mortality counts in the US at the state and national level. One of these models was a multi-model ensemble that combined all available forecasts each week. The performance of individual models showed high variability across time, geospatial units, and forecast horizons. Half of the models evaluated showed better accuracy than a naïve baseline model. In combining the forecasts from all teams, the ensemble showed the best overall probabilistic accuracy of any model. Forecast accuracy degraded as models made predictions farther into the future, with probabilistic accuracy at a 20-week horizon more than 5 times worse than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.Competing Interest StatementAV, MC, and APP report grants from Metabiota Inc outside the submitted work.Funding StatementFor teams that reported receiving funding for their work, we report the sources and disclosures below. CMU-TimeSeries: CDC Center of Excellence, gifts from Google and Facebook. CU-select: NSF DMS-2027369 and a gift from the Morris-Singer Foundation. COVIDhub: This work has been supported by the US Centers for Disease Control and Prevention (1U01IP001122) and the National Institutes of General Medical Sciences (R35GM119582). The content is solely the responsibility of the authors and does not necessarily represent the official views of CDC, NIGMS or the National Institutes of Health. Johannes Bracher was supported by the Helmholtz Foundation via the SIMCARD Information& Data Science Pilot Project. Tilmann Gneiting gratefully acknowledges support by the Klaus Tschira Foundation. DDS-NBDS: NSF III-1812699. EPIFORECASTS-ENSEMBLE1: Wellcome Trust (210758/Z/18/Z) GT_CHHS-COVID19: William W. George Endowment, Virginia C. and Joseph C. Mello Endowments, NSF DGE-1650044, NSF MRI 1828187, research cyberinfrastructure resources and services provided by the Partnership for an Advanced Computing Environment (PACE) at Georgia Tech, and the following benefactors at Georgia Tech: Andrea Laliberte, Joseph C. Mello, Richard Rick E. & Charlene Zalesky, and Claudia & Paul Raines GT-DeepCOVID: CDC MInD-Healthcare U01CK000531-Supplement. NSF (Expeditions CCF-1918770, CAREER IIS-2028586, RAPID IIS-2027862, Medium IIS-1955883, NRT DGE-1545362), CDC MInD program, ORNL and funds/computing resources from Georgia Tech and GTRI. IHME: This work was supported by the Bill & Melinda Gates Foundation, as well as funding from the state of Washington and the National Science Foundation (award no. FAIN: 2031096). IowaStateLW-STEM: Iowa State University Plant Sciences Institute Scholars Program, NSF DMS-1916204, NSF CCF-1934884, Laurence H. Baker Center for Bioinformatics and Biological Statistics. JHU_IDD-CovidSP: State of California, US Dept of Health and Human Services, US Dept of Homeland Security, US Office of Foreign Disaster Assistance, Johns Hopkins Health System, Office of the Dean at Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Modeling and Policy Hub, Centers fo Disease Control and Prevention (5U01CK000538-03), University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant). LANL-GrowthRate: LANL LDRD 20200700ER. MOBS-GLEAM_COVID: COVID Supplement CDC-HHS-6U01IP001137-01. NotreDame-mobility and NotreDame-FRED: NSF RAPID DEB 2027718 UA-EpiCovDA: NSF RAPID Grant # 2028401. UCSB-ACTS: NSF RAPID IIS 2029626. UCSD-NEU: Google Faculty Award, DARPA W31P4Q-21-C-0014, COVID Supplement CDC-HHS-6U01IP001137-01. UMass-MechBayes: NIGMS R35GM119582, NSF 1749854. UMich-RidgeTfReg: The University of Michigan Physics Department and the University of Michigan Office of Research.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:UMass-Amherst IRBAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and code referred to in the manuscript are publicly available. https://github.com/reichlab/covid19-forecast-hub/ https://github.com/reichlab/covidEnsembles https://zoltardata.com/project/44 |
A Collaborative Multi-Model Ensemble for Real-Time Influenza Season Forecasting in the U.S (preprint)
Reich NG , McGowan CJ , Yamana TK , Tushar A , Ray EL , Osthus D , Kandula S , Brooks LC , Crawford-Crudell W , Gibson GC , Moore E , Silva R , Biggerstaff M , Johansson MA , Rosenfeld R , Shaman J . bioRxiv 2019 566604 ![]() Seasonal influenza results in substantial annual morbidity and mortality in the United States and worldwide. Accurate forecasts of key features of influenza epidemics, such as the timing and severity of the peak incidence in a given season, can inform public health response to outbreaks. As part of ongoing efforts to incorporate data and advanced analytical methods into public health decision-making, the United States Centers for Disease Control and Prevention (CDC) has organized seasonal influenza forecasting challenges since the 2013/2014 season. In the 2017/2018 season, 22 teams participated. A subset of four teams created a research consortium called the FluSight Network in early 2017. During the 2017/2018 season they worked together to produce a collaborative multi-model ensemble that combined 21 separate component models into a single model using a machine learning technique called stacking. This approach creates a weighted average of predictive densities where the weight for each component is based on that component’s forecast accuracy in past seasons. In the 2017/2018 influenza season, one of the largest seasonal outbreaks in the last 15 years, this multi-model ensemble performed better on average than all individual component models and placed second overall in the CDC challenge. It also outperformed the baseline multi-model ensemble created by the CDC that took a simple average of all models submitted to the forecasting challenge. This project shows that collaborative efforts between research teams to develop ensemble forecasting approaches can bring measurable improvements in forecast accuracy and important reductions in the variability of performance from year to year. Efforts such as this, that emphasize real-time testing and evaluation of forecasting models and facilitate the close collaboration between public health officials and modeling researchers, are essential to improving our understanding of how best to use forecasts to improve public health response to seasonal and emerging epidemic threats. |
Forecasting seasonal influenza in the U.S.: A collaborative multi-year, multi-model assessment of forecast performance (preprint)
Reich NG , Brooks LC , Fox SJ , Kandula S , McGowan CJ , Moore E , Osthus D , Ray EL , Tushar A , Yamana TK , Biggerstaff M , Johansson MA , Rosenfeld R , Shaman J . bioRxiv 2018 397190 Influenza infects an estimated 9 to 35 million individuals each year in the United States and is a contributing cause for between 12,000 and 56,000 deaths annually. Seasonal outbreaks of influenza are common in temperate regions of the world, with highest incidence typically occurring in colder and drier months of the year. Real-time forecasts of influenza transmission can inform public health response to outbreaks. We present the results of a multi-institution collaborative effort to standardize the collection and evaluation of forecasting models for influenza in the US for the 2010/2011 through 2016/2017 influenza seasons. For these seven seasons, we assembled weekly real-time forecasts of 7 targets of public health interest from 22 different models. We compared forecast accuracy of each model relative to a historical baseline seasonal average. Across all regions of the US, over half of the models showed consistently better performance than the historical baseline when forecasting incidence of influenza-like illness 1, 2 and 3 weeks ahead of available data and when forecasting the timing and magnitude of the seasonal peak. In some regions, delays in data reporting were strongly and negatively associated with forecast accuracy. More timely reporting and an improved overall accessibility to novel and traditional data sources are needed to improve forecasting accuracy and its integration with real-time public health decision-making. |
Quantifying the Risk and Cost of Active Monitoring for Infectious Diseases (preprint)
Reich NG , Lessler J , Varma JK , Vora NM . bioRxiv 2017 156497 During outbreaks of deadly emerging pathogens (e.g., Ebola, MERS-CoV) and bioterror threats (e.g., smallpox), actively monitoring potentially infected individuals aims to limit disease transmission and morbidity. Guidance issued by CDC on active monitoring was a cornerstone of its response to the West Africa Ebola outbreak. There are limited data on how to balance the costs and performance of this important public health activity. We present a framework that estimates the risks and costs of specific durations of active monitoring for pathogens of significant public health concern. We analyze data from New York City’s Ebola active monitoring program over a 16-month period in 2014-2016. For monitored individuals, we identified unique durations of active monitoring that minimize expected costs for those at “low (but not zero) risk” and “some or high risk”: 21 and 31 days, respectively. Extending our analysis to smallpox and MERS-CoV, we found that the optimal length of active monitoring relative to the median incubation period was reduced compared to Ebola due to less variable incubation periods. Active monitoring can save lives but is expensive. Resources can be most effectively allocated by using exposure-risk categories to modify the duration or intensity of active monitoring. |
Projected resurgence of COVID-19 in the United States in July-December 2021 resulting from the increased transmissibility of the Delta variant and faltering vaccination (preprint)
Truelove S , Smith CP , Qin M , Mullany LC , Borchering RK , Lessler J , Shea K , Howerton E , Contamin L , Levander J , Salerno J , Hochheiser H , Kinsey M , Tallaksen K , Wilson S , Shin L , Rainwater-Lovett K , Lemaitre JC , Dent J , Kaminsky J , Lee EC , Perez-Saez J , Hill A , Karlen D , Chinazzi M , Davis JT , Mu K , Xiong X , Piontti APY , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Schlitt J , Corbett P , Telionis PA , Wang L , Peddireddy AS , Hurt B , Chen J , Vullikanti A , Marathe M , Hoops S , Bhattacharya P , Machi D , Chen S , Paul R , Janies D , Thill JC , Galanti M , Yamana T , Pei S , Shaman J , Reich NG , Healy JM , Slayton RB , Biggerstaff M , Johansson MA , Runge MC , Viboud C . medRxiv 2021 WHAT IS ALREADY KNOWN ABOUT THIS TOPIC? The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT? Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE? Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen. |
Impact of SARS-CoV-2 vaccination of children ages 5-11 years on COVID-19 disease burden and resilience to new variants in the United States, November 2021-March 2022: a multi-model study (preprint)
Borchering RK , Mullany LC , Howerton E , Chinazzi M , Smith CP , Qin M , Reich NG , Contamin L , Levander J , Kerr J , Espino J , Hochheiser H , Lovett K , Kinsey M , Tallaksen K , Wilson S , Shin L , Lemaitre JC , Hulse JD , Kaminsky J , Lee EC , Davis JT , Mu K , Xiong X , Pastore y Piontti A , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Hurt B , Chen J , Mortveit H , Wilson A , Marathe M , Hoops S , Bhattacharya P , Machi D , Chen S , Paul R , Janies D , Thill JC , Galanti M , Yamana T , Pei S , Shaman J , Espana G , Cavany S , Moore S , Perkins A , Healy JM , Slayton RB , Johansson MA , Biggerstaff M , Shea K , Truelove SA , Runge MC , Viboud C , Lessler J . medRxiv 2022 10 Background SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license. |
Reply to Bracher: Scoring probabilistic forecasts to maximize public health interpretability
Reich NG , Osthus D , Ray EL , Yamana TK , Biggerstaff M , Johansson MA , Rosenfeld R , Shaman J . Proc Natl Acad Sci U S A 2019 116 (42) 20811-20812 Evaluating probabilistic forecasts in the context of a real-time public health surveillance system is a complicated business. We agree with Bracher’s (1) observations that the scores established by the US Centers for Disease Control and Prevention (CDC) and used to evaluate our forecasts of seasonal influenza in the United States are not “proper” by definition (2). We thank him for raising this important issue. | | A key advantage of proper scoring is that it incentivizes forecasters to provide their best probabilistic estimates of the fundamental unit of prediction. In the case of the FluSight competition targets, the units are intervals or bins containing dates or values representing influenza-like illness (ILI) activity. A forecast assigns probabilities to each bin. |
The United States COVID-19 Forecast Hub dataset.
Cramer EY , Huang Y , Wang Y , Ray EL , Cornell M , Bracher J , Brennen A , Rivadeneira AJC , Gerding A , House K , Jayawardena D , Kanji AH , Khandelwal A , Le K , Mody V , Mody V , Niemi J , Stark A , Shah A , Wattanchit N , Zorn MW , Reich NG , US COVID-19 Forecast Hub Consortium , Lopez VK , Walker JW , Slayton RB , Johansson MA , Biggerstaff M . Sci Data 2022 9 (1) 462 ![]() ![]() Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages. |
Impact of SARS-CoV-2 vaccination of children ages 5-11 years on COVID-19 disease burden and resilience to new variants in the United States, November 2021-March 2022: A multi-model study.
Borchering RK , Mullany LC , Howerton E , Chinazzi M , Smith CP , Qin M , Reich NG , Contamin L , Levander J , Kerr J , Espino J , Hochheiser H , Lovett K , Kinsey M , Tallaksen K , Wilson S , Shin L , Lemaitre JC , Hulse JD , Kaminsky J , Lee EC , Hill AL , Davis JT , Mu K , Xiong X , Pastore YPiontti A , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Hurt B , Chen J , Mortveit H , Wilson A , Marathe M , Hoops S , Bhattacharya P , Machi D , Chen S , Paul R , Janies D , Thill JC , Galanti M , Yamana T , Pei S , Shaman J , España G , Cavany S , Moore S , Perkins A , Healy JM , Slayton RB , Johansson MA , Biggerstaff M , Shea K , Truelove SA , Runge MC , Viboud C , Lessler J . Lancet Reg Health Am 2023 17 100398 ![]() BACKGROUND: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. METHODS: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. FINDINGS: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. INTERPRETATION: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. FUNDING: Various (see acknowledgments). |
Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States.
Ray EL , Brooks LC , Bien J , Biggerstaff M , Bosse NI , Bracher J , Cramer EY , Funk S , Gerding A , Johansson MA , Rumack A , Wang Y , Zorn M , Tibshirani RJ , Reich NG . Int J Forecast 2022 The U.S. COVID-19 Forecast Hub aggregates forecasts of the short-term burden of COVID-19 in the United States from many contributing teams. We study methods for building an ensemble that combines forecasts from these teams. These experiments have informed the ensemble methods used by the Hub. To be most useful to policy makers, ensemble forecasts must have stable performance in the presence of two key characteristics of the component forecasts: (1) occasional misalignment with the reported data, and (2) instability in the relative performance of component forecasters over time. Our results indicate that in the presence of these challenges, an untrained and robust approach to ensembling using an equally weighted median of all component forecasts is a good choice to support public health decision makers. In settings where some contributing forecasters have a stable record of good performance, trained ensembles that give those forecasters higher weight can also be helpful. |
Collaborative Hubs: Making the Most of Predictive Epidemic Modeling.
Reich NG , Lessler J , Funk S , Viboud C , Vespignani A , Tibshirani RJ , Shea K , Schienle M , Runge MC , Rosenfeld R , Ray EL , Niehus R , Johnson HC , Johansson MA , Hochheiser H , Gardner L , Bracher J , Borchering RK , Biggerstaff M . Am J Public Health 2022 112 (6) e1-e4 ![]() ![]() The COVID-19 pandemic has made it clear that epidemic models play an important role in how governments and the public respond to infectious disease crises. Early in the pandemic, models were used to estimate the true number of infections. Later, they estimated key parameters, generated short-term forecasts of outbreak trends, and quantified possible effects of interventions on the unfolding epidemic.1,2 In contrast to the coordinating role played by major national or international agencies in weather-related emergencies, pandemic modeling efforts were initially scattered across many research institutions. Differences in modeling approaches led to contrasting results, contributing to confusion in public perception of the pandemic. Efforts to coordinate modeling efforts in so-called hubs have provided governments, healthcare agencies, and the public with assessments and forecasts that reflect the consensus in the modeling community.36 This has been achieved by openly synthesizing uncertainties across different modeling approaches and facilitating comparisons between them. |
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.
Cramer EY , Ray EL , Lopez VK , Bracher J , Brennen A , Castro Rivadeneira AJ , Gerding A , Gneiting T , House KH , Huang Y , Jayawardena D , Kanji AH , Khandelwal A , Le K , Mühlemann A , Niemi J , Shah A , Stark A , Wang Y , Wattanachit N , Zorn MW , Gu Y , Jain S , Bannur N , Deva A , Kulkarni M , Merugu S , Raval A , Shingi S , Tiwari A , White J , Abernethy NF , Woody S , Dahan M , Fox S , Gaither K , Lachmann M , Meyers LA , Scott JG , Tec M , Srivastava A , George GE , Cegan JC , Dettwiller ID , England WP , Farthing MW , Hunter RH , Lafferty B , Linkov I , Mayo ML , Parno MD , Rowland MA , Trump BD , Zhang-James Y , Chen S , Faraone SV , Hess J , Morley CP , Salekin A , Wang D , Corsetti SM , Baer TM , Eisenberg MC , Falb K , Huang Y , Martin ET , McCauley E , Myers RL , Schwarz T , Sheldon D , Gibson GC , Yu R , Gao L , Ma Y , Wu D , Yan X , Jin X , Wang YX , Chen Y , Guo L , Zhao Y , Gu Q , Chen J , Wang L , Xu P , Zhang W , Zou D , Biegel H , Lega J , McConnell S , Nagraj VP , Guertin SL , Hulme-Lowe C , Turner SD , Shi Y , Ban X , Walraven R , Hong QJ , Kong S , van de Walle A , Turtle JA , Ben-Nun M , Riley S , Riley P , Koyluoglu U , DesRoches D , Forli P , Hamory B , Kyriakides C , Leis H , Milliken J , Moloney M , Morgan J , Nirgudkar N , Ozcan G , Piwonka N , Ravi M , Schrader C , Shakhnovich E , Siegel D , Spatz R , Stiefeling C , Wilkinson B , Wong A , Cavany S , España G , Moore S , Oidtman R , Perkins A , Kraus D , Kraus A , Gao Z , Bian J , Cao W , Lavista Ferres J , Li C , Liu TY , Xie X , Zhang S , Zheng S , Vespignani A , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Xiong X , Zheng A , Baek J , Farias V , Georgescu A , Levi R , Sinha D , Wilde J , Perakis G , Bennouna MA , Nze-Ndong D , Singhvi D , Spantidakis I , Thayaparan L , Tsiourvas A , Sarker A , Jadbabaie A , Shah D , Della Penna N , Celi LA , Sundar S , Wolfinger R , Osthus D , Castro L , Fairchild G , Michaud I , Karlen D , Kinsey M , Mullany LC , Rainwater-Lovett K , Shin L , Tallaksen K , Wilson S , Lee EC , Dent J , Grantz KH , Hill AL , Kaminsky J , Kaminsky K , Keegan LT , Lauer SA , Lemaitre JC , Lessler J , Meredith HR , Perez-Saez J , Shah S , Smith CP , Truelove SA , Wills J , Marshall M , Gardner L , Nixon K , Burant JC , Wang L , Gao L , Gu Z , Kim M , Li X , Wang G , Wang Y , Yu S , Reiner RC , Barber R , Gakidou E , Hay SI , Lim S , Murray C , Pigott D , Gurung HL , Baccam P , Stage SA , Suchoski BT , Prakash BA , Adhikari B , Cui J , Rodríguez A , Tabassum A , Xie J , Keskinocak P , Asplund J , Baxter A , Oruc BE , Serban N , Arik SO , Dusenberry M , Epshteyn A , Kanal E , Le LT , Li CL , Pfister T , Sava D , Sinha R , Tsai T , Yoder N , Yoon J , Zhang L , Abbott S , Bosse NI , Funk S , Hellewell J , Meakin SR , Sherratt K , Zhou M , Kalantari R , Yamana TK , Pei S , Shaman J , Li ML , Bertsimas D , Skali Lami O , Soni S , Tazi Bouardi H , Ayer T , Adee M , Chhatwal J , Dalgic OO , Ladd MA , Linas BP , Mueller P , Xiao J , Wang Y , Wang Q , Xie S , Zeng D , Green A , Bien J , Brooks L , Hu AJ , Jahja M , McDonald D , Narasimhan B , Politsch C , Rajanala S , Rumack A , Simon N , Tibshirani RJ , Tibshirani R , Ventura V , Wasserman L , O'Dea EB , Drake JM , Pagano R , Tran QT , Ho LST , Huynh H , Walker JW , Slayton RB , Johansson MA , Biggerstaff M , Reich NG . Proc Natl Acad Sci U S A 2022 119 (15) e2113561119 ![]() SignificanceThis paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the United States. Results show high variation in accuracy between and within stand-alone models and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public-health action. |
Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines.
Pollett S , Johansson MA , Reich NG , Brett-Major D , Del Valle SY , Venkatramanan S , Lowe R , Porco T , Berry IM , Deshpande A , Kraemer MUG , Blazes DL , Pan-Ngum W , Vespigiani A , Mate SE , Silal SP , Kandula S , Sippy R , Quandelacy TM , Morgan JJ , Ball J , Morton LC , Althouse BM , Pavlin J , van Panhuis W , Riley S , Biggerstaff M , Viboud C , Brady O , Rivers C . PLoS Med 2021 18 (10) e1003793 ![]() ![]() BACKGROUND: The importance of infectious disease epidemic forecasting and prediction research is underscored by decades of communicable disease outbreaks, including COVID-19. Unlike other fields of medical research, such as clinical trials and systematic reviews, no reporting guidelines exist for reporting epidemic forecasting and prediction research despite their utility. We therefore developed the EPIFORGE checklist, a guideline for standardized reporting of epidemic forecasting research. METHODS AND FINDINGS: We developed this checklist using a best-practice process for development of reporting guidelines, involving a Delphi process and broad consultation with an international panel of infectious disease modelers and model end users. The objectives of these guidelines are to improve the consistency, reproducibility, comparability, and quality of epidemic forecasting reporting. The guidelines are not designed to advise scientists on how to perform epidemic forecasting and prediction research, but rather to serve as a standard for reporting critical methodological details of such studies. CONCLUSIONS: These guidelines have been submitted to the EQUATOR network, in addition to hosting by other dedicated webpages to facilitate feedback and journal endorsement. |
Outpatient Healthcare Personnel Knowledge and Attitudes Towards Infection Prevention Measures for Protection from Respiratory Infections
Bessesen MT , Rattigan S , Frederick J , Cummings DAT , Gaydos CA , Gibert CL , Gorse GJ , Nyquist AC , Price CS , Reich NG , Simberkoff MS , Brown AC , Radonovich LJ Jr , Perl TM , Rodriguez-Barradas MC . Am J Infect Control 2021 49 (11) 1369-1375 BACKGROUND: Healthcare personnel (HCP) knowledge and attitudes toward infection control measures are important determinants of practices that can protect them from transmission of infectious diseases. METHODS: Healthcare personnel were recruited from Emergency Departments and outpatient clinics at seven sites. They completed knowledge surveys at the beginning and attitude surveys at the beginning and end of each season of participation. Attitudes toward infection prevention and control measures, especially medical masks and N95 respirators, were compared. The proportion of participants who correctly identified all components of an infection control bundle for seven clinical scenarios was calculated. RESULTS: The proportion of participants in the medical mask group who reported at least one reason to avoid using medical masks fell from 88.5% on the pre-season survey to 39.6% on the post-season survey (odds ratio [OR] for preseason vs. postseason 0.11, 95% CI 0.10-0.14). Among those wearing N95 respirators, the proportion fell from 87.9% to 53.6% (OR 0.24, 95% CI 0.21-0.28). Participants correctly identified all components of the infection control bundle for 4.9% to 38.5% of scenarios. CONCLUSIONS: Attitudes toward medical masks and N95 respirators improved significantly between the beginning and end of each season. The proportion of HCP who correctly identified the infection control precautions needed for clinical scenarios was low, but it improved over successive years of participation in the study. |
Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios - United States, April-September 2021.
Borchering RK , Viboud C , Howerton E , Smith CP , Truelove S , Runge MC , Reich NG , Contamin L , Levander J , Salerno J , van Panhuis W , Kinsey M , Tallaksen K , Obrecht RF , Asher L , Costello C , Kelbaugh M , Wilson S , Shin L , Gallagher ME , Mullany LC , Rainwater-Lovett K , Lemaitre JC , Dent J , Grantz KH , Kaminsky J , Lauer SA , Lee EC , Meredith HR , Perez-Saez J , Keegan LT , Karlen D , Chinazzi M , Davis JT , Mu K , Xiong X , Pastore YPiontti A , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Schlitt J , Corbett P , Telionis PA , Wang L , Peddireddy AS , Hurt B , Chen J , Vullikanti A , Marathe M , Healy JM , Slayton RB , Biggerstaff M , Johansson MA , Shea K , Lessler J . MMWR Morb Mortal Wkly Rep 2021 70 (19) 719-724 After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months. |
Identification and evaluation of epidemic prediction and forecasting reporting guidelines: A systematic review and a call for action
Pollett S , Johansson M , Biggerstaff M , Morton LC , Bazaco SL , Brett Major DM , Stewart-Ibarra AM , Pavlin JA , Mate S , Sippy R , Hartman LJ , Reich NG , Maljkovic Berry I , Chretien JP , Althouse BM , Myer D , Viboud C , Rivers C . Epidemics 2020 33 100400 INTRODUCTION: High quality epidemic forecasting and prediction are critical to support response to local, regional and global infectious disease threats. Other fields of biomedical research use consensus reporting guidelines to ensure standardization and quality of research practice among researchers, and to provide a framework for end-users to interpret the validity of study results. The purpose of this study was to determine whether guidelines exist specifically for epidemic forecast and prediction publications. METHODS: We undertook a formal systematic review to identify and evaluate any published infectious disease epidemic forecasting and prediction reporting guidelines. This review leveraged a team of 18 investigators from US Government and academic sectors. RESULTS: A literature database search through May 26, 2019, identified 1467 publications (MEDLINE n = 584, EMBASE n = 883), and a grey-literature review identified a further 407 publications, yielding a total 1777 unique publications. A paired-reviewer system screened in 25 potentially eligible publications, of which two were ultimately deemed eligible. A qualitative review of these two published reporting guidelines indicated that neither were specific for epidemic forecasting and prediction, although they described reporting items which may be relevant to epidemic forecasting and prediction studies. CONCLUSIONS: This systematic review confirms that no specific guidelines have been published to standardize the reporting of epidemic forecasting and prediction studies. These findings underscore the need to develop such reporting guidelines in order to improve the transparency, quality and implementation of epidemic forecasting and prediction research in operational public health. |
Risk Factors for Healthcare Personnel Infection with Endemic Coronaviruses (HKU1, OC43, NL63, 229E): Results from the Respiratory Protection Effectiveness Clinical Trial (ResPECT).
Cummings DAT , Radonovich LJ , Gorse GJ , Gaydos CA , Bessesen MT , Brown AC , Gibert CL , Hitchings MDT , Lessler J , Nyquist AC , Rattigan SM , Rodriguez-Barradas MC , Price CS , Reich NG , Simberkoff MS , Perl TM . Clin Infect Dis 2020 73 (11) e4428-e4432 BACKGROUND: SARS-CoV-2 presents a large risk to healthcare personnel. Quantifying the risk of coronavirus infection associated with workplace activities is an urgent need. METHODS: We assessed the association of worker characteristics, occupational roles and behaviors, and participation in procedures with the risk of endemic coronavirus infection among healthcare personnel who participated in the Respiratory Protection Effectiveness Trial (ResPECT), a cluster randomized trial to assess personal protective equipment to prevent respiratory infections and illness conducted from 2011 to 2016. RESULTS: Among 4,689 HCP-seasons, we detected coronavirus infection in 387 (8%). HCP who participated in an aerosol generation procedure (AGP) at least once during the viral respiratory season were 105% (95% CI 21%, 240%) more likely to be diagnosed with a laboratory-confirmed coronavirus infection. Younger individuals, those who saw pediatric patients and those with household members under the age of five were at increased risk of coronavirus infection. CONCLUSIONS: Our analysis suggests the risk of HCP becoming infected with an endemic coronavirus increases approximately two-fold with exposures to AGP. Our findings may be relevant to the Coronavirus Disease 2019 (COVID-19) pandemic; however, SARS-COV-2, the virus that causes COVID-19, may differ from endemic coronaviruses in important ways. |
Coordinating the real-time use of global influenza activity data for better public health planning
Biggerstaff M , Dahlgren FS , Fitzner J , George D , Hammond A , Hall I , Haw D , Imai N , Johansson MA , Kramer S , McCaw JM , Moss R , Pebody R , Read JM , Reed C , Reich NG , Riley S , Vandemaele K , Viboud C , Wu JT . Influenza Other Respir Viruses 2019 14 (2) 105-110 Health planners from global to local levels must anticipate year-to-year and week-to-week variation in seasonal influenza activity when planning for and responding to epidemics to mitigate their impact. To help with this, countries routinely collect incidence of mild and severe respiratory illness and virologic data on circulating subtypes and use these data for situational awareness, burden of disease estimates and severity assessments. Advanced analytics and modelling are increasingly used to aid planning and response activities by describing key features of influenza activity for a given location and generating forecasts that can be translated to useful actions such as enhanced risk communications, and informing clinical supply chains. Here, we describe the formation of the Influenza Incidence Analytics Group (IIAG), a coordinated global effort to apply advanced analytics and modelling to public influenza data, both epidemiological and virologic, in real-time and thus provide additional insights to countries who provide routine surveillance data to WHO. Our objectives are to systematically increase the value of data to health planners by applying advanced analytics and forecasting and for results to be immediately reproducible and deployable using an open repository of data and code. We expect the resources we develop and the associated community to provide an attractive option for the open analysis of key epidemiological data during seasonal epidemics and the early stages of an influenza pandemic. |
Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S
Reich NG , McGowan CJ , Yamana TK , Tushar A , Ray EL , Osthus D , Kandula S , Brooks LC , Crawford-Crudell W , Gibson GC , Moore E , Silva R , Biggerstaff M , Johansson MA , Rosenfeld R , Shaman J . PLoS Comput Biol 2019 15 (11) e1007486 ![]() Seasonal influenza results in substantial annual morbidity and mortality in the United States and worldwide. Accurate forecasts of key features of influenza epidemics, such as the timing and severity of the peak incidence in a given season, can inform public health response to outbreaks. As part of ongoing efforts to incorporate data and advanced analytical methods into public health decision-making, the United States Centers for Disease Control and Prevention (CDC) has organized seasonal influenza forecasting challenges since the 2013/2014 season. In the 2017/2018 season, 22 teams participated. A subset of four teams created a research consortium called the FluSight Network in early 2017. During the 2017/2018 season they worked together to produce a collaborative multi-model ensemble that combined 21 separate component models into a single model using a machine learning technique called stacking. This approach creates a weighted average of predictive densities where the weight for each component is determined by maximizing overall ensemble accuracy over past seasons. In the 2017/2018 influenza season, one of the largest seasonal outbreaks in the last 15 years, this multi-model ensemble performed better on average than all individual component models and placed second overall in the CDC challenge. It also outperformed the baseline multi-model ensemble created by the CDC that took a simple average of all models submitted to the forecasting challenge. This project shows that collaborative efforts between research teams to develop ensemble forecasting approaches can bring measurable improvements in forecast accuracy and important reductions in the variability of performance from year to year. Efforts such as this, that emphasize real-time testing and evaluation of forecasting models and facilitate the close collaboration between public health officials and modeling researchers, are essential to improving our understanding of how best to use forecasts to improve public health response to seasonal and emerging epidemic threats. |
An open challenge to advance probabilistic forecasting for dengue epidemics.
Johansson MA , Apfeldorf KM , Dobson S , Devita J , Buczak AL , Baugher B , Moniz LJ , Bagley T , Babin SM , Guven E , Yamana TK , Shaman J , Moschou T , Lothian N , Lane A , Osborne G , Jiang G , Brooks LC , Farrow DC , Hyun S , Tibshirani RJ , Rosenfeld R , Lessler J , Reich NG , Cummings DAT , Lauer SA , Moore SM , Clapham HE , Lowe R , Bailey TC , Garcia-Diez M , Carvalho MS , Rodo X , Sardar T , Paul R , Ray EL , Sakrejda K , Brown AC , Meng X , Osoba O , Vardavas R , Manheim D , Moore M , Rao DM , Porco TC , Ackley S , Liu F , Worden L , Convertino M , Liu Y , Reddy A , Ortiz E , Rivero J , Brito H , Juarrero A , Johnson LR , Gramacy RB , Cohen JM , Mordecai EA , Murdock CC , Rohr JR , Ryan SJ , Stewart-Ibarra AM , Weikel DP , Jutla A , Khan R , Poultney M , Colwell RR , Rivera-Garcia B , Barker CM , Bell JE , Biggerstaff M , Swerdlow D , Mier YTeran-Romero L , Forshey BM , Trtanj J , Asher J , Clay M , Margolis HS , Hebbeler AM , George D , Chretien JP . Proc Natl Acad Sci U S A 2019 116 (48) 24268-24274 ![]() ![]() A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue. |
Technology to advance infectious disease forecasting for outbreak management.
George DB , Taylor W , Shaman J , Rivers C , Paul B , O'Toole T , Johansson MA , Hirschman L , Biggerstaff M , Asher J , Reich NG . Nat Commun 2019 10 (1) 3932 ![]() ![]() Forecasting is beginning to be integrated into decision-making processes for infectious disease outbreak response. We discuss how technologies could accelerate the adoption of forecasting among public health practitioners, improve epidemic management, save lives, and reduce the economic impact of outbreaks. |
N95 respirators vs medical masks for preventing influenza among health care personnel: A randomized clinical trial
Radonovich LJ Jr , Simberkoff MS , Bessesen MT , Brown AC , Cummings DAT , Gaydos CA , Los JG , Krosche AE , Gibert CL , Gorse GJ , Nyquist AC , Reich NG , Rodriguez-Barradas MC , Price CS , Perl TM . JAMA 2019 322 (9) 824-833 Importance: Clinical studies have been inconclusive about the effectiveness of N95 respirators and medical masks in preventing health care personnel (HCP) from acquiring workplace viral respiratory infections. Objective: To compare the effect of N95 respirators vs medical masks for prevention of influenza and other viral respiratory infections among HCP. Design, Setting, and Participants: A cluster randomized pragmatic effectiveness study conducted at 137 outpatient study sites at 7 US medical centers between September 2011 and May 2015, with final follow-up in June 2016. Each year for 4 years, during the 12-week period of peak viral respiratory illness, pairs of outpatient sites (clusters) within each center were matched and randomly assigned to the N95 respirator or medical mask groups. Interventions: Overall, 1993 participants in 189 clusters were randomly assigned to wear N95 respirators (2512 HCP-seasons of observation) and 2058 in 191 clusters were randomly assigned to wear medical masks (2668 HCP-seasons) when near patients with respiratory illness. Main Outcomes and Measures: The primary outcome was the incidence of laboratory-confirmed influenza. Secondary outcomes included incidence of acute respiratory illness, laboratory-detected respiratory infections, laboratory-confirmed respiratory illness, and influenzalike illness. Adherence to interventions was assessed. Results: Among 2862 randomized participants (mean [SD] age, 43 [11.5] years; 2369 [82.8%]) women), 2371 completed the study and accounted for 5180 HCP-seasons. There were 207 laboratory-confirmed influenza infection events (8.2% of HCP-seasons) in the N95 respirator group and 193 (7.2% of HCP-seasons) in the medical mask group (difference, 1.0%, [95% CI, -0.5% to 2.5%]; P = .18) (adjusted odds ratio [OR], 1.18 [95% CI, 0.95-1.45]). There were 1556 acute respiratory illness events in the respirator group vs 1711 in the mask group (difference, -21.9 per 1000 HCP-seasons [95% CI, -48.2 to 4.4]; P = .10); 679 laboratory-detected respiratory infections in the respirator group vs 745 in the mask group (difference, -8.9 per 1000 HCP-seasons, [95% CI, -33.3 to 15.4]; P = .47); 371 laboratory-confirmed respiratory illness events in the respirator group vs 417 in the mask group (difference, -8.6 per 1000 HCP-seasons [95% CI, -28.2 to 10.9]; P = .39); and 128 influenzalike illness events in the respirator group vs 166 in the mask group (difference, -11.3 per 1000 HCP-seasons [95% CI, -23.8 to 1.3]; P = .08). In the respirator group, 89.4% of participants reported "always" or "sometimes" wearing their assigned devices vs 90.2% in the mask group. Conclusions and Relevance: Among outpatient health care personnel, N95 respirators vs medical masks as worn by participants in this trial resulted in no significant difference in the incidence of laboratory-confirmed influenza. Trial Registration: ClinicalTrials.gov Identifier: NCT01249625. |
Using "outbreak science" to strengthen the use of models during epidemics
Rivers C , Chretien JP , Riley S , Pavlin JA , Woodward A , Brett-Major D , Maljkovic Berry I , Morton L , Jarman RG , Biggerstaff M , Johansson MA , Reich NG , Meyer D , Snyder MR , Pollett S . Nat Commun 2019 10 (1) 3102 Infectious disease modeling has played a prominent role in recent outbreaks, yet integrating these analyses into public health decision-making has been challenging. We recommend establishing 'outbreak science' as an inter-disciplinary field to improve applied epidemic modeling. |
Collaborative efforts to forecast seasonal influenza in the United States, 2015-2016
McGowan CJ , Biggerstaff M , Johansson M , Apfeldorf KM , Ben-Nun M , Brooks L , Convertino M , Erraguntla M , Farrow DC , Freeze J , Ghosh S , Hyun S , Kandula S , Lega J , Liu Y , Michaud N , Morita H , Niemi J , Ramakrishnan N , Ray EL , Reich NG , Riley P , Shaman J , Tibshirani R , Vespignani A , Zhang Q , Reed C . Sci Rep 2019 9 (1) 683 Since 2013, the Centers for Disease Control and Prevention (CDC) has hosted an annual influenza season forecasting challenge. The 2015-2016 challenge consisted of weekly probabilistic forecasts of multiple targets, including fourteen models submitted by eleven teams. Forecast skill was evaluated using a modified logarithmic score. We averaged submitted forecasts into a mean ensemble model and compared them against predictions based on historical trends. Forecast skill was highest for seasonal peak intensity and short-term forecasts, while forecast skill for timing of season onset and peak week was generally low. Higher forecast skill was associated with team participation in previous influenza forecasting challenges and utilization of ensemble forecasting techniques. The mean ensemble consistently performed well and outperformed historical trend predictions. CDC and contributing teams will continue to advance influenza forecasting and work to improve the accuracy and reliability of forecasts to facilitate increased incorporation into public health response efforts. |
A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States
Reich NG , Brooks LC , Fox SJ , Kandula S , McGowan CJ , Moore E , Osthus D , Ray EL , Tushar A , Yamana TK , Biggerstaff M , Johansson MA , Rosenfeld R , Shaman J . Proc Natl Acad Sci U S A 2019 116 (8) 3146-3154 Influenza infects an estimated 9-35 million individuals each year in the United States and is a contributing cause for between 12,000 and 56,000 deaths annually. Seasonal outbreaks of influenza are common in temperate regions of the world, with highest incidence typically occurring in colder and drier months of the year. Real-time forecasts of influenza transmission can inform public health response to outbreaks. We present the results of a multiinstitution collaborative effort to standardize the collection and evaluation of forecasting models for influenza in the United States for the 2010/2011 through 2016/2017 influenza seasons. For these seven seasons, we assembled weekly real-time forecasts of seven targets of public health interest from 22 different models. We compared forecast accuracy of each model relative to a historical baseline seasonal average. Across all regions of the United States, over half of the models showed consistently better performance than the historical baseline when forecasting incidence of influenza-like illness 1 wk, 2 wk, and 3 wk ahead of available data and when forecasting the timing and magnitude of the seasonal peak. In some regions, delays in data reporting were strongly and negatively associated with forecast accuracy. More timely reporting and an improved overall accessibility to novel and traditional data sources are needed to improve forecasting accuracy and its integration with real-time public health decision making. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure