Last data update: Mar 10, 2025. (Total: 48852 publications since 2009)
Records 1-9 (of 9 Records) |
Query Trace: Qian Yong[original query] |
---|
MicroRNA, mRNA, and proteomics biomarkers and therapeutic targets for improving lung cancer treatment outcomes
Ye Qing , Raese Rebecca , Luo Dajie , Cao Shu , Wan Ying-Wooi , Qian Yong , Guo Nancy Lan . Cancers (Basel) 2023 15 (8) 2294 Simple Summary: This study identified a set of 73 microRNAs (miRNAs) that can accurately detect lung cancer tumors from normal lung tissues. Based on the consistent expression patterns associated with patient survival outcomes and in tumors vs. normal lung tissues, 10 miRNAs were considered to be putatively tumor suppressive and 4 miRNAs were deemed as oncogenic in lung cancer. From the list of genes that were targeted by the 73 diagnostic miRNAs, DGKE and WDR47 had significant associations with responses to both systemic therapies and radiotherapy in lung cancer. Based on our identified miRNA-regulated network, we discovered three drugs—BX-912, daunorubicin, and midostaurin—that can be repositioned to treat lung cancer, which was not known before. The majority of lung cancer patients are diagnosed with metastatic disease. This study identified a set of 73 microRNAs (miRNAs) that classified lung cancer tumors from normal lung tissues with an overall accuracy of 96.3% in the training patient cohort (n = 109) and 91.7% in unsupervised classification and 92.3% in supervised classification in the validation set (n = 375). Based on association with patient survival (n = 1016), 10 miRNAs were identified as potential tumor suppressors (hsa-miR-144, hsa-miR-195, hsa-miR-223, hsa-miR-30a, hsa-miR-30b, hsa-miR-30d, hsa-miR-335, hsa-miR-363, hsa-miR-451, and hsa-miR-99a), and 4 were identified as potential oncogenes (hsa-miR-21, hsa-miR-31, hsa-miR-411, and hsa-miR-494) in lung cancer. Experimentally confirmed target genes were identified for the 73 diagnostic miRNAs, from which proliferation genes were selected from CRISPR-Cas9/RNA interference (RNAi) screening assays. Pansensitive and panresistant genes to 21 NCCN-recommended drugs with concordant mRNA and protein expression were identified. DGKE and WDR47 were found with significant associations with responses to both systemic therapies and radiotherapy in lung cancer. Based on our identified miRNA-regulated molecular machinery, an inhibitor of PDK1/Akt BX-912, an anthracycline antibiotic daunorubicin, and a multi-targeted protein kinase inhibitor midostaurin were discovered as potential repositioning drugs for treating lung cancer. These findings have implications for improving lung cancer diagnosis, optimizing treatment selection, and discovering new drug options for better patient outcomes. |
Multi-Walled Carbon Nanotube-Induced Gene Expression Biomarkers for Medical and Occupational Surveillance.
Snyder-Talkington BN , Dong C , Singh S , Raese R , Qian Y , Porter DW , Wolfarth MG , Guo NL . Int J Mol Sci 2019 20 (11) ![]() As the demand for multi-walled carbon nanotube (MWCNT) incorporation into industrial and biomedical applications increases, so does the potential for unintentional pulmonary MWCNT exposure, particularly among workers during manufacturing. Pulmonary exposure to MWCNTs raises the potential for development of lung inflammation, fibrosis, and cancer among those exposed; however, there are currently no effective biomarkers for detecting lung fibrosis or predicting the risk of lung cancer resulting from MWCNT exposure. To uncover potential mRNAs and miRNAs that could be used as markers of exposure, this study compared in vivo mRNA and miRNA expression in lung tissue and blood of mice exposed to MWCNTs with in vitro mRNA and miRNA expression from a co-culture model of human lung epithelial and microvascular cells, a system previously shown to have a higher overall genome-scale correlation with mRNA expression in mouse lungs than either cell type grown separately. Concordant mRNAs and miRNAs identified by this study could be used to drive future studies confirming human biomarkers of MWCNT exposure. These potential biomarkers could be used to assess overall worker health and predict the occurrence of MWCNT-induced diseases. |
Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure.
Snyder-Talkington BN , Dong C , Castranova V , Qian Y , Guo NL . Toxicol Rep 2019 6 482-488 ![]() Concurrent with rising production of carbon-based engineered nanomaterials is a potential increase in respiratory and cardiovascular diseases due to exposure to nanomaterials in the workplace atmosphere. While single-cell models of pulmonary exposure are often used to determine the potential toxicity of nanomaterials in vitro, previous studies have shown that coculture cell models better represent the cellular response and crosstalk that occurs in vivo. This study identified differential gene regulation in human small airway epithelial cells (SAECs) grown either in monoculture or in coculture with human microvascular endothelial cells following exposure of the SAECs to multiwalled carbon nanotubes (MWCNTs). SAEC genes that either changed their regulation direction from upregulated in monoculture to downregulated in coculture (or vice versa) or had a more than a two-fold changed in the same regulation direction were identified. Genes that changed regulation direction were most often involved in the processes of cellular growth and proliferation and cellular immune response and inflammation. Genes that had a more than a two-fold change in regulation in the same direction were most often involved in the inflammatory response. The direction and fold-change of this differential gene regulation suggests that toxicity testing in monoculture may exaggerate cellular responses to MWCNTs, and coculture of cells may provide a more in-depth assessment of toxicological responses. |
Effects of Laser Printer-Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts.
Pirela SV , Miousse IR , Lu X , Castranova V , Thomas T , Qian Y , Bello D , Kobzik L , Koturbash I , Demokritou P . Environ Health Perspect 2015 124 (2) 210-9 ![]() BACKGROUND: Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during their consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have primarily used raw toner powders rather than the actual PEPs, which are not representative of current exposures experienced at the consumer level during printing. OBJECTIVES: To assess the biological responses of a panel of human cell lines to PEPs. METHODS: Three physiologically relevant cell lines-small airway epithelial cells (SAEC), macrophages (THP-1 cells) and lymphoblasts (TK6 cells)-were exposed to PEPs at a wide range of doses (0.5-100 mug/mL) that correspond to human inhalation exposure durations at the consumer level of ~ 8 hours and higher. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. RESULTS: PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production as well as a rise in pro-inflammatory cytokine release in different cell lines at doses relevant to exposure durations from 7.8 to 1500 hours. Furthermore, there were differences in methylation patterns that although statistically insignificant, demonstrate the potential PEPs can have on the overall epigenome following exposure. CONCLUSIONS: The in vitro findings here suggest that laser printer-emitted engineered nanoparticles may be deleterious to lung cells, and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. |
mRNA and miRNA regulatory networks reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic pathologies in mice.
Dymacek J , Snyder-Talkington BN , Porter DW , Wolfarth MG , Castranova V , Qian Y , Guo NL . Toxicol Sci 2014 144 (1) 51-64 ![]() Multi-walled carbon nanotubes (MWCNT) are known for their transient inflammatory and progressive fibrotic pulmonary effects; however, the mechanisms underlying these pathologies are unknown. In this study, we used time-series microarray data of global lung mRNA and miRNA expression isolated from C57BL/6J mice exposed by pharyngeal aspiration to vehicle or 10, 20, 40, or 80 mug MWCNT at 1, 7, 28, or 56 days post-exposure to determine miRNA andmRNA regulatory networks that are potentially involved in MWCNT-induced inflammatory and fibrotic lung etiology. Using a non-negative matrix factorization method, we determined mRNAs and miRNAs with expression profiles associated with pathology patterns of MWCNT-induced inflammation (based upon bronchoalveolar lavage score) and fibrosis (based upon Sirius Red staining measured with quantitative morphometric analysis). Potential binding targets between pathology-related mRNAs and miRNAs were identified using Ingenuity Pathway Analysis and the miRTarBase, miRecords, and TargetScan databases. Using these experimentally validated and predicted binding targets, we were able to build molecular signaling networks that are potentially reflective of and play a role in MWCNT-induced lung inflammatory and fibrotic pathology. As understanding the regulatory networks between mRNAs and miRNAs in different disease states would be beneficial for understanding the complex mechanisms of pathogenesis, these identified genes and pathways may be useful for determining biomarkers of MWCNT-induced lung inflammation and fibrosis for early detection of disease. |
The microRNA-200 family targets multiple non-small cell lung cancer prognostic markers in H1299 cells and BEAS-2B cells.
Pacurari M , Addison JB , Bondalapati N , Wan YW , Luo D , Qian Y , Castranova V , Ivanov AV , Guo NL . Int J Oncol 2013 43 (2) 548-60 ![]() Lung cancer remains the leading cause of cancer-related mortality for both men and women. Tumor recurrence and metastasis is the major cause of lung cancer treatment failure and death. The microRNA200 (miR-200) family is a powerful regulator of the epithelial-mesenchymal transition (EMT) process, which is essential in tumor metastasis. Nevertheless, miR-200 family target genes that promote metastasis in non-small cell lung cancer (NSCLC) remain largely unknown. Here, we sought to investigate whether the microRNA-200 family regulates our previously identified NSCLC prognostic marker genes associated with metastasis, as potential molecular targets. Novel miRNA targets were predicted using bioinformatics tools based on correlation analyses of miRNA and mRNA expression in 57 squamous cell lung cancer tumor samples. The predicted target genes were validated with quantitative RT-PCR assays and western blot analysis following re-expression of miR-200a, -200b and -200c in the metastatic NSCLC H1299 cell line. The results show that restoring miR-200a or miR-200c in H1299 cells induces downregulation of DLC1, ATRX and HFE. Reinforced miR-200b expression results in downregulation of DLC1, HNRNPA3 and HFE. Additionally, miR-200 family downregulates HNRNPR3, HFE and ATRX in BEAS-2B immortalized lung epithelial cells in quantitative RT-PCR and western blot assays. The miR-200 family and these potential targets are functionally involved in canonical pathways of immune response, molecular mechanisms of cancer, metastasis signaling, cell-cell communication, proliferation and DNA repair in Ingenuity pathway analysis (IPA). These results indicate that re-expression of miR-200 downregulates our previously identified NSCLC prognostic biomarkers in metastatic NSCLC cells. These results provide new insights into miR-200 regulation in lung cancer metastasis and consequent clinical outcome, and may provide a potential basis for innovative therapeutic approaches for the treatment of this deadly disease. |
Systematic analysis of multiwalled carbon nanotube-induced cellular signaling and gene expression in human small airway epithelial cells.
Snyder-Talkington BN , Pacurari M , Dong C , Leonard SS , Schwegler-Berry D , Castranova V , Qian Y , Guo NL . Toxicol Sci 2013 133 (1) 79-89 ![]() Multi-walled carbon nanotubes (MWCNT) are one of the most commonly produced nanomaterials, and pulmonary exposure during production, use, and disposal is a concern for the developing nanotechnology field. The airway epithelium is the first line of defense against inhaled particles. In a mouse model, MWCNT were reported to reach the alveolar space of the lung after in vivo exposure, penetrate the epithelial lining, and result in inflammation and progressive fibrosis. This study sought to determine the cellular and gene expression changes in small airway epithelial cells (SAEC) after in vitro exposure to MWCNT in an effort to elucidate potential toxicity mechanisms and signaling pathways. A direct interaction between SAEC and MWCNT was confirmed by both internalization of MWCNT as well as an interaction at the cell periphery. Following exposure, SAEC showed time-dependent increases in reactive oxygen species production, total protein phospho-tyrosine and phospho-threonine levels, and migratory behavior. Analysis of gene and protein expression suggested altered regulation of multiple biomarkers of lung damage, carcinogenesis, and tumor progression, as well as genes involved in related signaling pathways. These results demonstrate that MWCNT exposure resulted in the activation of SAEC. Gene expression data derived from MWCNT exposure provides information that may be used to elucidate the underlying mode of action of MWCNT in the small airway and suggest potential prognostic gene signatures for risk assessment. |
Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis.
Guo NL , Wan YW , Denvir J , Porter DW , Pacurari M , Wolfarth MG , Castranova V , Qian Y . J Toxicol Environ Health A 2012 75 (18) 1129-53 ![]() Concerns over the potential for multiwalled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n = 160) exposed to 0, 10, 20, 40, or 80 mcg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 d postexposure. By using pairwise statistical analysis of microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5-fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at d 56 postexposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at d 56 postexposure to 10 mcg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n = 256) and test set (n = 186). Furthermore, both gene signatures were associated with human lung cancer risk (n = 164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace. |
A smoking-associated 7-gene signature for lung cancer diagnosis and prognosis.
Wan YW , Raese RA , Fortney JE , Xiao C , Luo D , Cavendish J , Gibson LF , Castranova V , Qian Y , Guo NL . Int J Oncol 2012 41 (4) 1387-96 ![]() Smoking is responsible for 90% of lung cancer cases. There is currently no clinically available gene test for early detection of lung cancer in smokers, or an effective patient selection strategy for adjuvant chemotherapy in lung cancer treatment. In this study, concurrent coexpression with multiple signaling pathways was modeled among a set of genes associated with smoking and lung cancer survival. This approach identified and validated a 7-gene signature for lung cancer diagnosis and prognosis in smokers using patient transcriptional profiles (n=847). The smoking-associated gene coexpression networks in lung adenocarcinoma tumors (n=442) were highly significant in terms of biological relevance (network precision = 0.91, FDR<0.01) when evaluated with numerous databases containing multi-level molecular associations. The gene coexpression network in smoking lung adenocarcinoma patients was confirmed in qRT-PCR assays of the identified biomarkers and involved signaling pathway genes in human lung adenocarcinoma cells (H23) treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Furthermore, the western blotting results of p53, phosphop53, Rb and EGFR in NNK-treated H23 and transformed normal human lung epithelial cells (BEAS-2B) support their functional involvement in smoking-induced lung cancer carcinogenesis and progression. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 10, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure