Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-9 (of 9 Records) |
Query Trace: Panayampalli S[original query] |
---|
Serological evidence of Mpox virus infection during peak Mpox transmission in New York City, July to August 2022
Pathela P , Townsend MB , Kopping EJ , Tang J , Navarra T , Priyamvada L , Carson WC , Panayampalli SS , Fowler RC , Kyaw N , Hughes S , Jamison K . J Infect Dis 2024 BACKGROUND: The extent to which infections may have been undetected in an epicenter of the 2022 mpox outbreak is unknown. METHODS: A serosurvey (July and August 2022) assessed the seroprevalence and correlates of mpox infection among a diverse sample of asymptomatic patients with no prior mpox diagnoses and no known histories of smallpox or mpox vaccination. We present seropositivity stratified by participant characteristics collected via survey. RESULTS: Two-thirds of 419 participants were cismen (281 of 419), of whom 59.1% (166 of 281) reported sex with men (MSM). The sample also included 109 ciswomen and 28 transgender/gender nonconforming/nonbinary individuals. Overall seroprevalence was 6.4% (95% confidence interval [CI], 4.1%-8.8%); 3.7% among ciswomen (95% CI, 1.0%-9.1%), 7.0% among cismen with only ciswomen partners (95% CI, 2.0%-11.9%), and 7.8% among MSM (95% CI, 3.7%-11.9%). There was little variation in seroprevalence by race/ethnicity, age group, HIV status, or number of recent sex partners. No participants who reported close contact with mpox cases were seropositive. Among participants without recent mpox-like symptoms, 6.3% were seropositive (95% CI, 3.6%-9.0%). CONCLUSIONS: Approximately 1 in 15 vaccine-naive people in our study had antibodies to mpox during the height of the NYC outbreak, indicating the presence of asymptomatic infections that could contribute to ongoing transmission. |
Translocation of an anteater (tamandua tetradactyla) infected with rabies from Virginia to Tennessee resulting in multiple human exposures, 2021
Grome HN , Yackley J , Goonewardene D , Cushing A , Souza M , Carlson A , Craig L , Cranmore B , Wallace R , Orciari L , Niezgoda M , Panayampalli S , Gigante C , Fill MM , Jones T , Schaffner W , Dunn J . MMWR Morb Mortal Wkly Rep 2022 71 (15) 533-537 On August 16, 2021, the Tennessee Department of Health (TDH) was notified of a positive rabies test result from a South American collared anteater (Tamandua tetradactyla) in Washington County, Tennessee. Tamanduas, or lesser anteaters, are a species of anteater in which rabies has not previously been reported. The animal was living at a Tennessee zoo and had been recently translocated from a zoo in Virginia. TDH conducted an investigation to confirm the rabies result, characterize the rabies variant, and ascertain an exposure risk assessment among persons who came into contact with the tamandua. Risk assessments for 22 persons were completed to determine the need for rabies postexposure prophylaxis (rPEP); rPEP was recommended for 13 persons, all of whom agreed to receive it. Using phylogenetic results of the virus isolated from the tamandua and knowledge of rabies epidemiology, public health officials determined that the animal was likely exposed to wild raccoons present at the Virginia zoo. This report describes expansion of the wide mammalian species diversity susceptible to rabies virus infection and summarizes the investigation, highlighting coordination among veterinary and human public health partners and the importance of preexposure rabies vaccination for animal handlers and exotic zoo animals. |
High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay.
Kainulainen MH , Bergeron E , Chatterjee P , Chapman AP , Lee J , Chida A , Tang X , Wharton RE , Mercer KB , Petway M , Jenks HM , Flietstra TD , Schuh AJ , Satheshkumar PS , Chaitram JM , Owen SM , McMullan LK , Flint M , Finn MG , Goldstein JM , Montgomery JM , Spiropoulou CF . Sci Rep 2021 11 (1) 12330 SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA. |
Estimated SARS-CoV-2 Seroprevalence Among Persons Aged <18 Years - Mississippi, May-September 2020.
Hobbs CV , Drobeniuc J , Kittle T , Williams J , Byers P , Satheshkumar PS , Inagaki K , Stephenson M , Kim SS , Patel MM , Flannery B . MMWR Morb Mortal Wkly Rep 2021 70 (9) 312-315 As of March 1, 2021, persons aged <18 years accounted for approximately 11% of 28.4 million reported COVID-19 cases in the United States*; however, data on pediatric infections with SARS-CoV-2, the virus that causes COVID-19, are limited (1). Surveys of SARS-CoV-2 antibody seroprevalence suggest that cumulative incidence of infection is much higher than that ascertained by reported COVID-19 cases (2,3). Evidence of previous SARS-CoV-2 infections among young persons in Mississippi was assessed by testing for antibodies to SARS-CoV-2 on a convenience sample of residual serum specimens collected for routine testing by an academic medical center laboratory during May 17–September 19, 2020. Seroprevalence by calendar month was standardized to the state population by race/ethnicity; cumulative numbers of infections were estimated by extrapolating seroprevalence to all persons aged <18 years in Mississippi. Serum specimens from 1,603 persons were tested; 175 (10.9%) were positive for SARS-CoV-2 antibodies. Among 1,579 (98.5%) specimens for which the race/ethnicity of the person tested was known, specimens from 16 (23.2%) of 69 Hispanic persons, 117 (13.0%) of 901 non-Hispanic Black persons, and 30 (5.3%) of 565 non-Hispanic White persons tested positive. Population-weighted seroprevalence estimates among persons aged <18 years increased from 2.5% in May to 16.3% in September 2020. Based on these estimates, 113,842 (95% confidence interval [CI] = 90,096–153,652) persons aged <18 years in Mississippi might have been infected with SARS-CoV-2 by mid-September 2020. The number of COVID-19 cases reported in this age group through August 31, 2020 was 8,993. Serosurveys that include pediatric age groups can help provide evidence of cumulative disease incidence, estimate frequency of undiagnosed cases of SARS-CoV-2 among young persons, and guide prevention efforts. |
Conserved Oligomeric Golgi (COG) Complex Proteins Facilitate Orthopoxvirus Entry, Fusion and Spread.
Realegeno S , Priyamvada L , Kumar A , Blackburn JB , Hartloge C , Puschnik AS , Sambhara S , Olson VA , Carette JE , Lupashin V , Satheshkumar PS . Viruses 2020 12 (7) ![]() Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1-COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection. |
Using the LN34 Pan-Lyssavirus Real-Time RT-PCR Assay for Rabies Diagnosis and Rapid Genetic Typing from Formalin-Fixed Human Brain Tissue.
Condori RE , Niezgoda M , Lopez G , Matos CA , Mateo ED , Gigante C , Hartloge C , Filpo AP , Haim J , Satheshkumar PS , Petersen B , Wallace R , Olson V , Li Y . Viruses 2020 12 (1) ![]() ![]() Human rabies post mortem diagnostic samples are often preserved in formalin. While immunohistochemistry (IHC) has been routinely used for rabies antigen detection in formalin-fixed tissue, the formalin fixation process causes nucleic acid fragmentation that may affect PCR amplification. This study reports the diagnosis of rabies in an individual from the Dominican Republic using both IHC and the LN34 pan-lyssavirus real-time RT-PCR assay on formalin-fixed brain tissue. The LN34 assay generates a 165 bp amplicon and demonstrated higher sensitivity than traditional PCR. Multiple efforts to amplify nucleic acid fragments larger than 300 bp using conventional PCR were unsuccessful, probably due to RNA fragmentation. Sequences generated from the LN34 amplicon linked the case to the rabies virus (RABV) strain circulating in the Ouest Department of Haiti to the border region between Haiti and the Dominican Republic. Direct sequencing of the LN34 amplicon allowed rapid and low-cost rabies genetic typing. |
Rabies Outbreak in Captive Big Brown Bats ( Eptesicus fuscus ) Used in a White-nose Syndrome Vaccine Trial.
Abbott RC , Saindon L , Falendysz EA , Greenberg L , Orciari L , Satheshkumar PS , Rocke TE . J Wildl Dis 2019 56 (1) 197-202 ![]() ![]() An outbreak of rabies occurred in a captive colony of wild-caught big brown bats (Eptesicus fuscus). Five of 27 bats exhibited signs of rabies virus infection 22-51 d after capture or 18-22 d after contact with the index case. Rabid bats showed weight loss, aggression, increased vocalization, hypersalivation, and refusal of food. Antigenic typing and virus sequencing confirmed that all five bats were infected with an identical rabies virus variant that circulates in E. fuscus in the United States. Two bats with no signs of rabies virus infection were seropositive for rabies virus-neutralizing antibodies; the brains of these bats had no detectable viral proteins by the direct fluorescence antibody test. We suspect bat-to-bat transmission of rabies virus occurred among our bats because all rabies-infected bats were confined to the cage housing the index case and were infected with viruses having identical sequences of the entire rabies nucleoprotein gene. This outbreak illustrated the risk of rabies virus infection in captive bats and highlights the need for researchers using bats to assume that all wild bats could be infected with rabies virus. |
Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity
Cryer M , Lane K , Greer M , Cates R , Burt S , Andrus M , Zou J , Rogers P , Hansen MD , Burgado J , Panayampalli SS , Day CW , Smee DF , Johnson BF . Pharm Biol 2017 55 (1) 1586-1591 CONTEXT: Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) is a succulent plant that is known for its traditional antivirus and antibacterial usage. OBJECTIVE: This work examines two compounds identified from the K. pinnata plant for their antivirus activity against human alphaherpesvirus (HHV) 1 and 2 and vaccinia virus (VACV). MATERIALS AND METHODS: Compounds KPB-100 and KPB-200 were isolated using HPLC and were identified using NMR and MS. Both compounds were tested in plaque reduction assay of HHV-2 wild type (WT) and VACV. Both compounds were then tested in virus spread inhibition and virus yield reduction (VYR) assays of VACV. KPB-100 was further tested in viral cytopathic effect (CPE) inhibition assay of HHV-2 TK-mutant and VYR assay of HHV-1 WT. RESULTS: KPB-100 and KPB-200 inhibited HHV-2 at IC50 values of 2.5 and 2.9 mug/mL, respectively, and VACV at IC50 values of 3.1 and 7.4 mug/mL, respectively, in plaque reduction assays. In virus spread inhibition assay of VACV KPB-100 and KPB-200 yielded IC50 values of 1.63 and 13.2 mug/mL, respectively, and KPB-100 showed a nearly 2-log reduction in virus in VYR assay of VACV at 20 mug/mL. Finally, KPB-100 inhibited HHV-2 TK- at an IC50 value of 4.5 mug/mL in CPE inhibition assay and HHV-1 at an IC90 of 3.0 mug/mL in VYR assay. DISCUSSION AND CONCLUSION: Both compounds are promising targets for synthetic optimization and in vivo study. KPB-100 in particular showed strong inhibition of all viruses tested. |
Monkeypox virus host factor screen in haploid cells identifies essential role of GARP complex in extracellular virus formation.
Realegeno S , Puschnik AS , Kumar A , Goldsmith C , Burgado J , Sambhara S , Olson VA , Carroll D , Damon I , Hirata T , Kinoshita T , Carette JE , Satheshkumar PS . J Virol 2017 91 (11) ![]() Monkeypox virus (MPXV) is a human pathogen that is a member of the Orthopoxvirus genus, which includes Vaccinia virus and Variola virus (the causative agent of smallpox). Human monkeypox is considered an emerging zoonotic infectious disease. To identify host factors required for MPXV infection, we performed a genome-wide insertional mutagenesis screen in human haploid cells. The screen revealed several candidate genes, including those involved in Golgi trafficking, glycosaminoglycan biosynthesis and glycosylphosphatidylinositol (GPI) - anchor biosynthesis. We validated the role of a set of vacuolar protein sorting (VPS) genes during infection, VPS51-54, which comprise the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a tethering complex involved in retrograde transport of endosomes to the trans-Golgi apparatus. Our data demonstrate that VPS52 and VPS54 were dispensable for mature virus (MV) production but were required for extracellular virus (EV) formation. For comparison, a known antiviral compound, ST-246, was used in our experiments demonstrating that EV titers in VPS52 and VPS54 knockout (KO) cells were comparable to levels exhibited by ST-246 treated wildtype cells. Confocal microscopy was used to examine actin tail formation, one of the viral egress mechanisms for cell-to-cell dissemination, and revealed an absence of actin tails in VPS52KO or VPS54KO infected cells. Further evaluation of these cells by electron microscopy demonstrated a decrease in wrapped viruses (WV) compared to wild type control. Collectively, our data demonstrate the role of GARP complex genes in double-membrane wrapping of MV necessary for EV formation, implicating the host endosomal trafficking pathway in orthopoxvirus infection.IMPORTANCE Human monkeypox is an emerging zoonotic infectious disease caused by Monkeypox virus (MPXV). Of the two MPXV clades, the Congo Basin strain is associated with severe disease, higher mortality, and increased human-to-human transmission relative to the West African strain. Monkeypox is endemic to regions of western and central Africa but was introduced into the United States in 2003 from the importation of infected animals. The threat of MPXV and other orthopoxviruses is increasing due to the absence of routine smallpox vaccination leading to a higher proportion of naive populations. In this study, we have identified and validated candidate genes that are required for MPXV infection, specifically the Golgi-associated retrograde protein (GARP) complex. Identifying host targets required for infection that prevents extracellular virus formation such as the GARP complex or the retrograde pathway can provide a potential target for anti-viral therapy. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure