Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Perinet LC[original query] |
---|
Improved mosquito housing and saliva collection method enhances safety while facilitating longitudinal assessment of individual mosquito vector competence for arboviruses
Ledermann JP , Burns PL , Perinet LC , Powers AM , Byers NM . Vector Borne Zoonotic Dis 2023 24 (1) 55-63 Background: Assessing the potential for mosquitoes to transmit medically important arboviruses is essential for understanding their threat to human populations. Currently, vector competence studies are typically performed by collecting saliva using a glass capillary tube system which involves sacrificing the mosquito at the time of saliva collection allowing only a single data point. These techniques also require handling infected mosquitoes and glass capillaries, constituting a safety risk. Materials and Methods: To improve the efficiency and safety of assessing vector competence, a novel containment and saliva collection approach for individually housed mosquitoes was developed. The improved housing, allowing longitudinal tracking of individual mosquitoes, consists of a 12-well Corning polystyrene plate sealed with a three-dimensional printed lid that holds organdy netting firmly against the rims of the wells. Results: This method provides excellent mosquito survival for five species of mosquitoes, with at least 79% of each species tested surviving for more than 2 weeks, comparable to the carton survival rates of ≥76%. When the plate housing system was used to assess vector infection, replication of West Nile virus (WNV) in mosquito tissues was similar to traditional containment mosquito housing. Mosquito saliva was collected using either blotting paper pads or traditional glass capillaries to assay viral transmission. The blotting paper collection showed similar or better sensitivity than the capillary method; in addition, longitudinal saliva samples could be collected from individual mosquitoes housed in the 12-well plates. Conclusions: The improved housing and saliva collection technique described herein provides a safer and more informative method for determining vector competence in mosquitoes. |
Yata Virus (Family Rhabdoviridae, Genus Ephemerovirus) Isolation from Mosquitoes from Uganda, the First Reported Isolation since 1969.
Perinet LC , Mutebi JP , Powers AM , Lutwama JJ , Mossel EC . Diseases 2023 11 (1) ![]() As a part of a systematic study of mosquitoes and associated viruses in Uganda, a virus was isolated from a pool of Mansonia uniformis collected in July 2017, in the Kitgum District of northern Uganda. Sequence analysis determined that the virus is Yata virus (YATAV; Ephemerovirus yata; family Rhabdoviridae). The only previous reported isolation of YATAV was in 1969 in Birao, Central African Republic, also from Ma. uniformis mosquitoes. The current sequence is over 99% identical at the nucleotide level to the original isolate, indicating a high level of YATAV genomic stability. |
Complete Genome Sequence of O'nyong Nyong Virus Isolated from a Febrile Patient in 2017 in Uganda.
Ledermann JP , Kayiwa JT , Perinet LC , Apangu T , Acayo S , Lutwama JJ , Powers AM , Mossel EC . Microbiol Resour Announc 2022 11 (12) e0069222 ![]() ![]() Despite causing numerous large outbreaks in the 20th century, few isolates of o'nyong nyong virus (ONNV) have been fully sequenced. Here, we report the complete genome sequence of an isolate of ONNV obtained from a febrile patient in northwest Uganda in 2017, designated ONNV UVRI0804. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure