Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Pascua PNQ[original query] |
---|
Multicountry spread of influenza A(H1N1)pdm09 viruses with reduced oseltamivir inhibition, May 2023-February 2024
Patel MC , Nguyen HT , Pascua PNQ , Gao R , Steel J , Kondor RJ , Gubareva LV . Emerg Infect Dis 2024 30 (7) 1410-1415 Since May 2023, a novel combination of neuraminidase mutations, I223V + S247N, has been detected in influenza A(H1N1)pdm09 viruses collected in countries spanning 5 continents, mostly in Europe (67/101). The viruses belong to 2 phylogenetically distinct groups and display ≈13-fold reduced inhibition by oseltamivir while retaining normal susceptibility to other antiviral drugs. |
New insights into the neuraminidase-mediated hemagglutination activity of influenza A(H3N2) viruses
Gao R , Pascua PNQ , Nguyen HT , Chesnokov A , Champion C , Mishin VP , Wentworth DE , Gubareva LV . Antiviral Res 2023 218 105719 Influenza virus neuraminidase (NA) can act as a receptor-binding protein, a role commonly attributed to hemagglutinin (HA). In influenza A(H3N2) viruses, three NA amino acid residues have previously been associated with NA-mediated hemagglutination: T148, D151, and more recently, H150. These residues are part of the 150-loop of the NA monomer. Substitutions at 148 and 151 arise from virus propagation in laboratory cell cultures, whereas changes at 150 occurred during virus evolution in the human host. In this study, we examined the effect of natural amino acid polymorphism at position 150 on NA-mediated hemagglutination. Using the A/Puerto Rico/8/34 backbone, we generated a comprehensive panel of recombinant A(H3N2) viruses that have different NAs but shared an HA that displays poor binding to red blood cells (RBCs). None of the tested substitutions at 150 (C, H, L, R, and S) promoted NA-binding. However, we identified two new determinants of NA-binding, Q136K and T439R, that emerged during virus culturing. Similar to T148I, both Q136K and T439R reduced NA enzyme activity by 48-86% and inhibition (14- to 173-fold) by the NA inhibitor zanamivir. NA-binding was observed when a virus preparation contained approximately 10% of NA variants with either T148I or T439R, highlighting the benefit of using deep sequencing in virus characterization. Taken together, our findings provide new insights into the molecular mechanisms underlying the ability of NA to function as a binding protein. Information gained may aid in the design of new and improved NA-targeting antivirals. |
Antiviral susceptibility of clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses isolated from birds and mammals in the United States, 2022
Nguyen HT , Chesnokov A , De La Cruz J , Pascua PNQ , Mishin VP , Jang Y , Jones J , Di H , Ivashchenko AA , Killian ML , Torchetti MK , Lantz K , Wentworth DE , Davis CT , Ivachtchenko AV , Gubareva LV . Antiviral Res 2023 217 105679 Clade 2.3.4.4 b highly pathogenic avian influenza (HPAI) A (H5N1) viruses that are responsible for devastating outbreaks in birds and mammals pose a potential threat to public health. Here, we evaluated their susceptibility to influenza antivirals. Of 1015 sequences of HPAI A (H5N1) viruses collected in the United States during 2022, eight viruses (∼0.8%) had a molecular marker of drug resistance to an FDA-approved antiviral: three adamantane-resistant (M2-V27A), four oseltamivir-resistant (NA-H275Y), and one baloxavir-resistant (PA-I38T). Additionally, 31 viruses contained mutations that may reduce susceptibility to inhibitors of neuraminidase (NA) (n = 20) or cap-dependent endonuclease (CEN) (n = 11). A panel of 22 representative viruses was tested phenotypically. Overall, clade 2.3.4.4 b A (H5N1) viruses lacking recognized resistance mutations were susceptible to FDA-approved antivirals. Oseltamivir was least potent at inhibiting NA activity, while the investigational NA inhibitor AV5080 was most potent, including against NA mutants. A novel NA substitution T438N conferred 12-fold reduced inhibition by zanamivir, and in combination with the known marker N295S, synergistically affected susceptibility to all five NA inhibitors. In cell culture-based assays HINT and IRINA, the PA-I38T virus displayed 75- to 108-fold and 37- to 78-fold reduced susceptibility to CEN inhibitors baloxavir and investigational AV5116, respectively. Viruses with PA-I38M or PA-A37T showed 5- to 10-fold reduced susceptibilities. As HPAI A (H5N1) viruses continue to circulate and evolve, close monitoring of drug susceptibility is needed for risk assessment and to inform decisions regarding antiviral stockpiling. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure