Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Olgun NS[original query] |
---|
Biological effects of inhaled hydraulic fracturing sand dust. IX. Summary and significance
Anderson SE , Barger M , Batchelor TP , Bowers LN , Coyle J , Cumpston A , Cumpston JL , Cumpston JB , Dey RD , Dozier AK , Fedan JS , Friend S , Hubbs AF , Jackson M , Jefferson A , Joseph P , Kan H , Kashon ML , Knepp AK , Kodali V , Krajnak K , Leonard SS , Lin G , Long C , Lukomska E , Marrocco A , Marshall N , Mc Kinney W , Morris AM , Olgun NS , Park JH , Reynolds JS , Roberts JR , Russ KA , Sager TM , Shane H , Snawder JE , Sriram K , Thompson JA , Umbright CM , Waugh S , Zheng W . Toxicol Appl Pharmacol 2020 409 115330 An investigation into the potential toxicological effects of fracking sand dust (FSD), collected from unconventional gas drilling sites, has been undertaken, along with characterization of their chemical and biophysical properties. Using intratracheal instillation of nine FSDs in rats and a whole body 4-d inhalation model for one of the FSDs, i.e., FSD 8, and related in vivo and in vitro experiments, the effects of nine FSDs on the respiratory, cardiovascular and immune systems, brain and blood were reported in the preceding eight tandem papers. Here, a summary is given of the key observations made in the organ systems reported in the individual studies. The major finding that inhaled FSD 8 elicits responses in extra-pulmonary organ systems is unexpected, as is the observation that the pulmonary effects of inhaled FSD 8 are attenuated relative to forms of crystalline silica more frequently used in animal studies, i.e., MIN-U-SIL®. An attempt is made to understand the basis for the extra-pulmonary toxicity and comparatively attenuated pulmonary toxicity of FSD 8. |
Biological effects of inhaled hydraulic fracturing sand dust. III. Cytotoxicity and pro-inflammatory responses in cultured murine macrophage cells
Olgun NS , Morris AM , Stefaniak AB , Bowers LN , Knepp AK , Duling MG , Mercer RR , Kashon ML , Fedan JS , Leonard SS . Toxicol Appl Pharmacol 2020 408 115281 Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical ((.)OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur. |
Mild steel and stainless steel welding fumes elicit pro-inflammatory and pro-oxidant effects in first trimester trophoblast cells
Olgun NS , Morris AM , Bowers LN , Stefaniak AB , Friend SA , Reznik SE , Leonard SS . Am J Reprod Immunol 2020 83 (4) e13221 PROBLEM: As more women join the skilled-trade workforce, the effects of workplace exposures on pregnancy need to be explored. This study aims to identify the effects of mild steel and stainless steel welding fume exposures on cultured placental trophoblast cells. METHOD OF STUDY: Welding fumes (mild steel and stainless steel) were generously donated by Lincoln Electric. Electron microscopy was used to characterize welding fume particle size and the ability of particles to enter extravillous trophoblast cells (HTR-8/SVneo). Cellular viability, free radical production, cytokine production, and ability of cells to maintain invasive properties were analyzed, respectively, by WST-1, electron paramagnetic resonance, DCFH-DA, V-plex MULTI-SPOT assay system, and a matrix gel invasion assay. RESULTS: For all three welding fume types, average particle size was < 210 nm. HTR-8/SVneo cells internalized welding particles, and nuclear condensation was observed. Cellular viability was significantly decreased at the high dose of 100 microg/ml for all three welding fumes, and stainless steel generated the greatest production of the hydroxyl radical, and intracellular reactive oxygen species. Production of the cytokines IL-1beta and TNFalpha were not observed in response to welding fume exposure, but IL-6 and IL-8 were. Finally, the invasive capability of cells was decreased upon exposure to both mild steel and stainless steel welding fumes. CONCLUSION: Welding fumes are cytotoxic to extravillous trophoblasts, as is evident by the production of free radicals, pro-inflammatory cytokines, and the observed decrease in invasive capabilities. |
Viral infections in pregnancy: A focus on Ebola virus
Olgun NS . Curr Pharm Des 2018 24 (9) 993-998 During gestation, the immune response of the placenta to viruses and other pathogens plays an important role in determining a pregnant woman's vulnerability toward infectious diseases. Located at the maternal- fetal interface, trophoblast cells serve to minimize the spread of viruses between the host and developing fetus through an intricate system of innate antiviral immune signaling. Adverse pregnancy outcomes, ranging from learning disabilities to preterm birth and fetal death, are all documented results of a viral breach in the placental barrier. Viral infections during pregnancy can also be spread through blood and vaginal secretions, and during the post-natal period, via breast milk. Thus, even in the absence of vertical transmission of viral infection to the fetus, maternal health can still be compromised and threaten the pregnancy. The most common viral DNA isolates found in gestation are adenovirus, cytomegalovirus, and enterovirus. However, with the recent pandemic of Ebola virus, and the first documented case of a neonate to survive due to experimental therapies in 2017, it is becoming increasingly apparent that the changing roles and impacts of viral infection during pregnancy needs to be better understood, while strategies to minimize adverse pregnancy outcomes need to be identified. This review focuses on the adverse impacts of viral infection during gestation, with an emphasis on Ebola virus. |
Comparison of the toxicity of sintered and unsintered indium-tin oxide particles in murine macrophage and epidermal cells
Olgun NS , Morris AM , Barber TL , Stefaniak AB , Kashon ML , Schwegler-Berry D , Cummings KJ , Leonard SS . Toxicol Appl Pharmacol 2017 331 85-93 Indium-tin oxide (ITO) is used to produce flat panel displays and several other technology products. Composed of 90% indium oxide (In2O3) and 10% tin oxide (SnO2) by weight, ITO is synthesized under conditions of high heat via a process known as sintering. Indium lung disease, a recently recognized occupational illness, is characterized by pulmonary alveolar proteinosis, fibrosis, and emphysema. Murine macrophage (RAW 264.7) and epidermal (JB6) cells stably transfected with AP-1 to study tumor promoting potential, were used to differentiate between the toxicological profiles of sintered ITO (SITO) and unsintered mixture (UITO). We hypothesized that sintering would play a key role in free radical generation and cytotoxicity. Exposure of cells to both UITO and SITO caused a time and dose dependent decrease of the viability of cells. Intracellular ROS generation was inversely related to the dose of both UITO and SITO, a direct reflection of the decreased number of viable RAW 264.7 and JB6/AP-1 cells observed at higher concentrations. Electron spin resonance showed significantly increased hydroxyl radical (OH) generation in cells exposed to UITO compared to SITO. This is different from LDH release, which showed that SITO caused significantly increased damage to the cell membrane compared to UITO. Lastly, the JB6/AP-1 cell line did not show activation of the AP-1 pathway. Our results highlight both the differences in the mechanisms of cytotoxicity and the consistent adverse effects associated with UITO and SITO exposure. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure