Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-24 (of 24 Records) |
Query Trace: Pesik N[original query] |
---|
Public health actions to control measles among Afghan evacuees during Operation Allies Welcome - United States, September-November 2021
Masters NB , Mathis AD , Leung J , Raines K , Clemmons NS , Miele K , Balajee SA , Lanzieri TM , Marin M , Christensen DL , Clarke KR , Cruz MA , Gallagher K , Gearhart S , Gertz AM , Grady-Erickson O , Habrun CA , Kim G , Kinzer MH , Miko S , Oberste MS , Petras JK , Pieracci EG , Pray IW , Rosenblum HG , Ross JM , Rothney EE , Segaloff HE , Shepersky LV , Skrobarcek KA , Stadelman AM , Sumner KM , Waltenburg MA , Weinberg M , Worrell MC , Bessette NE , Peake LR , Vogt MP , Robinson M , Westergaard RP , Griesser RH , Icenogle JP , Crooke SN , Bankamp B , Stanley SE , Friedrichs PA , Fletcher LD , Zapata IA , Wolfe HO , Gandhi PH , Charles JY , Brown CM , Cetron MS , Pesik N , Knight NW , Alvarado-Ramy F , Bell M , Talley LE , Rotz LD , Rota PA , Sugerman DE , Gastañaduy PA . MMWR Morb Mortal Wkly Rep 2022 71 (17) 592-596 On August 29, 2021, the United States government oversaw the emergent establishment of Operation Allies Welcome (OAW), led by the U.S. Department of Homeland Security (DHS) and implemented by the U.S. Department of Defense (DoD) and U.S. Department of State (DoS), to safely resettle U.S. citizens and Afghan nationals from Afghanistan to the United States. Evacuees were temporarily housed at several overseas locations in Europe and Asia* before being transported via military and charter flights through two U.S. international airports, and onward to eight U.S. military bases,(†) with hotel A used for isolation and quarantine of persons with or exposed to certain infectious diseases.(§) On August 30, CDC issued an Epi-X notice encouraging public health officials to maintain vigilance for measles among Afghan evacuees because of an ongoing measles outbreak in Afghanistan (25,988 clinical cases reported nationwide during January-November 2021) (1) and low routine measles vaccination coverage (66% and 43% for the first and second doses, respectively, in 2020) (2). |
Severe Acute Respiratory Syndrome Coronavirus 2 Prevalence, Seroprevalence, and Exposure among Evacuees from Wuhan, China, 2020.
Hallowell BD , Carlson CM , Jacobs JR , Pomeroy M , Steinberg J , Tenforde MW , McDonald E , Foster L , Feldstein LR , Rolfes MA , Haynes A , Abedi GR , Odongo GS , Saruwatari K , Rider EC , Douville G , Bhakta N , Maniatis P , Lindstrom S , Thornburg NJ , Lu X , Whitaker BL , Kamili S , Sakthivel SK , Wang L , Malapati L , Murray JR , Lynch B , Cetron M , Brown C , Roohi S , Rotz L , Borntrager D , Ishii K , Moser K , Rasheed M , Freeman B , Lester S , Corbett KS , Abiona OM , Hutchinson GB , Graham BS , Pesik N , Mahon B , Braden C , Behravesh CB , Stewart R , Knight N , Hall AJ , Killerby ME . Emerg Infect Dis 2020 26 (9) 1998-2004 To determine prevalence of, seroprevalence of, and potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among a cohort of evacuees returning to the United States from Wuhan, China, in January 2020, we conducted a cross-sectional study of quarantined evacuees from 1 repatriation flight. Overall, 193 of 195 evacuees completed exposure surveys and submitted upper respiratory or serum specimens or both at arrival in the United States. Nearly all evacuees had taken preventive measures to limit potential exposure while in Wuhan, and none had detectable SARS-CoV-2 in upper respiratory tract specimens, suggesting the absence of asymptomatic respiratory shedding among this group at the time of testing. Evidence of antibodies to SARS-CoV-2 was detected in 1 evacuee, who reported experiencing no symptoms or high-risk exposures in the previous 2 months. These findings demonstrated that this group of evacuees posed a low risk of introducing SARS-CoV-2 to the United States. |
COVID-19 in Americans aboard the Diamond Princess cruise ship.
Plucinski MM , Wallace M , Uehara A , Kurbatova EV , Tobolowsky FA , Schneider ZD , Ishizumi A , Bozio CH , Kobayashi M , Toda M , Stewart A , Wagner RL , Moriarty LF , Murray R , Queen K , Tao Y , Paden C , Mauldin MR , Zhang J , Li Y , Elkins CA , Lu X , Herzig CTA , Novak R , Bower W , Medley AM , Acosta AM , Knust B , Cantey PT , Pesik NT , Halsey ES , Cetron MS , Tong S , Marston BJ , Friedman CR . Clin Infect Dis 2020 72 (10) e448-e457 ![]() ![]() BACKGROUND: The Diamond Princess cruise ship was the site of a large outbreak of coronavirus disease 2019 (COVID-19). Of 437 Americans and their travel companions on the ship, 114 (26%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We interviewed 229 American passengers and crew after disembarkation following a ship-based quarantine to identify risk factors for infection and characterize transmission onboard the ship. RESULTS: The attack rate for passengers in single-person cabins or without infected cabinmates was 18% (58/329), compared with 63% (27/43) for those sharing a cabin with an asymptomatic infected cabinmate, and 81% (25/31) for those with a symptomatic infected cabinmate. Whole genome sequences from specimens from passengers who shared cabins clustered together. Of 66 SARS-CoV-2-positive American travelers with complete symptom information, 14 (21%) were asymptomatic while on the ship. Among SARS-CoV-2-positive Americans, 10 (9%) required intensive care, of whom 7 were ≥70 years. CONCLUSION: Our findings highlight the high risk of SARS-CoV-2 transmission on cruise ships. High rates of SARS-CoV-2 positivity in cabinmates of individuals with asymptomatic infections suggest that triage by symptom status in shared quarters is insufficient to halt transmission. A high rate of intensive care unit admission among older individuals complicates the prospect of future cruise travel during the pandemic, given typical cruise passenger demographics. The magnitude and severe outcomes of this outbreak were major factors contributing to the Centers for Disease Control and Prevention's decision to halt cruise ship travel in U.S. waters in March 2020. |
Public Health Responses to COVID-19 Outbreaks on Cruise Ships - Worldwide, February-March 2020.
Moriarty LF , Plucinski MM , Marston BJ , Kurbatova EV , Knust B , Murray EL , Pesik N , Rose D , Fitter D , Kobayashi M , Toda M , Canty PT , Scheuer T , Halsey ES , Cohen NJ , Stockman L , Wadford DA , Medley AM , Green G , Regan JJ , Tardivel K , White S , Brown C , Morales C , Yen C , Wittry B , Freeland A , Naramore S , Novak RT , Daigle D , Weinberg M , Acosta A , Herzig C , Kapella BK , Jacobson KR , Lamba K , Ishizumi A , Sarisky J , Svendsen E , Blocher T , Wu C , Charles J , Wagner R , Stewart A , Mead PS , Kurylo E , Campbell S , Murray R , Weidle P , Cetron M , Friedman CR . MMWR Morb Mortal Wkly Rep 2020 69 (12) 347-352 ![]() ![]() An estimated 30 million passengers are transported on 272 cruise ships worldwide each year* (1). Cruise ships bring diverse populations into proximity for many days, facilitating transmission of respiratory illness (2). SARS-CoV-2, the virus that causes coronavirus disease (COVID-19) was first identified in Wuhan, China, in December 2019 and has since spread worldwide to at least 187 countries and territories. Widespread COVID-19 transmission on cruise ships has been reported as well (3). Passengers on certain cruise ship voyages might be aged >/=65 years, which places them at greater risk for severe consequences of SARS-CoV-2 infection (4). During February-March 2020, COVID-19 outbreaks associated with three cruise ship voyages have caused more than 800 laboratory-confirmed cases among passengers and crew, including 10 deaths. Transmission occurred across multiple voyages of several ships. This report describes public health responses to COVID-19 outbreaks on these ships. COVID-19 on cruise ships poses a risk for rapid spread of disease, causing outbreaks in a vulnerable population, and aggressive efforts are required to contain spread. All persons should defer all cruise travel worldwide during the COVID-19 pandemic. |
Building global health security capacity: The role for implementation science
Morgan J , Kennedy ED , Pesik N , Angulo FJ , Craig AS , Knight NW , Bunnell RE . Health Secur 2018 16 S5-s7 Since the launch of the Global Health Security Agenda (GHSA) in 2014,1-3 many countries around the world have accelerated efforts to achieve compliance with the World Health Organization's (WHO) International Health Regulations (IHR 2005) to build their capacities to detect, assess, and report public health events.4 WHO approved a standardized Joint External Evaluation (JEE) tool in February 2016 that provides a framework for assessing a country's gaps and progress toward IHR 2005 implementation.5,6 By October 2018, more than 86 countries in 6 regions had completed a JEE.7 Based on JEE scores and recommended priority actions for improvement, multiple countries, in collaboration with technical partners such as the US Centers for Disease Control and Prevention (CDC), are actively working to build their capacities and strengthen core systems to prevent, detect, and respond to public health threats. |
US Centers for Disease Control and Prevention and its partners' contributions to global health security
Tappero JW , Cassell CH , Bunnell RE , Angulo FJ , Craig A , Pesik N , Dahl BA , Ijaz K , Jafari H , Martin R . Emerg Infect Dis 2017 23 (13) S5-S14 To achieve compliance with the revised World Health Organization International Health Regulations (IHR 2005), countries must be able to rapidly prevent, detect, and respond to public health threats. Most nations, however, remain unprepared to manage and control complex health emergencies, whether due to natural disasters, emerging infectious disease outbreaks, or the inadvertent or intentional release of highly pathogenic organisms. The US Centers for Disease Control and Prevention (CDC) works with countries and partners to build and strengthen global health security preparedness so they can quickly respond to public health crises. This report highlights selected CDC global health protection platform accomplishments that help mitigate global health threats and build core, cross-cutting capacity to identify and contain disease outbreaks at their source. CDC contributions support country efforts to achieve IHR 2005 compliance, contribute to the international framework for countering infectious disease crises, and enhance health security for Americans and populations around the world. |
Conveyance contact investigation for imported Middle East Respiratory Syndrome cases, United States, May 2014
Lippold SA , Objio T , Vonnahme L , Washburn F , Cohen NJ , Chen TH , Edelson PJ , Gulati R , Hale C , Harcourt J , Haynes L , Jewett A , Jungerman R , Kohl KS , Miao C , Pesik N , Regan JJ , Roland E , Schembri C , Schneider E , Tamin A , Tatti K , Alvarado-Ramy F . Emerg Infect Dis 2017 23 (9) 1585-1589 In 2014, the Centers for Disease Control and Prevention conducted conveyance contact investigations for 2 Middle East respiratory syndrome cases imported into the United States, comprising all passengers and crew on 4 international and domestic flights and 1 bus. Of 655 contacts, 78% were interviewed; 33% had serologic testing. No secondary cases were identified. |
Estimation of severe Middle East Respiratory Syndrome cases in the Middle East, 2012-2016
O'Hagan JJ , Carias C , Rudd JM , Pham HT , Haber Y , Pesik N , Cetron MS , Gambhir M , Gerber SI , Swerdlow DL . Emerg Infect Dis 2016 22 (10) 1797-9 Using data from travelers to 4 countries in the Middle East, we estimated 3,250 (95% CI 1,300-6,600) severe cases of Middle East respiratory syndrome occurred in this region during September 2012-January 2016. This number is 2.3-fold higher than the number of laboratory-confirmed cases recorded in these countries. |
Tracing airline travelers for a public health investigation: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection in the United States, 2014
Regan JJ , Robynne Jungerman M , Lippold SA , Washburn F , Roland E , Objio T , Schembri C , Gulati R , Edelson PJ , Alvarado-Ramy F , Pesik N , Cohen NJ . Public Health Rep 2016 131 (4) 552-559 Objective. CDC routinely conducts contact investigations involving travelers on commercial conveyances, such as aircrafts, cargo vessels, and cruise ships. Methods. The agency used established systems of communication and partnerships with other federal agencies to quickly provide accurate traveler contact information to states and jurisdictions to alert contacts of potential exposure to two travelers with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) who had entered the United States on commercial flights in April and May 2014. Results. Applying the same process used to trace and notify travelers during routine investigations, such as those for tuberculosis or measles, CDC was able to notify most travelers of their potential exposure to MERS-CoV during the first few days of each investigation. Conclusion. To prevent the introduction and spread of newly emerging infectious diseases, travelers need to be located and contacted quickly. © 2016, Association of Schools of Public Health. All rights reserved. |
Travel and border health measures to prevent the international spread of Ebola
Cohen NJ , Brown CM , Alvarado-Ramy F , Bair-Brake H , Benenson GA , Chen TH , Demma AJ , Holton NK , Kohl KS , Lee AW , McAdam D , Pesik N , Roohi S , Smith CL , Waterman SH , Cetron MS . MMWR Suppl 2016 65 (3) 57-67 During the 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa, CDC implemented travel and border health measures to prevent international spread of the disease, educate and protect travelers and communities, and minimize disruption of international travel and trade. CDC staff provided in-country technical assistance for exit screening in countries in West Africa with Ebola outbreaks, implemented an enhanced entry risk assessment and management program for travelers at U.S. ports of entry, and disseminated information and guidance for specific groups of travelers and relevant organizations. New and existing partnerships were crucial to the success of this response, including partnerships with international organizations, such as the World Health Organization, the International Organization for Migration, and nongovernment organizations, as well as domestic partnerships with the U.S. Department of Homeland Security and state and local health departments. Although difficult to assess, travel and border health measures might have helped control the epidemic's spread in West Africa by deterring or preventing travel by symptomatic or exposed persons and by educating travelers about protecting themselves. Enhanced entry risk assessment at U.S. airports facilitated management of travelers after arrival, including the recommended active monitoring. These measures also reassured airlines, shipping companies, port partners, and travelers that travel was safe and might have helped maintain continued flow of passenger traffic and resources needed for the response to the affected region. Travel and border health measures implemented in the countries with Ebola outbreaks laid the foundation for future reconstruction efforts related to borders and travel, including development of regional surveillance systems, cross-border coordination, and implementation of core capacities at designated official points of entry in accordance with the International Health Regulations (2005). New mechanisms developed during this response to target risk assessment and management of travelers arriving in the United States may enhance future public health responses. The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html). |
Exportations of symptomatic cases of MERS-CoV infection to countries outside the Middle East
Carias C , O'Hagan JJ , Jewett A , Gambhir M , Cohen NJ , Haber Y , Pesik N , Swerdlow DL . Emerg Infect Dis 2016 22 (3) 723-5 In 2012, an outbreak of infection with Middle East respiratory syndrome coronavirus (MERS-CoV), was detected in the Arabian Peninsula. Modeling can produce estimates of the expected annual number of symptomatic cases of MERS-CoV infection exported and the likelihood of exportation from source countries in the Middle East to countries outside the region. |
Estimating contraceptive needs and increasing access to contraception in response to the Zika virus disease outbreak - Puerto Rico, 2016
Tepper NK , Goldberg HI , Bernal MI , Rivera B , Frey MT , Malave C , Renquist CM , Bracero NJ , Dominguez KL , Sanchez RE , Shapiro-Mendoza CK , Rodriguez BR , Simeone RM , Pesik NT , Barfield WD , Ko JY , Galang RR , Perez-Padilla J , Polen KN , Honein MA , Rasmussen SA , Jamieson DJ . MMWR Morb Mortal Wkly Rep 2016 65 (12) 311-314 Zika virus is a flavivirus transmitted primarily by Aedes species mosquitoes. Increasing evidence links Zika virus infection during pregnancy to adverse pregnancy and birth outcomes, including pregnancy loss, intrauterine growth restriction, eye defects, congenital brain abnormalities, and other fetal abnormalities (1,2). The virus has also been determined to be sexually transmitted.* Because of the potential risks associated with Zika virus infection during pregnancy, CDC has recommended that health care providers discuss prevention of unintended pregnancy with women and couples who reside in areas of active Zika virus transmission and do not want to become pregnant.dagger However, limitations in access to contraception in some of these areas might affect the ability to prevent an unintended pregnancy. As of March 16, 2016, the highest number of Zika virus disease cases in the United States and U.S. territories were reported from Puerto Rico. section sign The number of cases will likely rise with increasing mosquito activity in affected areas, resulting in increased risk for transmission to pregnant women. High rates of unintended and adolescent pregnancies in Puerto Rico suggest that, in the context of this outbreak, access to contraception might need to be improved (3,4). CDC estimates that 138,000 women of reproductive age (aged 15-44 years) in Puerto Rico do not desire pregnancy and are not using one of the most effective or moderately effective contraceptive methods, paragraph sign,** and therefore might experience an unintended pregnancy. CDC and other federal and local partners are seeking to expand access to contraception for these persons. Such efforts have the potential to increase contraceptive access and use, reduce unintended pregnancies, and lead to fewer adverse pregnancy and birth outcomes associated with Zika virus infection during pregnancy. The assessment of challenges and resources related to contraceptive access in Puerto Rico might be a useful model for other areas with active transmission of Zika virus. |
Interim guidelines for prevention of sexual transmission of zika virus - United States, 2016
Oster AM , Brooks JT , Stryker JE , Kachur RE , Mead P , Pesik NT , Petersen LR . MMWR Morb Mortal Wkly Rep 2016 65 (5) 120-1 Zika virus is a mosquito-borne flavivirus primarily transmitted by Aedes aegypti mosquitoes (1,2). Infection with Zika virus is asymptomatic in an estimated 80% of cases (2,3), and when Zika virus does cause illness, symptoms are generally mild and self-limited. Recent evidence suggests a possible association between maternal Zika virus infection and adverse fetal outcomes, such as congenital microcephaly (4,5), as well as a possible association with Guillain-Barre syndrome. Currently, no vaccine or medication exists to prevent or treat Zika virus infection. Persons residing in or traveling to areas of active Zika virus transmission should take steps to prevent Zika virus infection through prevention of mosquito bites (http://www.cdc.gov/zika/prevention/). |
CDC’s early response to a novel viral disease, Middle East respiratory syndrome coronavirus (MERS-CoV), September 2012-May 2014
Williams HA , Dunville RL , Gerber SI , Erdman DD , Pesik N , Kuhar D , Mason KA , Haynes L , Rotz L , Pierre JS , Poser S , Bunga S , Pallansch MA , Swerdlow DL . Public Health Rep 2015 130 (4) 307-317 The first ever case of Middle East Respiratory Syndrome Coronavirus (MERSCoV) was reported in September 2012. This report describes the approaches taken by CDC, in collaboration with the World Health Organization (WHO) and other partners, to respond to this novel virus, and outlines the agency responses prior to the first case appearing in the United States in May 2014. During this time, CDC’s response integrated multiple disciplines and was divided into three distinct phases: before, during, and after the initial activation of its Emergency Operations Center. CDC’s response to MERS-CoV required a large effort, deploying at least 353 staff members who worked in the areas of surveillance, laboratory capacity, infection control guidance, and travelers’ health. This response built on CDC’s experience with previous outbreaks of other pathogens and provided useful lessons for future emerging threats. |
Evaluation of emergency drug releases from the Centers for Disease Control and Prevention Quarantine Stations
Roohi S , Grinnell M , Sandoval M , Cohen NJ , Crocker K , Allen C , Dougherty C , Jolly J , Pesik N . J Emerg Manag 2015 13 (1) 19-23 The Centers for Disease Control and Prevention (CDC) Quarantine Stations distribute select lifesaving drug products that are not commercially available or are in limited supply in the United States for emergency treatment of certain health conditions. Following a retrospective analysis of shipment records, the authors estimated an average of 6.66 hours saved per shipment when drug products were distributed from quarantine stations compared to a hypothetical centralized site from CDC headquarters in Atlanta, GA. This evaluation supports the continued use of a decentralized model which leverages CDC's regional presence and maximizes efficiency in the distribution of lifesaving drugs. |
Systems for rapidly detecting and treating persons with ebola virus disease - United States
Koonin LM , Jamieson DJ , Jernigan JA , Van Beneden CA , Kosmos C , Harvey MC , Pietz H , Bertolli J , Perz JF , Whitney CG , Halpin AS , Daley WR , Pesik N , Margolis GS , Tumpey A , Tappero J , Damon I . MMWR Morb Mortal Wkly Rep 2015 64 (8) 222-5 The U.S. Department of Health and Human Services (HHS), CDC, other U.S. government agencies, the World Health Organization (WHO), and international partners are taking multiple steps to respond to the current Ebola virus disease (Ebola) outbreak in West Africa to reduce its toll there and to reduce the chances of international spread. At the same time, CDC and HHS are working to ensure that persons who have a risk factor for exposure to Ebola and who develop symptoms while in the United States are rapidly identified and isolated, and safely receive treatment. HHS and CDC have actively worked with state and local public health authorities and other partners to accelerate health care preparedness to care for persons under investigation (PUI) for Ebola or with confirmed Ebola. This report describes some of these efforts and their impact. |
Public health response to commercial airline travel of a person with Ebola virus infection - United States, 2014
Regan JJ , Jungerman R , Montiel SH , Newsome K , Objio T , Washburn F , Roland E , Petersen E , Twentyman E , Olaiya O , Naughton M , Alvarado-Ramy F , Lippold SA , Tabony L , McCarty CL , Kinsey CB , Barnes M , Black S , Azzam I , Stanek D , Sweitzer J , Valiani A , Kohl KS , Brown C , Pesik N . MMWR Morb Mortal Wkly Rep 2015 64 (3) 63-6 Before the current Ebola epidemic in West Africa, there were few documented cases of symptomatic Ebola patients traveling by commercial airline, and no evidence of transmission to passengers or crew members during airline travel. In July 2014 two persons with confirmed Ebola virus infection who were infected early in the Nigeria outbreak traveled by commercial airline while symptomatic, involving a total of four flights (two international flights and two Nigeria domestic flights). It is not clear what symptoms either of these two passengers experienced during flight; however, one collapsed in the airport shortly after landing, and the other was documented to have fever, vomiting, and diarrhea on the day the flight arrived. Neither infected passenger transmitted Ebola to other passengers or crew on these flights. In October 2014, another airline passenger, a U.S. health care worker who had traveled domestically on two commercial flights, was confirmed to have Ebola virus infection. Given that the time of onset of symptoms was uncertain, an Ebola airline contact investigation in the United States was conducted. In total, follow-up was conducted for 268 contacts in nine states, including all 247 passengers from both flights, 12 flight crew members, eight cleaning crew members, and one federal airport worker (81 of these contacts were documented in a report published previously). All contacts were accounted for by state and local jurisdictions and followed until completion of their 21-day incubation periods. No secondary cases of Ebola were identified in this investigation, confirming that transmission of Ebola during commercial air travel did not occur. |
Airport exit and entry screening for Ebola - August-November 10, 2014
Brown CM , Aranas AE , Benenson GA , Brunette G , Cetron M , Chen TH , Cohen NJ , Diaz P , Haber Y , Hale CR , Holton K , Kohl K , Le AW , Palumbo GJ , Pearson K , Phares CR , Alvarado-Ramy F , Roohi S , Rotz LD , Tappero J , Washburn FM , Watkins J , Pesik N . MMWR Morb Mortal Wkly Rep 2014 63 (49) 1163-7 In response to the largest recognized Ebola virus disease epidemic now occurring in West Africa, the governments of affected countries, CDC, the World Health Organization (WHO), and other international organizations have collaborated to implement strategies to control spread of the virus. One strategy recommended by WHO calls for countries with Ebola transmission to screen all persons exiting the country for "unexplained febrile illness consistent with potential Ebola infection." Exit screening at points of departure is intended to reduce the likelihood of international spread of the virus. To initiate this strategy, CDC, WHO, and other global partners were invited by the ministries of health of Guinea, Liberia, and Sierra Leone to assist them in developing and implementing exit screening procedures. Since the program began in August 2014, an estimated 80,000 travelers, of whom approximately 12,000 were en route to the United States, have departed by air from the three countries with Ebola transmission. Procedures were implemented to deny boarding to ill travelers and persons who reported a high risk for exposure to Ebola; no international air traveler from these countries has been reported as symptomatic with Ebola during travel since these procedures were implemented. |
Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak
Bogoch II , Creatore MI , Cetron MS , Brownstein JS , Pesik N , Miniota J , Tam T , Hu W , Nicolucci A , Ahmed S , Yoon JW , Berry I , Hay SI , Anema A , Tatem AJ , MacFadden D , German M , Khan K . Lancet 2014 385 (9962) 29-35 BACKGROUND: The WHO declared the 2014 west African Ebola epidemic a public health emergency of international concern in view of its potential for further international spread. Decision makers worldwide are in need of empirical data to inform and implement emergency response measures. Our aim was to assess the potential for Ebola virus to spread across international borders via commercial air travel and assess the relative efficiency of exit versus entry screening of travellers at commercial airports. METHODS: We analysed International Air Transport Association data for worldwide flight schedules between Sept 1, 2014, and Dec 31, 2014, and historic traveller flight itinerary data from 2013 to describe expected global population movements via commercial air travel out of Guinea, Liberia, and Sierra Leone. Coupled with Ebola virus surveillance data, we modelled the expected number of internationally exported Ebola virus infections, the potential effect of air travel restrictions, and the efficiency of airport-based traveller screening at international ports of entry and exit. We deemed individuals initiating travel from any domestic or international airport within these three countries to have possible exposure to Ebola virus. We deemed all other travellers to have no significant risk of exposure to Ebola virus. FINDINGS: Based on epidemic conditions and international flight restrictions to and from Guinea, Liberia, and Sierra Leone as of Sept 1, 2014 (reductions in passenger seats by 51% for Liberia, 66% for Guinea, and 85% for Sierra Leone), our model projects 2.8 travellers infected with Ebola virus departing the above three countries via commercial flights, on average, every month. 91 547 (64%) of all air travellers departing Guinea, Liberia, and Sierra Leone had expected destinations in low-income and lower-middle-income countries. Screening international travellers departing three airports would enable health assessments of all travellers at highest risk of exposure to Ebola virus infection. INTERPRETATION: Decision makers must carefully balance the potential harms from travel restrictions imposed on countries that have Ebola virus activity against any potential reductions in risk from Ebola virus importations. Exit screening of travellers at airports in Guinea, Liberia, and Sierra Leone would be the most efficient frontier at which to assess the health status of travellers at risk of Ebola virus exposure, however, this intervention might require international support to implement effectively. FUNDING: Canadian Institutes of Health Research. |
Nowcasting the spread of chikungunya virus in the Americas
Johansson MA , Powers AM , Pesik N , Cohen NJ , Staples JE . PLoS One 2014 9 (8) e104915 BACKGROUND: In December 2013, the first locally-acquired chikungunya virus (CHIKV) infections in the Americas were reported in the Caribbean. As of May 16, 55,992 cases had been reported and the outbreak was still spreading. Identification of newly affected locations is paramount to intervention activities, but challenging due to limitations of current data on the outbreak and on CHIKV transmission. We developed models to make probabilistic predictions of spread based on current data considering these limitations. METHODS AND FINDINGS: Branching process models capturing travel patterns, local infection prevalence, climate dependent transmission factors, and associated uncertainty estimates were developed to predict probable locations for the arrival of CHIKV-infected travelers and for the initiation of local transmission. Many international cities and areas close to where transmission has already occurred were likely to have received infected travelers. Of the ten locations predicted to be the most likely locations for introduced CHIKV transmission in the first four months of the outbreak, eight had reported local cases by the end of April. Eight additional locations were likely to have had introduction leading to local transmission in April, but with substantial uncertainty. CONCLUSIONS: Branching process models can characterize the risk of CHIKV introduction and spread during the ongoing outbreak. Local transmission of CHIKV is currently likely in several Caribbean locations and possible, though uncertain, for other locations in the continental United States, Central America, and South America. This modeling framework may also be useful for other outbreaks where the risk of pathogen spread over heterogeneous transportation networks must be rapidly assessed on the basis of limited information. |
First confirmed cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities - May 2014
Bialek SR , Allen D , Alvarado-Ramy F , Arthur R , Balajee A , Bell D , Best S , Blackmore C , Breakwell L , Cannons A , Brown C , Cetron M , Chea N , Chommanard C , Cohen N , Conover C , Crespo A , Creviston J , Curns AT , Dahl R , Dearth S , DeMaria A , Echols F , Erdman DD , Feikin D , Frias M , Gerber SI , Gulati R , Hale C , Haynes LM , Heberlein-Larson L , Holton K , Ijaz K , Kapoor M , Kohl K , Kuhar DT , Kumar AM , Kundich M , Lippold S , Liu L , Lovchik JC , Madoff L , Martell S , Matthews S , Moore J , Murray LR , Onofrey S , Pallansch MA , Pesik N , Pham H , Pillai S , Pontones P , Poser S , Pringle K , Pritchard S , Rasmussen S , Richards S , Sandoval M , Schneider E , Schuchat A , Sheedy K , Sherin K , Swerdlow DL , Tappero JW , Vernon MO , Watkins S , Watson J . MMWR Morb Mortal Wkly Rep 2014 63 (19) 431-6 Since mid-March 2014, the frequency with which cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection have been reported has increased, with the majority of recent cases reported from Saudi Arabia and United Arab Emirates (UAE). In addition, the frequency with which travel-associated MERS cases have been reported and the number of countries that have reported them to the World Health Organization (WHO) have also increased. The first case of MERS in the United States, identified in a traveler recently returned from Saudi Arabia, was reported to CDC by the Indiana State Department of Health on May 1, 2014, and confirmed by CDC on May 2. A second imported case of MERS in the United States, identified in a traveler from Saudi Arabia having no connection with the first case, was reported to CDC by the Florida Department of Health on May 11, 2014. The purpose of this report is to alert clinicians, health officials, and others to increase awareness of the need to consider MERS-CoV infection in persons who have recently traveled from countries in or near the Arabian Peninsula. This report summarizes recent epidemiologic information, provides preliminary descriptions of the cases reported from Indiana and Florida, and updates CDC guidance about patient evaluation, home care and isolation, specimen collection, and travel as of May 13, 2014. |
Notes from the field: investigation of infectious disease risks associated with a nontransplant anatomical donation center - Arizona, 2014
de Perio MA , Bernard BP , Delaney LJ , Pesik N , Cohen NJ . MMWR Morb Mortal Wkly Rep 2014 63 (17) 384-5 CDC is investigating reports of potential occupational exposure to human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Mycobacterium tuberculosis among workers performing preparation and dissection procedures on human nontransplant anatomical materials at a nontransplant anatomical donation center in Arizona. CDC is working with Arizona public health officials to inform persons exposed to these potentially infected materials. Nontransplant anatomical centers around the United States process thousands of donated cadavers annually. These materials (which might be fresh, frozen, or chemically preserved) are used by universities and surgical instrument and pharmaceutical companies for medical education and research. The American Association of Tissue Banks has developed accreditation policies for nontransplant anatomical donation organizations. It also has written standards that specify exclusion criteria for donor material, as well as use of proper environmental controls and safe work practices to prevent transmission of infectious agents during receipt and handling of nontransplant anatomical materials. At the center under investigation, which is now closed, these standards might not have been consistently implemented. |
Investigation of inhalation anthrax case, United States
Griffith J , Blaney D , Shadomy S , Lehman M , Pesik N , Tostenson S , Delaney L , Tiller R , Devries A , Gomez T , Sullivan M , Blackmore C , Stanek D , Lynfield R . Emerg Infect Dis 2014 20 (2) 280-3 Inhalation anthrax occurred in a man who vacationed in 4 US states where anthrax is enzootic. Despite an extensive multi-agency investigation, the specific source was not detected, and no additional related human or animal cases were found. Although rare, inhalation anthrax can occur naturally in the United States. |
Lethal factor and anti-protective antigen IgG levels associated with inhalation anthrax, Minnesota, USA
Sprenkle MD , Griffith J , Marinelli W , Boyer AE , Quinn CP , Pesik NT , Hoffmaster A , Keenan J , Juni BA , Blaney DD . Emerg Infect Dis 2014 20 (2) 310-4 Bacillus anthracis was identified in a 61-year-old man hospitalized in Minnesota, USA. Cooperation between the hospital and the state health agency enhanced prompt identification of the pathogen. Treatment comprising antimicrobial drugs, anthrax immune globulin, and pleural drainage led to full recovery; however, the role of passive immunization in anthrax treatment requires further evaluation. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure