Last data update: Sep 30, 2024. (Total: 47785 publications since 2009)
Records 1-19 (of 19 Records) |
Query Trace: Pallansch Mark[original query] |
---|
Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States.
Kapoor M , Pringle K , Kumar A , Dearth S , Liu L , Lovchik J , Perez O , Pontones P , Richards S , Yeadon-Fagbohun J , Breakwell L , Chea N , Cohen NJ , Schneider E , Erdman D , Haynes L , Pallansch M , Tao Y , Tong S , Gerber S , Swerdlow D , Feikin DR . Clin Infect Dis 2014 59 (11) 1511-8 BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) was discovered September 2012 in the Kingdom of Saudi Arabia (KSA). The first US case of MERS-CoV was confirmed on 2 May 2014. METHODS: We summarize the clinical symptoms and signs, laboratory and radiologic findings, and MERS-CoV-specific tests. RESULTS: The patient is a 65-year-old physician who worked in a hospital in KSA where MERS-CoV patients were treated. His illness onset included malaise, myalgias, and low-grade fever. He flew to the United States on day of illness (DOI) 7. His first respiratory symptom, a dry cough, developed on DOI 10. On DOI 11, he presented to an Indiana hospital as dyspneic, hypoxic, and with a right lower lobe infiltrate on chest radiography. On DOI 12, his serum tested positive by real-time reverse transcription polymerase chain reaction (rRT-PCR) for MERS-CoV and showed high MERS-CoV antibody titers, whereas his nasopharyngeal swab was rRT-PCR negative. Expectorated sputum was rRT-PCR positive the following day, with a high viral load (5.31 × 10(6) copies/mL). He was treated with antibiotics, intravenous immunoglobulin, and oxygen by nasal cannula. He was discharged on DOI 22. The genome sequence was similar (>99%) to other known MERS-CoV sequences, clustering with those from KSA from June to July 2013. CONCLUSIONS: This patient had a prolonged nonspecific prodromal illness before developing respiratory symptoms. Both sera and sputum were rRT-PCR positive when nasopharyngeal specimens were negative. US clinicians must be vigilant for MERS-CoV in patients with febrile and/or respiratory illness with recent travel to the Arabian Peninsula, especially among healthcare workers. |
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
Certifying the interruption of wild poliovirus transmission in the WHO African region on the turbulent journey to a polio-free world
Africa Regional Commission for the Certification of Poliomyelitis Eradication , Leke Rose Gana Fomban , Kaboré B Jean , King Arlene , Pallansch Mark A , Tomori Oyewale , Jack Abdoulie D , Sadrizadeh Bijan , Kane Ibrahima , Kironde Naddumba Edward , Lopes-Feio Raul Jorge , Chunsuttiwat Supamit , Maiga Zakaria , Kouassi Beugré , Khomo Ngokoana Esther , Tangermann Rudolf H , Matuja William Bahati Pungu , Mkanda Pascal . Lancet Glob Health 2020 8 (10) e1345-e1351 On Aug 25 2020, the Africa Regional Commission for the Certification of Poliomyelitis Eradication declared that the WHO African region had interrupted transmission of all indigenous wild polioviruses. This declaration marks the African region as the fifth of the six WHO regions to celebrate this extraordinary achievement. Following the Yaoundé Declaration on Polio Eradication in Africa by heads of state and governments in 1996, Nelson Mandela launched the Kick Polio out of Africa campaign. In this Health Policy paper, we describe the long and turbulent journey to the certification of the interruption of wild poliovirus transmission, focusing on 2016-20, lessons learned, and the strategies and analyses that convinced the Regional Commission that the African region is free of wild polioviruses. This certification of the WHO African region shows the feasibility of polio eradication in countries with chronic insecurity, inaccessible and hard-to-reach populations, and weak health systems. Challenges have been daunting and the sacrifices enormous-dozens of health workers and volunteers have lost their lives in the pursuit of a polio-free Africa. |
Circulating Poliovirus in New York - New Instance of an Old Problem.
Pallansch Mark A. The New England journal of medicine 2022 387(19) 1725-1728 . The New England journal of medicine 2022 387(19) 1725-1728 Pallansch Mark A. The New England journal of medicine 2022 387(19) 1725-1728 |
Serotype 2 oral poliovirus vaccine (OPV2) choices and the consequences of delaying outbreak response.
Kalkowska DA , Pallansch MA , Wassilak SGF , Cochi SL , Thompson KM . Vaccine 2021 41 Suppl 1 A136-A141 The Global Polio Eradication Initiative (GPEI) faces substantial challenges with managing outbreaks of serotype 2 circulating vaccine-derived polioviruses (cVDPV2s) in 2021. A full five years after the globally coordinated removal of serotype 2 oral poliovirus vaccine (OPV2) from trivalent oral poliovirus vaccine (tOPV) for use in national immunization programs, cVDPV2s did not die out. Since OPV2 cessation, responses to outbreaks caused by cVDPV2s mainly used serotype 2 monovalent OPV (mOPV2) from a stockpile. A novel vaccine developed from a genetically stabilized OPV2 strain (nOPV2) promises to potentially facilitate outbreak response with lower prospective risks, although its availability and properties in the field remain uncertain. Using an established global poliovirus transmission model and building on a related analysis that characterized the impacts of disruptions in GPEI activities caused by the COVID-19 pandemic, we explore the implications of trade-offs associated with delaying outbreak response to avoid using mOPV2 by waiting for nOPV2 availability (or equivalently, delayed responses waiting for national validation of meeting the criteria for nOPV2 initial use). Consistent with prior modeling, responding as quickly as possible with available mOPV2 promises to reduce the expected burden of disease in the outbreak population and to reduce the chances for the outbreak virus to spread to other areas. Delaying cVDPV2 outbreak response (e.g., modeled as no response January-June 2021) to wait for nOPV2 can considerably increase the total expected cases (e.g., by as many as 1,300 cVDPV2 cases in the African region during 2021-2023) and increases the likelihood of triggering the need to restart widescale preventive use of an OPV2-containing vaccine in national immunization programs that use OPV. Countries should respond to any cVDPV2 outbreaks quickly with rounds that achieve high coverage using any available OPV2, and plan to use nOPV2, if needed, once it becomes widely available based on evidence that it is as effective but safer in populations than mOPV2. |
The impact of disruptions caused by the COVID-19 pandemic on global polio eradication.
Kalkowska DA , Voorman A , Pallansch MA , Wassilak SGF , Cochi SL , Badizadegan K , Thompson KM . Vaccine 2021 41 Suppl 1 A12-A18 In early 2020, the COVID-19 pandemic led to substantial disruptions in global activities. The disruptions also included intentional and unintentional reductions in health services, including immunization campaigns against the transmission of wild poliovirus (WPV) and persistent serotype 2 circulating vaccine-derived poliovirus (cVDPV2). Building on a recently updated global poliovirus transmission and Sabin-strain oral poliovirus vaccine (OPV) evolution model, we explored the implications of immunization disruption and restrictions of human interactions (i.e., population mixing) on the expected incidence of polio and on the resulting challenges faced by the Global Polio Eradication Initiative (GPEI). We demonstrate that with some resumption of activities in the fall of 2020 to respond to cVDPV2 outbreaks and full resumption on January 1, 2021 of all polio immunization activities to pre-COVID-19 levels, the GPEI could largely mitigate the impact of COVID-19 to the delays incurred. The relative importance of reduced mixing (leading to potentially decreased incidence) and reduced immunization (leading to potentially increased expected incidence) depends on the timing of the effects. Following resumption of immunization activities, the GPEI will likely face similar barriers to eradication of WPV and elimination of cVDPV2 as before COVID-19. The disruptions from the COVID-19 pandemic may further delay polio eradication due to indirect effects on vaccine and financial resources. |
Updated characterization of poliovirus transmission in Pakistan and Afghanistan and the impacts of different outbreak response vaccine options.
Kalkowska DA , Pallansch MA , Cochi SL , Thompson KM . J Infect Dis 2021 224 (9) 1529-1538 BACKGROUND: Pakistan and Afghanistan remain the only reservoirs of wild poliovirus transmission. Prior modeling suggested that before the COVID-19 pandemic, plans to stop the transmission of serotype 1 wild poliovirus (WPV1) and persistent serotype 2 circulating vaccine-derived poliovirus (cVDPV2) did not appear on track to succeed. METHODS: We updated an existing poliovirus transmission and Sabin-strain oral poliovirus vaccine (OPV) evolution model for Pakistan and Afghanistan to characterize the impacts of immunization disruptions and restrictions on human interactions (i.e., population mixing) due to the COVID-19 pandemic. We also consider different options for responding to outbreaks and for preventive supplementary immunization activities (SIAs). RESULTS: The modeling suggests that with some resumption of activities in the fall of 2020 to respond to cVDPV2 outbreaks and full resumption on January 1, 2021 of all polio immunization activities to pre-COVID-19 levels, Pakistan and Afghanistan would remain off-track for stopping all transmission through 2023 without improvements in quality. CONCLUSIONS: Using trivalent OPV (tOPV) for SIAs instead of serotype 2 monovalent OPV (mOPV2) offers substantial benefits for ending the transmission of both WPV1 and cVDPV2, because tOPV increases population immunity for both serotypes 1 and 2 while requiring fewer SIA rounds, when effectively delivered in transmission areas. |
Updated Characterization of Outbreak Response Strategies for 2019-2029: Impacts of Using a Novel Type 2 Oral Poliovirus Vaccine Strain.
Kalkowska DA , Pallansch MA , Wilkinson A , Bandyopadhyay AS , Konopka-Anstadt JL , Burns CC , Oberste MS , Wassilak SGF , Badizadegan K , Thompson KM . Risk Anal 2020 41 (2) 329-348 Delays in achieving the global eradication of wild poliovirus transmission continue to postpone subsequent cessation of all oral poliovirus vaccine (OPV) use. Countries must stop OPV use to end all cases of poliomyelitis, including vaccine-associated paralytic polio (VAPP) and cases caused by vaccine-derived polioviruses (VDPVs). The Global Polio Eradication Initiative (GPEI) coordinated global cessation of all type 2 OPV (OPV2) use in routine immunization in 2016 but did not successfully end the transmission of type 2 VDPVs (VDPV2s), and consequently continues to use type 2 OPV (OPV2) for outbreak response activities. Using an updated global poliovirus transmission and OPV evolution model, we characterize outbreak response options for 2019-2029 related to responding to VDPV2 outbreaks with a genetically stabilized novel OPV (nOPV2) strain or with the currently licensed monovalent OPV2 (mOPV2). Given uncertainties about the properties of nOPV2, we model different assumptions that appear consistent with the evidence on nOPV2 to date. Using nOPV2 to respond to detected cases may reduce the expected VDPV and VAPP cases and the risk of needing to restart OPV2 use in routine immunization compared to mOPV2 use for outbreak response. The actual properties, availability, and use of nOPV2 will determine its effects on type 2 poliovirus transmission in populations. Even with optimal nOPV2 performance, countries and the GPEI would still likely need to restart OPV2 use in routine immunization in OPV-using countries if operational improvements in outbreak response to stop the transmission of cVDPV2s are not implemented effectively. |
Updated Characterization of Post-OPV Cessation Risks: Lessons from 2019 Serotype 2 Outbreaks and Implications for the Probability of OPV Restart.
Kalkowska DA , Pallansch MA , Cochi SL , Kovacs SD , Wassilak SGF , Thompson KM . Risk Anal 2020 41 (2) 320-328 After the globally coordinated cessation of any serotype of oral poliovirus vaccine (OPV), some risks remain from undetected, existing homotypic OPV-related transmission and/or restarting transmission due to several possible reintroduction risks. The Global Polio Eradication Initiative (GPEI) coordinated global cessation of serotype 2-containing OPV (OPV2) in 2016. Following OPV2 cessation, the GPEI and countries implemented activities to withdraw all the remaining trivalent OPV, which contains all three poliovirus serotypes (i.e., 1, 2, and 3), from the supply chain and replace it with bivalent OPV (containing only serotypes 1 and 3). However, as of early 2020, monovalent OPV2 use for outbreak response continues in many countries. In addition, outbreaks observed in 2019 demonstrated evidence of different types of risks than previously modeled. We briefly review the 2019 epidemiological experience with serotype 2 live poliovirus outbreaks and propose a new risk for unexpected OPV introduction for inclusion in global modeling of OPV cessation. Using an updated model of global poliovirus transmission and OPV evolution with and without consideration of this new risk, we explore the implications of the current global situation with respect to the likely need to restart preventive use of OPV2 in OPV-using countries. Simulation results without this new risk suggest OPV2 restart will likely need to occur (81% of 100 iterations) to manage the polio endgame based on the GPEI performance to date with existing vaccine tools, and with the new risk of unexpected OPV introduction the expected OPV2 restart probability increases to 89%. Contingency planning requires new OPV2 bulk production, including genetically stabilized OPV2 strains. |
First Case of 2019 Novel Coronavirus in the United States.
Holshue ML , DeBolt C , Lindquist S , Lofy KH , Wiesman J , Bruce H , Spitters C , Ericson K , Wilkerson S , Tural A , Diaz G , Cohn A , Fox L , Patel A , Gerber SI , Kim L , Tong S , Lu X , Lindstrom S , Pallansch MA , Weldon WC , Biggs HM , Uyeki TM , Pillai SK . N Engl J Med 2020 382 (10) 929-936 An outbreak of novel coronavirus (2019-nCoV) that began in Wuhan, China, has spread rapidly, with cases now confirmed in multiple countries. We report the first case of 2019-nCoV infection confirmed in the United States and describe the identification, diagnosis, clinical course, and management of the case, including the patient's initial mild symptoms at presentation with progression to pneumonia on day 9 of illness. This case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels, as well as the need for rapid dissemination of clinical information related to the care of patients with this emerging infection. |
Breaking the Last Chains of Poliovirus Transmission: Progress and Challenges in Global Polio Eradication.
Kew O , Pallansch M . Annu Rev Virol 2018 5 (1) 427-451 Since the launch of the Global Polio Eradication Initiative (GPEI), paralytic cases associated with wild poliovirus (WPV) have fallen from approximately 350,000 in 1988 to 22 in 2017. WPV type 2 (WPV2) was last detected in 1999, WPV3 in 2012, and WPV1 appeared to be localized to Pakistan and Afghanistan in 2017. Through continuous refinement, the GPEI has overcome operational and biological challenges far more complex and daunting than originally envisioned. Operational challenges had led to sustained WPV endemicity in core reservoirs and widespread dissemination to polio-free countries. The biological challenges derive from intrinsic limitations to the oral poliovirus vaccine: (a) reduced immunogenicity in high-risk settings and (b) genetic instability, leading to repeated outbreaks of circulating vaccine-derived polioviruses and prolonged infections in individuals with primary immunodeficiencies. As polio eradication enters its multifaceted endgame, the GPEI, with its technical, operational, and social innovations, stands as the preeminent model for control of vaccine-preventable diseases worldwide. Expected final online publication date for the Annual Review of Virology Volume 5 is September 29, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. |
The role of supplementary environmental surveillance to complement acute flaccid paralysis surveillance for wild poliovirus in Pakistan - 2011-2013.
Cowger TL , Burns CC , Sharif S , Gary HE Jr , Iber J , Henderson E , Malik F , Zahoor Zaidi SS , Shaukat S , Rehman L , Pallansch MA , Orenstein WA . PLoS One 2017 12 (7) e0180608 BACKGROUND: More than 99% of poliovirus infections are non-paralytic and therefore, not detected by acute flaccid paralysis (AFP) surveillance. Environmental surveillance (ES) can detect circulating polioviruses from sewage without relying on clinical presentation. With extensive ES and continued circulation of polioviruses, Pakistan presents a unique opportunity to quantify the impact of ES as a supplement to AFP surveillance on overall completeness and timeliness of poliovirus detection. METHODS: Genetic, geographic and temporal data were obtained for all wild poliovirus (WPV) isolates detected in Pakistan from January 2011 through December 2013. We used viral genetics to assess gaps in AFP surveillance and ES as measured by detection of 'orphan viruses' (≥1.5% different in VP1 capsid nucleotide sequence). We compared preceding detection of closely related circulating isolates (≥99% identity) detected by AFP surveillance or ES to determine which surveillance system first detected circulation before the presentation of each polio case. FINDINGS: A total of 1,127 WPV isolates were detected by AFP surveillance and ES in Pakistan from 2011-2013. AFP surveillance and ES combined exhibited fewer gaps (i.e., % orphan viruses) in detection than AFP surveillance alone (3.3% vs. 7.7%, respectively). ES detected circulation before AFP surveillance in nearly 60% of polio cases (200 of 346). For polio cases reported from provinces conducting ES, ES detected circulation nearly four months sooner on average (117.6 days) than did AFP surveillance. INTERPRETATION: Our findings suggest ES in Pakistan is providing earlier, more sensitive detection of wild polioviruses than AFP surveillance alone. Overall, targeted ES through strategic selection of sites has important implications in the eradication endgame strategy. |
Patients with Primary Immunodeficiencies Are a Reservoir of Poliovirus and a Risk to Polio Eradication.
Aghamohammadi A , Abolhassani H , Kutukculer N , Wassilak SG , Pallansch MA , Kluglein S , Quinn J , Sutter RW , Wang X , Sanal O , Latysheva T , Ikinciogullari A , Bernatowska E , Tuzankina IA , Costa-Carvalho BT , Franco JL , Somech R , Karakoc-Aydiner E , Singh S , Bezrodnik L , Espinosa-Rosales FJ , Shcherbina A , Lau YL , Nonoyama S , Modell F , Modell V , Ozen A , Berlin A , Chouikha A , Partida-Gaytán A , Kiykim A , Prakash C , Suri D , Ayvaz DC , Peláez D , da Silva EE , Deordieva E , Pérez-Sánchez EE , Ulusoy E , Dogu F , Seminario G , Cuzcanci H , Triki H , Shimizu H , Tezcan I , Ben-Mustapha I , Sun J , Mazzucchelli JTL , Orrego JC , Pac M , Bolkov M , Giraldo M , Belhaj-Hmida N , Mekki N , Kuzmenko N , Karaca NE , Rezaei N , Diop OM , Baris S , Chan SM , Shahmahmoodi S , Haskologlu S , Ying W , Wang Y , Barbouche MR , McKinlay MA . Front Immunol 2017 8 685 Immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) have been isolated from primary immunodeficiency (PID) patients exposed to oral poliovirus vaccine (OPV). Patients may excrete poliovirus strains for months or years; the excreted viruses are frequently highly divergent from the parental OPV and have been shown to be as neurovirulent as wild virus. Thus, these patients represent a potential reservoir for transmission of neurovirulent polioviruses in the post-eradication era. In support of WHO recommendations to better estimate the prevalence of poliovirus excreters among PIDs and characterize genetic evolution of these strains, 635 patients including 570 with primary antibody deficiencies and 65 combined immunodeficiencies were studied from 13 OPV-using countries. Two stool samples were collected over 4 days, tested for enterovirus, and the poliovirus positive samples were sequenced. Thirteen patients (2%) excreted polioviruses, most for less than 2 months following identification of infection. Five (0.8%) were classified as iVDPVs (only in combined immunodeficiencies and mostly poliovirus serotype 2). Non-polio enteroviruses were detected in 30 patients (4.7%). Patients with combined immunodeficiencies had increased risk of delayed poliovirus clearance compared to primary antibody deficiencies. Usually, iVDPV was detected in subjects with combined immunodeficiencies in a short period of time after OPV exposure, most for less than 6 months. Surveillance for poliovirus excretion among PID patients should be reinforced until polio eradication is certified and the use of OPV is stopped. Survival rates among PID patients are improving in lower and middle income countries, and iVDPV excreters are identified more frequently. Antivirals or enhanced immunotherapies presently in development represent the only potential means to manage the treatment of prolonged excreters and the risk they present to the polio endgame. |
Multifacility Outbreak of Middle East Respiratory Syndrome in Taif, Saudi Arabia.
Assiri A , Abedi GR , Saeed AA , Abdalla MA , Al-Masry M , Choudhry AJ , Lu X , Erdman DD , Tatti K , Binder AM , Rudd J , Tokars J , Miao C , Alarbash H , Nooh R , Pallansch M , Gerber SI , Watson JT . Emerg Infect Dis 2016 22 (1) 32-40 Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is a novel respiratory pathogen first reported in 2012. During September 2014-January 2015, an outbreak of 38 cases of MERS was reported from 4 healthcare facilities in Taif, Saudi Arabia; 21 of the 38 case-patients died. Clinical and public health records showed that 13 patients were healthcare personnel (HCP). Fifteen patients, including 4 HCP, were associated with 1 dialysis unit. Three additional HCP in this dialysis unit had serologic evidence of MERS-CoV infection. Viral RNA was amplified from acute-phase serum specimens of 15 patients, and full spike gene-coding sequencing was obtained from 10 patients who formed a discrete cluster; sequences from specimens of 9 patients were closely related. Similar gene sequences among patients unlinked by time or location suggest unrecognized viral transmission. Circulation persisted in multiple healthcare settings over an extended period, underscoring the importance of strengthening MERS-CoV surveillance and infection-control practices. |
Dominant drug targets suppress the emergence of antiviral resistance.
Tanner EJ , Liu HM , Oberste MS , Pallansch M , Collett MS , Kirkegaard K . Elife 2014 3 The emergence of drug resistance can defeat the successful treatment of pathogens that display high mutation rates, as exemplified by RNA viruses. Here we detail a new paradigm in which a single compound directed against a 'dominant drug target' suppresses the emergence of naturally occurring drug-resistant variants in mice and cultured cells. All new drug-resistant viruses arise during intracellular replication and initially express their phenotypes in the presence of drug-susceptible genomes. For the targets of most anti-viral compounds, the presence of these drug-susceptible viral genomes does not prevent the selection of drug resistance. Here we show that, for an inhibitor of the function of oligomeric capsid proteins of poliovirus, the expression of drug-susceptible genomes causes chimeric oligomers to form, thus rendering the drug-susceptible genomes dominant. The use of dominant drug targets should suppress drug resistance whenever multiple genomes arise in the same cell and express products in a common milieu. |
Development of an efficient entire-capsid-coding-region amplification method for direct detection of poliovirus from stool extracts.
Arita M , Kilpatrick DR , Nakamura T , Burns CC , Bukbuk D , Oderinde SB , Oberste MS , Kew OM , Pallansch MA , Shimizu H . J Clin Microbiol 2014 53 (1) 73-8 Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative (GPEI) since 1988 by isolating and identifying poliovirus (PV) from stool specimens by using cell culture, as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid-coding region of human enteroviruses (EV) including PV. cDNAs of the entire capsid-coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs by an improved PV-specific real-time RT-PCR system and nucleotide sequence analysis of the VP1-coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genome from 100% of the extracts (84/84 samples) by this method in combination with a PV-specific extraction method. PV could be detected from 2/4 samples of stool extracts that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with a high frequency (27%, 23/86 samples). This method would be useful for direct detection of PV from the stool extracts without using cell culture. |
Detection of vaccine-derived polioviruses in Mexico using environmental surveillance.
Esteves-Jaramillo A , Estivariz CF , Penaranda S , Richardson VL , Reyna J , Coronel DL , Carrion V , Landaverde JM , Wassilak SG , Perez-Sanchez EE , Lopez-Martinez I , Burns CC , Pallansch MA . J Infect Dis 2014 210 Suppl 1 S315-23 BACKGROUND: Early detection and control of vaccine-derived poliovirus (VDPV) emergences are essential to secure the gains of polio eradication. METHODS: Serial sewage samples were collected in 4 towns of Mexico before, throughout, and after the May 2010 oral poliovirus vaccine (OPV) mass immunization campaign. Isolation and molecular analysis of polioviruses from sewage specimens monitored the duration of vaccine-related strains in the environment and emergence of vaccine-derived polioviruses in a population partially immunized with inactivated poliovirus vaccine (IPV). RESULTS: Sabin strains were identified up to 5-8 weeks after the campaign in all towns; in Aguascalientes, 1 Sabin 3 was isolated 16 weeks after the campaign, following 7 weeks with no Sabin strains detected. In Tuxtla Gutierrez, type 2 VDPV was isolated from 4 samples collected before and during the campaign, and type 1 VDPV from 1 sample collected 19 weeks afterward. During 2009-2010, coverage in 4 OPV campaigns conducted averaged only 57% and surveillance for acute flaccid paralysis (AFP) was suboptimal (AFP rate <1 per 100 000 population <15 years of age) in Tuxtla Gutierrez. CONCLUSIONS: VDPVs may emerge and spread in settings with inadequate coverage with IPV/OPV vaccination. Environmental surveillance can facilitate early detection in these settings. |
Phylogeny of imported and reestablished wild polioviruses in theDemocratic Republic of the Congo from 2006 to 2011.
Gumede N , Jorba J , Deshpande J , Pallansch M , Yogolelo R , Muyembe-Tamfum JJ , Kew O , Venter M , Burns CC . J Infect Dis 2014 210 Suppl 1 S361-7 BACKGROUND: The last case of polio associated with wild poliovirus (WPV) indigenous to the Democratic Republic of the Congo (DRC) was reported in 2001, marking a major milestone toward polio eradication in Africa. However, during 2006-2011, outbreaks associated with WPV type 1 (WPV1) were widespread in the DRC, with >250 reported cases. METHODS: WPV1 isolates obtained from patients with acute flaccid paralysis (AFP) were compared by nucleotide sequencing of the VP1 capsid region (906 nucleotides). VP1 sequence relationships among isolates from the DRC and other countries were visualized in phylogenetic trees, and isolates representing distinct lineage groups were mapped. RESULTS: Phylogenetic analysis indicated that WPV1 was imported twice in 2004-2005 and once in approximately 2006 from Uttar Pradesh, India (a major reservoir of endemicity for WPV1 and WPV3 until 2010-2011), into Angola. WPV1 from the first importation spread to the DRC in 2006, sparking a series of outbreaks that continued into 2011. WPV1 from the second importation was widely disseminated in the DRC and spread to the Congo in 2010-2011. VP1 sequence relationships revealed frequent transmission of WPV1 across the borders of Angola, the DRC, and the Congo. Long branches on the phylogenetic tree signaled prolonged gaps in AFP surveillance and a likely underreporting of polio cases. CONCLUSIONS: The reestablishment of widespread and protracted WPV1 transmission in the DRC and Angola following long-range importations highlights the continuing risks of WPV spread until global eradication is achieved, and it further underscores the need for all countries to maintain high levels of poliovirus vaccine coverage and sensitive surveillance to protect their polio-free status. |
Switch from oral to inactivated poliovirus vaccine in Yogyakarta Province, Indonesia: summary of coverage, immunity, and environmental surveillance.
Wahjuhono G , Revolusiana , Widhiastuti D , Sundoro J , Mardani T , Ratih WU , Sutomo R , Safitri I , Sampurno OD , Rana B , Roivainen M , Kahn AL , Mach O , Pallansch MA , Sutter RW . J Infect Dis 2014 210 Suppl 1 S347-52 BACKGROUND: Inactivated poliovirus vaccine (IPV) is rarely used in tropical developing countries. To generate additional scientific information, especially on the possible emergence of vaccine-derived polioviruses (VDPVs) in an IPV-only environment, we initiated an IPV introduction project in Yogyakarta, an Indonesian province. In this report, we present the coverage, immunity, and VDPV surveillance results. METHODS: In Yogyakarta, we established environmental surveillance starting in 2004; and conducted routine immunization coverage and seroprevalence surveys before and after a September 2007 switch from oral poliovirus vaccine (OPV) to IPV, using standard coverage and serosurvey methods. Rates and types of polioviruses found in sewage samples were analyzed, and all poliovirus isolates after the switch were sequenced. RESULTS: Vaccination coverage (>95%) and immunity (approximately 100%) did not change substantially before and after the IPV switch. No VDPVs were detected. Before the switch, 58% of environmental samples contained Sabin poliovirus; starting 6 weeks after the switch, Sabin polioviruses were rarely isolated, and if they were, genetic sequencing suggested recent introductions. CONCLUSIONS: This project demonstrated that under almost ideal conditions (good hygiene, maintenance of universally high IPV coverage, and corresponding high immunity against polioviruses), no emergence and circulation of VDPV could be detected in a tropical developing country setting. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Sep 30, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure