Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-14 (of 14 Records) |
Query Trace: Othumpangat S[original query] |
---|
Expression of non-structural-1A binding protein in lung epithelial cells is modulated by miRNA-548an on exposure to influenza A virus.
Othumpangat S , Noti JD , Blachere FM , Beezhold DH . Virology 2013 447 84-94 ![]() Understanding the host response to influenza A virus infection is essential for developing intervention approaches. We show that infection of human alveolar epithelial cells and human bronchial epithelial cells with influenza A for 3h resulted in down-regulation of host hsa-miRNA-548an (miRNA-548an) which triggered the overexpression of influenza non-structural-1A binding protein (IVNS1ABP, herein referred to as NS1ABP). Reduced NS1ABP mRNA and NS1ABP protein expression after transfection of miRNA-548an mimic or increased NS1ABP mRNA and NS1ABP protein expression after transfection of miRNA-548an inhibitor provided evidence that miRNA-548an is involved in the regulation of NS1ABP. Transfection of cells with inhibitor led to reduced apoptosis of infected cells while transfection of mimic led to increased apoptosis and reduced influenza copy number suggesting that NS1ABP has a role in viral maintenance. Thus, miRNA-548an may be an important target in controlling the early stage infection of influenza A. |
beta-defensin-1 regulates influenza virus infection in human bronchial epithelial cells through the STAT3 signaling pathway
Sreekumar Othumpangat , Noti JD . Pathogens 2023 12 (1) Understanding the host response to influenza A virus (IAV) infection is vital for developing intervention strategies. The primary barriers for invading respiratory pathogens are the respiratory tract epithelial cells and antimicrobial proteins generated by these cells. The antimicrobial peptide, beta-defensin-1, has antiviral activity against both enveloped and non-enveloped viruses. Significant downregulation of beta-defensin1 gene (DEFB1) expression was observed when human bronchial epithelial cells (HBEpCs) were exposed to IAV. HBEpCs overexpressing DEFB1 caused a significant reduction in IAV, that was confirmed by IAV matrix gene analysis, plaque assay, and confocal microscopy. DEFB1 expression after transfection with two micro RNAs (miRNAs), hsa-miR-186-5p and hsa-miR-340-5p, provided evidence that DEFB1 expression could be modulated by these miRNAs and hsa-miR-186-5p had a higher binding efficiency with DEFB1. Overexpression of DEFB1 in IAV-infected HBEpCs led to increased NF-B expression. In a PCR array analysis of 84 transcription factors, either overexpressing DEFB1 or siRNA silencing of DEFB1 expression significantly modulated the expression of signal transducer and activator of transcription 3 (STAT3). In addition, Ingenuity Pathway Analysis (IPA) integrated with PCR array data showed that the JAK1/STAT3 pathway was significantly altered in cells overexpressing DEFB1, suggesting this to be one of the pathways by which defensin regulates IAV replication in HBEpCs. In conclusion, the reduction in IAV copy number in DEFB1 overexpressing cells suggests that beta-defensin-1 plays a key role in regulating IAV survival through STAT3 and is a potential target for antiviral drug development. |
β-Defensin-1 Regulates Influenza Virus Infection in Human Bronchial Epithelial Cells through the STAT3 Signaling Pathway.
Othumpangat S , Noti JD . Pathogens 2023 12 (1) ![]() Understanding the host response to influenza A virus (IAV) infection is vital for developing intervention strategies. The primary barriers for invading respiratory pathogens are the respiratory tract epithelial cells and antimicrobial proteins generated by these cells. The antimicrobial peptide, β-defensin-1, has antiviral activity against both enveloped and non-enveloped viruses. Significant downregulation of β-defensin1 gene (DEFB1) expression was observed when human bronchial epithelial cells (HBEpCs) were exposed to IAV. HBEpCs overexpressing DEFB1 caused a significant reduction in IAV, that was confirmed by IAV matrix gene analysis, plaque assay, and confocal microscopy. DEFB1 expression after transfection with two micro RNAs (miRNAs), hsa-miR-186-5p and hsa-miR-340-5p, provided evidence that DEFB1 expression could be modulated by these miRNAs and hsa-miR-186-5p had a higher binding efficiency with DEFB1. Overexpression of DEFB1 in IAV-infected HBEpCs led to increased NF-κB expression. In a PCR array analysis of 84 transcription factors, either overexpressing DEFB1 or siRNA silencing of DEFB1 expression significantly modulated the expression of signal transducer and activator of transcription 3 (STAT3). In addition, Ingenuity Pathway Analysis (IPA) integrated with PCR array data showed that the JAK1/STAT3 pathway was significantly altered in cells overexpressing DEFB1, suggesting this to be one of the pathways by which defensin regulates IAV replication in HBEpCs. In conclusion, the reduction in IAV copy number in DEFB1 overexpressing cells suggests that β-defensin-1 plays a key role in regulating IAV survival through STAT3 and is a potential target for antiviral drug development. |
Influenza Virus-Induced Novel miRNAs Regulate the STAT Pathway.
Othumpangat S , Beezhold DH , Umbright CM , Noti JD . Viruses 2021 13 (6) ![]() ![]() MicroRNAs (miRNAs) are essential regulators of gene expression in humans and can control pathogenesis and host-virus interactions. Notably, the role of specific host miRNAs during influenza virus infections are still ill-defined. The central goal of this study was to identify novel miRNAs and their target genes in response to influenza virus infections in airway epithelium. Human airway epithelial cells exposed to influenza A virus (IAV) induced several novel miRNAs that were identified using next-generation sequencing (NGS) and their target genes by biochemical methods. NGS analysis predicted forty-two RNA sequences as possible miRNAs based on computational algorithms. The expression patterns of these putative miRNAs were further confirmed using RT-PCR in human bronchial epithelial cells exposed to H1N1, H9N1(1P10), and H9N1 (1WF10) strains of influenza virus. A time-course study showed significant downregulation of put-miR-34 in H1N1 and put-miR-35 in H9N1(1P10)-infected cells, which is consistent with the NGS data. Additionally, put-miR-34 and put-miR-35 showed a high fold enrichment in an argonaute-immunoprecipitation assay compared to the controls, indicating their ability to form a complex with argonaute protein and RNA-induced silencing complex (RISC), which is a typical mode of action found with miRNAs. Our earlier studies have shown that the replication and survival of influenza virus is modulated by certain transcription factors such as NF-ĸB. To identify the target(s) of these putative miRNAs, we screened 84 transcription factors that have a role in viral pathogenesis. Cells transfected with mimic of the put-miR-34 showed a significant decrease in the expression of Signal Transducers and Activators of Transcription 3 (STAT3), whereas the inhibitor of put-miR-34 showed a significant increase in STAT3 expression and its phosphorylation. In addition, put-miR-34 had 76% homology to the untranslated region of STAT3. NGS and PCR array data submitted to the Gene Ontology project also predicted the role of transcription factors modulated by put-miR-34. Our data suggest that put-miR-34 may be a good target for antiviral therapy. |
Differential Expression of Serum Exosome microRNAs and Cytokines in Influenza A and B Patients Collected in the 2016 and 2017 Influenza Seasons.
Othumpangat S , Lindsley WG , Beezhold DH , Kashon ML , Burrell CN , Mubareka S , Noti JD . Pathogens 2021 10 (2) ![]() ![]() MicroRNAs (miRNAs) have remarkable stability and are key regulators of mRNA transcripts for several essential proteins required for the survival of cells and replication of the virus. Exosomes are thought to play an essential role in intercellular communications by transporting proteins and miRNAs, making them ideal in the search for biomarkers. Evidence suggests that miRNAs are involved in the regulation of influenza virus replication in many cell types. During the 2016 and 2017 influenza season, we collected blood samples from 54 patients infected with influenza and from 30 healthy volunteers to identify the potential role of circulating serum miRNAs and cytokines in influenza infection. Data comparing the exosomal miRNAs in patients with influenza B to healthy volunteers showed 76 miRNAs that were differentially expressed (p < 0.05). In contrast, 26 miRNAs were differentially expressed between patients with influenza A (p < 0.05) and the controls. Of these miRNAs, 11 were commonly expressed in both the influenza A and B patients. Interferon (IFN)-inducing protein 10 (IP-10), which is involved in IFN synthesis during influenza infection, showed the highest level of expression in both influenza A and B patients. Influenza A patients showed increased expression of IFNα, GM-CSF, interleukin (IL)-13, IL-17A, IL-1β, IL-6 and TNFα, while influenza B induced increased levels of EGF, G-CSF, IL-1α, MIP-1α, and TNF-β. In addition, hsa-miR-326, hsa-miR-15b-5p, hsa-miR-885, hsa-miR-122-5p, hsa-miR-133a-3p, and hsa-miR-150-5p showed high correlations to IL-6, IL-15, IL-17A, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) with both strains of influenza. Next-generation sequencing studies of H1N1-infected human lung small airway epithelial cells also showed similar pattern of expression of miR-375-5p, miR-143-3p, 199a-3p, and miR-199a-5p compared to influenza A patients. In summary, this study provides insights into the miRNA profiling in both influenza A and B virus in circulation and a novel approach to identify the early infections through a combination of cytokines and miRNA expression. |
Topical exposure to triclosan inhibits Th1 immune responses and reduces T cells responding to influenza infection in mice
Shane HL , Othumpangat S , Marshall NB , Blachere F , Lukomska E , Weatherly LM , Baur R , Noti JD , Anderson SE . PLoS One 2020 15 (12) e0244436 Healthcare workers concurrently may be at a higher risk of developing respiratory infections and allergic disease, such as asthma, than the general public. Increased incidence of allergic diseases is thought to be caused, in part, due to occupational exposure to chemicals that induce or augment Th2 immune responses. However, whether exposure to these chemical antimicrobials can influence immune responses to respiratory pathogens is unknown. Here, we use a BALB/c murine model to test if the Th2-promoting antimicrobial chemical triclosan influences immune responses to influenza A virus. Mice were dermally exposed to 2% triclosan for 7 days prior to infection with a sub-lethal dose of mouse adapted PR8 A(H1N1) virus (50 pfu); triclosan exposure continued until 10 days post infection (dpi). Infected mice exposed to triclosan did not show an increase in morbidity or mortality, and viral titers were unchanged. Assessment of T cell responses at 10 dpi showed a decrease in the number of total and activated (CD44hi) CD4+ and CD8+ T cells at the site of infection (BAL and lung) in triclosan exposed mice compared to controls. Influenza-specific CD4+ and CD8+ T cells were assessed using MHCI and MHCII tetramers, with reduced populations, although not reaching statistical significance at these sites following triclosan exposure. Reductions in the Th1 transcription factor T-bet were seen in both activated and tetramer+ CD4+ and CD8+ T cells in the lungs of triclosan exposed infected mice, indicating reduced Th1 polarization and providing a potential mechanism for numerical reduction in T cells. Overall, these results indicate that the immune environment induced by triclosan exposure has the potential to influence the developing immune response to a respiratory viral infection and may have implications for healthcare workers who may be at an increased risk for developing infectious diseases. |
Influenza virus infection modulates the death receptor pathway during early stages of infection in human bronchial epithelial cells.
Othumpangat S , Beezhold DH , Noti JD . Physiol Genomics 2018 50 (9) 770-779 ![]() Host-viral interaction occurring throughout the infection process between the influenza A virus (IAV) and bronchial cells determines the success of infection. Our previous studies showed that the apoptotic pathway triggered by the host cells was repressed by IAV facilitating prolonged survival of infected cells. A detailed understanding on the role of IAV in altering the cell death pathway during early stage infection of human bronchial epithelial cells (HBEpCs) is still unclear. We investigated the gene expression profiles of IAV-infected versus mock-infected cells at the early stage of infection using a PCR array for death receptor (DR) pathway. At early stages infection (2h) with IAV significantly upregulated DR pathway genes in HBEpCs, whereas 6h exposure to IAV resulted in downregulation of same genes. IAV replication in HBEpCs decreased the levels of DR pathway genes including TNF-receptor super family1, Fas-associated Death Domain, caspase-8, and caspase-3, by 6h, resulting in increased survival of cells. The apoptotic cell population decreased in 6h compared to the 2h exposure to IAV. The PCR array data was imported into Ingenuity pathway analysis software, resulting in confirmation of the model showing significant modulation of the DR pathway. Our data indicate that a significant transcriptional regulation of apoptotic, necrotic and DR genes occur at early and late hours of infection that are vital in modulating the survival of host cells and replication of IAV. These data intuitively may have provided a likely roadmap for translational approaches targeting the DR pathway to enhance apoptosis and inhibit replication of the virus. |
Upregulation of miRNA-4776 in Influenza Virus Infected Bronchial Epithelial Cells Is Associated with Downregulation of NFKBIB and Increased Viral Survival.
Othumpangat S , Bryan NB , Beezhold DH , Noti JD . Viruses 2017 9 (5) ![]() Influenza A virus (IAV) infection remains a significant cause of morbidity and mortality worldwide. One key transcription factor that is activated upon IAV infection is nuclear factor Kappa B (NF-kappaB). NF-kappaB regulation involves the inhibitor proteins NF-kappaB inhibitor beta (NFKBIB), (also known as IkappaB beta), which form complexes with NF-kappaB to sequester it in the cytoplasm. In this study, microarray data showed differential expression of several microRNAs (miRNAs) on exposure to IAV. Target scan analysis revealed that miR-4776, miR-4514 and miR-4742 potentially target NFKBIB messenger RNA (mRNA). Time-course analysis of primary bronchial epithelial cells (HBEpCs) showed that miR-4776 expression is increased within 1 h of infection, followed by its downregulation 4 h post-exposure to IAV. NFKBIB upregulation of miR-4776 correlated with a decrease in NFKBIB expression within 1 h of infection and a subsequent increase in NFKBIB expression 4 h post-infection. In addition, miRNA ago-immunoprecipitation studies and the three prime untranslated region (3' UTR) luciferase assay confirmed that miR-4776 targets NFKBIB mRNA. Furthermore, uninfected HBEpCs transfected with miR-4776 mimic showed decreased expression of NFKBIB mRNA. Overexpression of NFKBIB protein in IAV infected cells led to lower levels of IAV. Taken together, our data suggest that miRNA-4776 modulates IAV production in infected cells through NFKBIB expression, possibly through the modulation of NF-kappaB. |
Inhibition of influenza A virus matrix and nonstructural gene expression using RNA interference.
McMillen CM , Beezhold DH , Blachere FM , Othumpangat S , Kashon ML , Noti JD . Virology 2016 497 171-184 ![]() Influenza antiviral drugs that use protein inhibitors can lose their efficacy as resistant strains emerge. As an alternative strategy, we investigated the use of small interfering RNA molecules (siRNAs) by characterizing three siRNAs (M747, M776 and M832) targeting the influenza matrix 2 gene and three (NS570, NS595 and NS615) targeting the nonstructural protein 1 and 2 genes. We also re-examined two previously reported siRNAs, M331 and M950, which target the matrix 1 and 2 genes. Treatment with M331-, M776-, M832-, and M950-siRNAs attenuated influenza titer. M776-siRNA treated cells had 29.8% less infectious virus than cells treated with the previously characterized siRNA, M950. NS570-, NS595- and NS615-siRNAs reduced nonstructural protein 1 and 2 expression and enhanced type I interferon expression by 50%. Combination siRNA treatment attenuated 20.9% more infectious virus than single siRNA treatment. Our results suggest a potential use for these siRNAs as an effective anti-influenza virus therapy. |
Viable influenza A virus in airborne particles expelled during coughs vs. exhalations
Lindsley WG , Blachere FM , Beezhold DH , Thewlis RE , Noorbakhsh B , Othumpangat S , Goldsmith WT , McMillen CM , Andrew ME , Burrell CN , Noti JD . Influenza Other Respir Viruses 2016 10 (5) 404-13 BACKGROUND: In order to prepare for a possible influenza pandemic, a better understanding of the potential for airborne transmission of influenza from person to person is needed. OBJECTIVES: The objective of this study was to directly compare the generation of aerosol particles containing viable influenza virus during coughs and exhalations. METHODS: Sixty-one adult volunteer outpatients with influenza-like symptoms were asked to cough and exhale three times into a spirometer. Aerosol particles produced during coughing and exhalation were collected into liquid media using aerosol samplers. The samples were tested for the presence of viable influenza virus using a viral replication assay (VRA). RESULTS: Fifty-three test subjects tested positive for influenza A virus. Of these, 28 (53%) produced aerosol particles containing viable influenza A virus during coughing, and 22 (42%) produced aerosols with viable virus during exhalation. Thirteen subjects had both cough aerosol and exhalation aerosol samples that contained viable virus, 15 had positive cough aerosol samples but negative exhalation samples, and 9 had positive exhalation samples but negative cough samples. CONCLUSIONS: Viable influenza A virus was detected more often in cough aerosol particles than in exhalation aerosol particles, but the difference was not large. Since individuals breathe much more often than they cough, these results suggest that breathing may generate more airborne infectious material than coughing over time. However, both respiratory activities could be important in airborne influenza transmission. Our results are also consistent with the theory that much of the aerosol containing viable influenza originates deep in the lungs. |
ICAM-1 regulates the survival of influenza virus in lung epithelial cells during the early stages of infection
Othumpangat S , Noti JD , McMillen CM , Beezhold DH . Virology 2015 487 85-94 Intercellular cell adhesion molecule-1 (ICAM-1) is an inducible cell surface glycoprotein that is expressed on many cell types. Influenza virus infection enhanced ICAM-1 expression and messenger RNA levels. Human bronchial epithelial cells (HBEpC) and nasal epithelial cells, on exposure to different strains of influenza virus (H1N1, H3N2, and H9N1) showed significant increase in ICAM-1 gene expression (p<0.001) along with the ICAM-1 protein levels (surface and secreted). Depleting ICAM-1 in HBEpC with ICAM-1 siRNA and subsequently infecting with H1N1 showed increased viral copy numbers. Influenza virus infection in HBEpC resulted in up-regulation of NF-kB protein and the lack of ICAM-1 decreased NF-kB activity in NF-kB luciferase reporter assay. Addition of exogenous IL-1beta to HBEpC induced the ICAM-1 expression and decreased matrix gene copy number. Taken together, HBEpC induced ICAM-1 plays a key role in modulating the influenza virus survival possibly through the NF-kB pathway. |
Viable influenza a virus in airborne particles from human coughs
Lindsley WG , Noti JD , Blachere FM , Thewlis RE , Martin SB , Othumpangat S , Noorbakhsh B , Goldsmith WT , Vishnu A , Palmer JE , Clark KE , Beezhold DH . J Occup Environ Hyg 2015 12 (2) 107-13 Patients with influenza release aerosol particles containing the virus into their environment. However, the importance of airborne transmission in the spread of influenza is unclear, in part because of a lack of information about the infectivity of the airborne virus. The purpose of this study was to determine the amount of viable influenza A virus that was expelled by patients in aerosol particles while coughing. Sixty-four symptomatic adult volunteer outpatients were asked to cough 6 times into a cough aerosol collection system. Seventeen of these participants tested positive for influenza A virus by viral plaque assay (VPA) with confirmation by viral replication assay (VRA). Viable influenza A virus was detected in the cough aerosol particles from 7 of these 17 test subjects (41%). Viable influenza A virus was found in the smallest particle size fraction (0.3 mum to 8 mum), with a mean of 142 plaque-forming units (SD 215) expelled during the 6 coughs in particles of this size. These results suggest that a significant proportion of patients with influenza A release small airborne particles containing viable virus into the environment. Although the amounts of influenza A detected in cough aerosol particles during our experiments were relatively low, larger quantities could be expelled by influenza patients during a pandemic when illnesses would be more severe. Our findings support the idea that airborne infectious particles could play an important role in the spread of influenza. |
Lung epithelial cells resist influenza A infection by inducing the expression of cytochrome c oxidase VIC which is modulated by miRNA 4276
Othumpangat S , Noti JD , Beezhold DH . Virology 2014 468-470c 256-264 ![]() Influenza virus infection induces several changes in host miRNA profile, host cell death and tissue damage. Cytochrome c is a regulator of the intrinsic apoptotic pathway and is altered during viral infections. Within the first 3h of infection with influenza virus, significant down-regulation of hsa-miRNA-4276 (miRNA-4276) is followed by a 2-fold increase in cytochrome c oxidase VIC (COX6C) mRNA was found to occur in human alveolar and bronchial epithelial cells. Expression of caspase-9 also increased within the first 3h of infection, but subsequently decreased. Modulation of miR-4276 using mimic and inhibitor oligonucleotides showed significant down-regulation or up-regulation, respectively, of COX6C expression. Our data suggests that on initial exposure to influenza virus, host cells upregulate COX6C mRNA expression through silencing miR-4276 and repressed viral replication by inducing the apoptotic protein caspase-9. Taken together, these data suggest that miR-4276 may be an important regulator of the early stages of infection by influenza. |
Exposure to influenza virus aerosols in the hospital setting: is routine patient care an aerosol generating procedure?
Cummings KJ , Martin SB Jr , Lindsley WG , Othumpangat S , Blachere FM , Noti JD , Beezhold DH , Roidad N , Parker JE , Weissman DN . J Infect Dis 2014 210 (3) 504-5 We read with interest the article by Bischoff et al, in which they describe detection of influenza virus in aerosols around hospitalized patients with influenza virus infection who were receiving routine care [1]. As the authors note, current World Health Organization and Centers for Disease Control and Prevention guidelines for protection of healthcare professionals from influenza virus infection rely on the supposition that, under routine conditions, most transmission occurs via large droplets, rather than via small-particle aerosols [2, 3]. Under these guidelines, aerosol transmission is presumed to be limited to certain aerosol-generating procedures (AGPs), for which higher-level respiratory protection is recommended. The designation of AGPs has been made in large part by extrapolation from epidemiologic studies of outbreaks of other respiratory infections, such as tuberculosis and SARS coronavirus infection [4]. Whether such procedures are uniquely associated with generation of potentially infectious aerosols has not been established. | As part of a pilot study, we recently enrolled patients with and those without respiratory infections who were undergoing potential AGPs at a tertiary-care hospital. All patients provided written informed consent. We included patients with documented influenza virus infection during periods when they were undergoing mechanical ventilation and/or during periods when they were breathing on their own. We sampled air within 0.91 m (3 feet) and 1.83 m (6 feet) of the patient and outside the room for 3.25 hours, using National Institute for Occupational Safety and Health 2-stage aerosol samplers [5]. Aerosol sampling was also performed for 1 to several minutes near the patient's mouth, using closed-faced filter cassettes during extubation, suctioning, and use of an incentive spirometer. Influenza virus RNA copy number was determined by polymerase chain reaction (PCR), and the mean value of 2 replicates was used in analysis. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure