Last data update: Nov 11, 2024. (Total: 48109 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Parnell LA[original query] |
---|
Epidemiological and clinical features of a large blastomycosis outbreak at a paper mill in Michigan
Hennessee I , Palmer S , Reik R , Miles-Jay A , Nawaz MY , Blankenship HM , Kramer R , Hughes A , Snyder M , Yin RL , Litvintseva AP , Parnell LA , Gade L , Chiller T , de Perio MA , Stobierski MG , McFadden J , Toda M . Clin Infect Dis 2024 BACKGROUND: Blastomycosis is an environmentally acquired fungal infection that can result in severe pulmonary illness and high hospitalization rates. In 2023, a blastomycosis outbreak was detected among workers at a paper mill in Delta County, Michigan. METHODS: We included patients with clinical and laboratory evidence of blastomycosis who had spent ≥40 hours in Delta County since September 1, 2022 and had illness onset December 1, 2022-July 1, 2023. We assessed epidemiological and clinical features of patients and evaluated factors associated with hospitalization. We performed whole-genome sequencing to characterize genetic relatedness of clinical isolates from eight patients. RESULTS: In total, 131 patients were identified; all had worked at or visited the mill. Sixteen patients (12%) were hospitalized; one died. Compared with non-hospitalized patients, more hospitalized patients had diabetes (p=0.03) and urine antigen titers above the lower limit of quantification (p<0.001). Hospitalized patients were also more likely to have had ≥1 healthcare visits before receiving a blastomycosis diagnostic test (p=0.02) and to have been treated with antibiotics prior to antifungal prescription (p=0.001). All sequenced isolates were identified as Blastomyces gilchristii and clustered into a distinct outbreak cluster. CONCLUSIONS: This was the largest documented blastomycosis outbreak in the United States. Epidemiologic evidence indicated exposures occurred at or near the mill, and genomic findings suggested a common exposure source. Patients with diabetes may have increased risk for hospitalization, and elevated urine antigen titers could indicate greater disease severity. Early suspicion of blastomycosis may prompt earlier diagnosis and treatment, potentially reducing unnecessary antibiotic prescriptions and improving patient outcomes. |
Emergence of the novel sixth Candida auris Clade VI in Bangladesh
Khan T , Faysal NI , Hossain MM , Mah EMuneer S , Haider A , Moon SB , Sen D , Ahmed D , Parnell LA , Jubair M , Chow NA , Chowdhury F , Rahman M . Microbiol Spectr 2024 e0354023 Candida auris, initially identified in 2009, has rapidly become a critical concern due to its antifungal resistance and significant mortality rates in healthcare-associated outbreaks. To date, whole-genome sequencing (WGS) has identified five unique clades of C. auris, with some strains displaying resistance to all primary antifungal drug classes. In this study, we presented the first WGS analysis of C. auris from Bangladesh, describing its origins, transmission dynamics, and antifungal susceptibility testing (AFST) profile. Ten C. auris isolates collected from hospital settings in Bangladesh were initially identified by CHROMagar Candida Plus, followed by VITEK2 system, and later sequenced using Illumina NextSeq 550 system. Reference-based phylogenetic analysis and variant calling pipelines were used to classify the isolates in different clades. All isolates aligned ~90% with the Clade I C. auris B11205 reference genome. Of the 10 isolates, 8 were clustered with Clade I isolates, highlighting a South Asian lineage prevalent in Bangladesh. Remarkably, the remaining two isolates formed a distinct cluster, exhibiting >42,447 single-nucleotide polymorphism differences compared to their closest Clade IV counterparts. This significant variation corroborates the emergence of a sixth clade (Clade VI) of C. auris in Bangladesh, with potential for international transmission. AFST results showed that 80% of the C. auris isolates were resistant to fluconazole and voriconazole, whereas Clade VI isolates were susceptible to azoles, echinocandins, and pyrimidine analogue. Genomic sequencing revealed ERG11_Y132F mutation conferring azole resistance while FCY1_S70R mutation found inconsequential in describing 5-flucytosine resistance. Our study underscores the pressing need for comprehensive genomic surveillance in Bangladesh to better understand the emergence, transmission dynamics, and resistance profiles of C. auris infections. Unveiling the discovery of a sixth clade (Clade VI) accentuates the indispensable role of advanced sequencing methodologies.IMPORTANCECandida auris is a nosocomial fungal pathogen that is commonly misidentified as other Candida species. Since its emergence in 2009, this multidrug-resistant fungus has become one of the five urgent antimicrobial threats by 2019. Whole-genome sequencing (WGS) has proven to be the most accurate identification technique of C. auris which also played a crucial role in the initial discovery of this pathogen. WGS analysis of C. auris has revealed five distinct clades where isolates of each clade differ among themselves based on pathogenicity, colonization, infection mechanism, as well as other phenotypic characteristics. In Bangladesh, C. auris was first reported in 2019 from clinical samples of a large hospital in Dhaka city. To understand the origin, transmission dynamics, and antifungal-resistance profile of C. auris isolates circulating in Bangladesh, we conducted a WGS-based surveillance study on two of the largest hospital settings in Dhaka, Bangladesh. |
Emergence of zoonotic sporotrichosis in Brazil: a genomic epidemiology study
Ribeiro Dos Santos A , Misas E , Min B , Le N , Bagal UR , Parnell LA , Sexton DJ , Lockhart SR , de Souza Carvalho Melhem M , Takahashi JPF , Oliboni GM , Bonfieti LX , Cappellano P , Sampaio JLM , Araujo LS , Alves Filho HL , Venturini J , Chiller TM , Litvintseva AP , Chow NA . Lancet Microbe 2024 BACKGROUND: Zoonotic sporotrichosis is a neglected fungal disease, whereby outbreaks are primarily driven by Sporothrix brasiliensis and linked to cat-to-human transmission. To understand the emergence and spread of sporotrichosis in Brazil, the epicentre of the current epidemic in South America, we aimed to conduct whole-genome sequencing (WGS) to describe the genomic epidemiology. METHODS: In this genomic epidemiology study, we included Sporothrix spp isolates from sporotrichosis cases from Brazil, Colombia, and the USA. We conducted WGS using Illumina NovaSeq on isolates collected by three laboratories in Brazil from humans and cats with sporotrichosis between 2013 and 2022. All isolates that were confirmed to be Sporothrix genus by internal transcribed spacer or beta-tubulin PCR sequencing were included in this study. We downloaded eight Sporothrix genome sequences from the National Center for Biotechnology Information (six from Brazil, two from Colombia). Three Sporothrix spp genome sequences from the USA were generated by the US Centers for Disease Control and Prevention as part of this study. We did phylogenetic analyses and correlated geographical and temporal case distribution with genotypic features of Sporothrix spp isolates. FINDINGS: 72 Sporothrix spp isolates from 55 human and 17 animal sporotrichosis cases were included: 67 (93%) were from Brazil, two (3%) from Colombia, and three (4%) from the USA. Cases spanned from 1999 to 2022. Most (61 [85%]) isolates were S brasiliensis, and all were reported from Brazil. Ten (14%) were Sporothrix schenckii and were reported from Brazil, USA, and Colombia. For S schenckii isolates, two distinct clades were observed wherein isolates clustered by geography. For S brasiliensis isolates, five clades separated by more than 100 000 single-nucleotide polymorphisms were observed. Among the five S brasiliensis clades, clades A and C contained isolates from both human and cat cases, and clade A contained isolates from six different states in Brazil. Compared with S brasiliensis isolates, larger genetic diversity was observed among S schenckii isolates from animal and human cases within a clade. INTERPRETATION: Our results suggest that the ongoing epidemic driven by S brasiliensis in Brazil represents several, independent emergence events followed by animal-to-animal and animal-to human transmission within and between Brazilian states. These results describe how S brasiliensis can emerge and spread within a country. FUNDING: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil; the São Paulo Research Foundation; Productivity in Research fellowships by the National Council for Scientific and Technological Development, and Ministry of Science and Technology of Brazil. |
Optimization and Validation of Candida auris Short Tandem Repeat Analysis.
de Groot T , Spruijtenburg B , Parnell LA , Chow NA , Meis JF . Microbiol Spectr 2022 10 (5) e0264522 Candida auris is an easily transmissible yeast with resistance to different antifungal compounds. Outbreaks of C. auris are mostly observed in intensive care units. To take adequate measures during an outbreak, it is essential to understand the transmission route, which requires isolate genotyping. In 2019, a short tandem repeat (STR) genotyping analysis was developed for C. auris. To determine the discriminatory power of this method, we performed STR analysis of 171 isolates with known whole-genome sequencing (WGS) data using Illumina reads, and we compared their resolutions. We found that STR analysis separated the 171 isolates into four clades (clades I to IV), as was also seen with WGS analysis. Then, to improve the separation of isolates in clade IV, the STR assay was optimized by the addition of 2 STR markers. With this improved STR assay, a total of 32 different genotypes were identified, while all isolates with differences of >50 single-nucleotide polymorphisms (SNPs) were separated by at least 1 STR marker. Altogether, we optimized and validated the C. auris STR panel for clades I to IV and established its discriminatory power, compared to WGS SNP analysis using Illumina reads. IMPORTANCE The emerging fungal pathogen Candida auris poses a threat to public health, mainly causing outbreaks in intensive care units. Genotyping is essential for investigating potential outbreaks and preventing further spread. Previously, we developed a STR genotyping scheme for rapid and high-resolution genotyping, and WGS SNP outcomes for some isolates were compared to STR data. Here, we compared WGS SNP and STR outcomes for a larger sample cohort. Also, we optimized the resolution of this typing scheme with the addition of 2 STR markers. Altogether, we validated and optimized this rapid, reliable, and high-resolution typing scheme for C. auris. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 11, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure