Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-19 (of 19 Records) |
Query Trace: Ojwang J[original query] |
---|
Rift valley fever outbreak in Sembabule District, Uganda, December 2020
Aceng FL , Kayiwa J , Elyanu P , Ojwang J , Nyakarahuka L , Balinandi S , Byakika-Tusiime J , Wejuli A , Harris JR , Opolot J . One Health Outlook 2023 5 (1) 16 BACKGROUND: Rift Valley Fever (RVF) is a viral zoonosis that can cause severe haemorrhagic fevers in humans and high mortality rates and abortions in livestock. On 10 December 2020, the Uganda Ministry of Health was notified of the death of a 25-year-old male who tested RVF-positive by reverse-transcription polymerase chain reaction (RT-PCR) at the Uganda Virus Research Institute. We investigated to determine the scope of the outbreak, identify exposure factors, and institute control measures. METHODS: A suspected case was acute-onset fever (or axillary temperature > 37.5 °C) and ≥ 2 of: headache, muscle or joint pain, unexpected bleeding, and any gastroenteritis symptom in a resident of Sembabule District from 1 November to 31 December 2020. A confirmed case was the detection of RVF virus nucleic acid by RT-PCR or serum IgM antibodies detected by enzyme-linked immunosorbent assay (ELISA). A suspected animal case was livestock (cattle, sheep, goats) with any history of abortion. A confirmed animal case was the detection of anti-RVF IgM antibodies by ELISA. We took blood samples from herdsmen who worked with the index case for RVF testing and conducted interviews to understand more about exposures and clinical characteristics. We reviewed medical records and conducted an active community search to identify additional suspects. Blood samples from animals on the index case's farm and two neighbouring farms were taken for RVF testing. RESULTS: The index case regularly drank raw cow milk. None of the seven herdsmen who worked with him nor his brother's wife had symptoms; however, a blood sample from one herdsman was positive for anti-RVF-specific IgM and IgG. Neither the index case nor the additional confirmed case-patient slaughtered or butchered any sick/dead animals nor handled abortus; however, some of the other herdsmen did report high-risk exposures to animal body fluids and drinking raw milk. Among 55 animal samples collected (2 males and 53 females), 29 (53%) were positive for anti-RVF-IgG. CONCLUSIONS: Two human RVF cases occurred in Sembabule District during December 2020, likely caused by close interaction between infected cattle and humans. A district-wide animal serosurvey, animal vaccination, and community education on infection prevention practices campaign could inform RVF exposures and reduce disease burden. |
Uganda's experience in establishing an electronic compendium for public health emergencies
Ario AR , Aliddeki DM , Kadobera D , Bulage L , Kayiwa J , Wetaka MM , Kyazze S , Ocom F , Makumbi I , Mbaka P , Behumbiize P , Ayebazibwe I , Balinandi SK , Lutwama JJ , Crawley A , Divi N , Lule JR , Ojwang JC , Harris JR , Boore AL , Nelson LJ , Borchert J , Jarvis D . PLOS Glob Public Health 2023 3 (2) e0001402 Uganda has implemented several interventions that have contributed to prevention, early detection, and effective response to Public Health Emergencies (PHEs). However, there are gaps in collecting and documenting data on the overall response to these PHEs. We set out to establish a comprehensive electronic database of PHEs that occurred in Uganda since 2000. We constituted a core development team, developed a data dictionary, and worked with Health Information Systems Program (HISP)-Uganda to develop and customize a compendium of PHEs using the electronic Integrated Disease Surveillance and Response (eIDSR) module on the District Health Information Software version 2 (DHIS2) platform. We reviewed literature for retrospective data on PHEs for the compendium. Working with the Uganda Public Health Emergency Operations Center (PHEOC), we prospectively updated the compendium with real-time data on reported PHEs. We developed a user's guide to support future data entry teams. An operational compendium was developed within the eIDSR module of the DHIS2 platform. The variables for PHEs data collection include those that identify the type, location, nature and time to response of each PHE. The compendium has been updated with retrospective PHE data and real-time prospective data collection is ongoing. Data within this compendium is being used to generate information that can guide future outbreak response and management. The compendium development highlights the importance of documenting outbreak detection and response data in a central location for future reference. This data provides an opportunity to evaluate and inform improvements in PHEs response. |
Building national health security through a rapid self-assessment and annual operational plan in Uganda, May to September 2021
Nabatanzi M , Bakiika H , Nabukenya I , Lamorde M , Bukirwa J , Achan MI , Babigumira PA , Nakiire L , Lubanga T , Mbabazi E , Taremwa RB , Mayinja H , Nakinsige A , Makanga DK , Muruta A , Okware S , Komakech I , Makumbi I , Wetaka MM , Kayiwa J , Ocom F , Ario AR , Nabatanzi S , Ojwang J , Boore A , Yemanaberhan R , Lee CT , Obuku E , Stowell D . Health Secur 2023 21 (2) 130-140 Uganda established a National Action Plan for Health Security in 2019, following a Joint External Evaluation (JEE) of International Health Regulations (2005) capacities in 2017. The action plan enhanced national health security awareness, but implementation efforts were affected by limited funding, excess of activities, and challenges related to monitoring and evaluation. To improve implementation, Uganda conducted a multisectoral health security self-assessment in 2021 using the second edition of the JEE tool and developed a 1-year operational plan. From 2017 to 2021, Uganda's composite ReadyScore improved by 20%, with improvement in 13 of the 19 technical areas. Indicator scores showing limited capacity declined from 30% to 20%, and indicators with no capacity declined from 10% to 2%. More indicators had developed (47% vs 40%), demonstrated (29% vs 20%), and sustained (2% vs 0%) capacities in 2021 compared with 2017. Using the self-assessment JEE scores, 72 specific activities from the International Health Regulations (2005) benchmarks tool were selected for inclusion in a 1-year operational plan (2021-2022). In contrast to the 264 broad activities in the 5-year national action plan, the operational plan prioritized a small number of activities to enable sectors to focus limited resources on implementation. While certain capacities improved before and during implementation of the action plan, countries may benefit from using short-term operational planning to develop realistic and actionable health security plans to improve health security capacities. |
Using population mobility patterns to adapt COVID-19 response strategies in 3 East Africa countries
Merrill RD , Kilamile F , White M , Eurien D , Mehta K , Ojwang J , Laurent-Comlan M , Babigumira PA , Nakiire L , Boos A , Gatei W , Harris JR , Magazani A , Ocom F , Ssekubugu R , Kigozi G , Senyana F , Iyese FB , Elyanu PJ , Ward S , Makumbi I , Muruta A , McIntyre E , Massa K , Ario AR , Mayinja H , Remidius K , Ndungi DN . Emerg Infect Dis 2022 28 (13) S105-s113 The COVID-19 pandemic spread between neighboring countries through land, water, and air travel. Since May 2020, ministries of health for the Democratic Republic of the Congo, Tanzania, and Uganda have sought to clarify population movement patterns to improve their disease surveillance and pandemic response efforts. Ministry of Health-led teams completed focus group discussions with participatory mapping using country-adapted Population Connectivity Across Borders toolkits. They analyzed the qualitative and spatial data to prioritize locations for enhanced COVID-19 surveillance, community outreach, and cross-border collaboration. Each country employed varying toolkit strategies, but all countries applied the results to adapt their national and binational communicable disease response strategies during the pandemic, although the Democratic Republic of the Congo used only the raw data rather than generating datasets and digitized products. This 3-country comparison highlights how governments create preparedness and response strategies adapted to their unique sociocultural and cross-border dynamics to strengthen global health security. |
Establishing a public health emergency operations center in an outbreak-prone country: Lessons learned in Uganda, January 2014 to December 2021
Kayiwa J , Homsy J , Nelson LJ , Ocom F , Kasule JN , Wetaka MM , Kyazze S , Mwanje W , Kisakye A , Nabunya D , Nyirabakunzi M , Aliddeki DM , Ojwang J , Boore A , Kasozi S , Borchert J , Shoemaker T , Nabatanzi S , Dahlke M , Brown V , Downing R , Makumbi I . Health Secur 2022 20 (5) 394-407 Uganda is highly vulnerable to public health emergencies (PHEs) due to its geographic location next to the Congo Basin epidemic hot spot, placement within multiple epidemic belts, high population growth rates, and refugee influx. In view of this, Uganda's Ministry of Health established the Public Health Emergency Operations Center (PHEOC) in September 2013, as a central coordination unit for all PHEs in the country. Uganda followed the World Health Organization's framework to establish the PHEOC, including establishing a steering committee, acquiring legal authority, developing emergency response plans, and developing a concept of operations. The same framework governs the PHEOC's daily activities. Between January 2014 and December 2021, Uganda's PHEOC coordinated response to 271 PHEs, hosted 207 emergency coordination meetings, trained all core staff in public health emergency management principles, participated in 21 simulation exercises, coordinated Uganda's Global Health Security Agenda activities, established 6 subnational PHEOCs, and strengthened the capacity of 7 countries in public health emergency management. In this article, we discuss the following lessons learned: PHEOCs are key in PHE coordination and thus mitigate the associated adverse impacts; although the functions of a PHEOC may be legalized by the existence of a National Institute of Public Health, their establishment may precede formally securing the legal framework; staff may learn public health emergency management principles on the job; involvement of leaders and health partners is crucial to the success of a public health emergency management program; subnational PHEOCs are resourceful in mounting regional responses to PHEs; and service on the PHE Strategic Committee may be voluntary. |
Rapid establishment of a frontline field laboratory in response to an imported outbreak of Ebola virus disease in western Uganda, June 2019.
Schuh AJ , Kyondo J , Graziano J , Balinandi S , Kainulainen MH , Tumusiime A , Nyakarahuka L , Mulei S , Baluku J , Lonergan W , Mayer O , Masereka R , Masereka F , Businge E , Gatare A , Kabyanga L , Muhindo S , Mugabe R , Makumbi I , Kayiwa J , Wetaka MM , Brown V , Ojwang J , Nelson L , Millard M , Nichol ST , Montgomery JM , Taboy CH , Lutwama JJ , Klena JD . PLoS Negl Trop Dis 2021 15 (12) e0009967 The Democratic Republic of the Congo (DRC) declared an Ebola virus disease (EVD) outbreak in North Kivu in August 2018. By June 2019, the outbreak had spread to 26 health zones in northeastern DRC, causing >2,000 reported cases and >1,000 deaths. On June 10, 2019, three members of a Congolese family with EVD-like symptoms traveled to western Uganda's Kasese District to seek medical care. Shortly thereafter, the Viral Hemorrhagic Fever Surveillance and Laboratory Program (VHF program) at the Uganda Virus Research Institute (UVRI) confirmed that all three patients had EVD. The Ugandan Ministry of Health declared an outbreak of EVD in Uganda's Kasese District, notified the World Health Organization, and initiated a rapid response to contain the outbreak. As part of this response, UVRI and the United States Centers for Disease Control and Prevention, with the support of Uganda's Public Health Emergency Operations Center, the Kasese District Health Team, the Superintendent of Bwera General Hospital, the United States Department of Defense's Makerere University Walter Reed Project, and the United States Mission to Kampala's Global Health Security Technical Working Group, jointly established an Ebola Field Laboratory in Kasese District at Bwera General Hospital, proximal to an Ebola Treatment Unit (ETU). The laboratory consisted of a rapid containment kit for viral inactivation of patient specimens and a GeneXpert Instrument for performing Xpert Ebola assays. Laboratory staff tested 76 specimens from alert and suspect cases of EVD; the majority were admitted to the ETU (89.3%) and reported recent travel to the DRC (58.9%). Although no EVD cases were detected by the field laboratory, it played an important role in patient management and epidemiological surveillance by providing diagnostic results in <3 hours. The integration of the field laboratory into Uganda's National VHF Program also enabled patient specimens to be referred to Entebbe for confirmatory EBOV testing and testing for other hemorrhagic fever viruses that circulate in Uganda. |
Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019
Aceng JR , Ario AR , Muruta AN , Makumbi I , Nanyunja M , Komakech I , Bakainaga AN , Talisuna AO , Mwesigye C , Mpairwe AM , Tusiime JB , Lali WZ , Katushabe E , Ocom F , Kaggwa M , Bongomin B , Kasule H , Mwoga JN , Sensasi B , Mwebembezi E , Katureebe C , Sentumbwe O , Nalwadda R , Mbaka P , Fatunmbi BS , Nakiire L , Lamorde M , Walwema R , Kambugu A , Nanyondo J , Okware S , Ahabwe PB , Nabukenya I , Kayiwa J , Wetaka MM , Kyazze S , Kwesiga B , Kadobera D , Bulage L , Nanziri C , Monje F , Aliddeki DM , Ntono V , Gonahasa D , Nabatanzi S , Nsereko G , Nakinsige A , Mabumba E , Lubwama B , Sekamatte M , Kibuule M , Muwanguzi D , Amone J , Upenytho GD , Driwale A , Seru M , Sebisubi F , Akello H , Kabanda R , Mutengeki DK , Bakyaita T , Serwanjja VN , Okwi R , Okiria J , Ainebyoona E , Opar BT , Mimbe D , Kyabaggu D , Ayebazibwe C , Sentumbwe J , Mwanja M , Ndumu DB , Bwogi J , Balinandi S , Nyakarahuka L , Tumusiime A , Kyondo J , Mulei S , Lutwama J , Kaleebu P , Kagirita A , Nabadda S , Oumo P , Lukwago R , Kasozi J , Masylukov O , Kyobe HB , Berdaga V , Lwanga M , Opio JC , Matseketse D , Eyul J , Oteba MO , Bukirwa H , Bulya N , Masiira B , Kihembo C , Ohuabunwo C , Antara SN , Owembabazi W , Okot PB , Okwera J , Amoros I , Kajja V , Mukunda BS , Sorela I , Adams G , Shoemaker T , Klena JD , Taboy CH , Ward SE , Merrill RD , Carter RJ , Harris JR , Banage F , Nsibambi T , Ojwang J , Kasule JN , Stowell DF , Brown VR , Zhu BP , Homsy J , Nelson LJ , Tusiime PK , Olaro C , Mwebesa HG , Woldemariam YT . Global Health 2020 16 (1) 24 BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies. |
Case definitions used during the first 6 months of the 10th Ebola virus disease outbreak in the Democratic Republic of the Congo - four neighboring countries, August 2018-February 2019
Medley AM , Mavila O , Makumbi I , Nizeyemana F , Umutoni A , Balisanga H , Manoah YK , Geissler A , Bunga S , MacDonald G , Homsy J , Ojwang J , Ewetola R , Raghunathan PL , MacGurn A , Singler K , Ward S , Roohi S , Brown V , Shoemaker T , Lako R , Kabeja A , Muruta A , Lubula L , Merrill R . MMWR Morb Mortal Wkly Rep 2020 69 (1) 14-19 On August 1, 2018, the Democratic Republic of the Congo (DRC) declared its 10th Ebola virus disease (Ebola) outbreak in an area with a high volume of cross-border population movement to and from neighboring countries. The World Health Organization (WHO) designated Rwanda, South Sudan, and Uganda as the highest priority countries for Ebola preparedness because of the high risk for cross-border spread from DRC (1). Countries might base their disease case definitions on global standards; however, historical context and perceived risk often affect why countries modify and adapt definitions over time, moving toward or away from regional harmonization. Discordance in case definitions among countries might reduce the effectiveness of cross-border initiatives during outbreaks with high risk for regional spread. CDC worked with the ministries of health (MOHs) in DRC, Rwanda, South Sudan, and Uganda to collect MOH-approved Ebola case definitions used during the first 6 months of the outbreak to assess concordance (i.e., commonality in category case definitions) among countries. Changes in MOH-approved Ebola case definitions were analyzed, referencing the WHO standard case definition, and concordance among the four countries for Ebola case categories (i.e., community alert, suspected, probable, confirmed, and case contact) was assessed at three dates (2). The number of country-level revisions ranged from two to four, with all countries revising Ebola definitions by February 2019 after a December 2018 peak in incidence in DRC. Case definition complexity increased over time; all countries included more criteria per category than the WHO standard definition did, except for the "case contact" and "confirmed" categories. Low case definition concordance and lack of awareness of regional differences by national-level health officials could reduce effectiveness of cross-border communication and collaboration. Working toward regional harmonization or considering systematic approaches to addressing country-level differences might increase efficiency in cross-border information sharing. |
Population movement patterns among the Democratic Republic of the Congo, Rwanda, and Uganda During an outbreak of Ebola virus disease: Results from community engagement in two districts - Uganda, March 2019
Nakiire L , Mwanja H , Pillai SK , Gasanani J , Ntungire D , Nsabiyumva S , Mafigiri R , Muneza N , Ward SE , Daffe Z , Ahabwe PB , Kyazze S , Ojwang J , Homsy J , McLntyre E , Lamorde M , Walwema R , Makumbi I , Muruta A , Merrill RD . MMWR Morb Mortal Wkly Rep 2020 69 (1) 10-13 Tailoring communicable disease preparedness and response strategies to unique population movement patterns between an outbreak area and neighboring countries can help limit the international spread of disease. Global recognition of the value of addressing community connectivity in preparedness and response, through field work and visualizing the identified movement patterns, is reflected in the World Health Organization's declaration on July 17, 2019, that the 10th Ebola virus disease (Ebola) outbreak in the Democratic Republic of the Congo (DRC) was a Public Health Emergency of International Concern (1). In March 2019, the Infectious Diseases Institute (IDI), Uganda, in collaboration with the Ministry of Health (MOH) Uganda and CDC, had previously identified areas at increased risk for Ebola importation by facilitating community engagement with participatory mapping to characterize cross-border population connectivity patterns. Multisectoral participants identified 31 locations and associated movement pathways with high levels of connectivity to the Ebola outbreak areas. They described a major shift in the movement pattern between Goma (DRC) and Kisoro (Uganda), mainly through Rwanda, when Rwanda closed the Cyanika ground crossing with Uganda. This closure led some travelers to use a potentially less secure route within DRC. District and national leadership used these results to bolster preparedness at identified points of entry and health care facilities and prioritized locations at high risk further into Uganda, especially markets and transportation hubs, for enhanced preparedness. Strategies to forecast, identify, and rapidly respond to the international spread of disease require adapting to complex, dynamic, multisectoral cross-border population movement, which can be influenced by border control and public health measures of neighboring countries. |
First Laboratory-Confirmed Outbreak of Human and Animal Rift Valley Fever Virus in Uganda in 48 Years.
Shoemaker TR , Nyakarahuka L , Balinandi S , Ojwang J , Tumusiime A , Mulei S , Kyondo J , Lubwama B , Sekematte M , Namutebi A , Tusiime P , Monje F , Mayanja M , Ssendagire S , Dahlke M , Kyazze S , Wetaka M , Makumbi I , Borchert J , Zufan S , Patel K , Whitmer S , Brown S , Davis WG , Klena JD , Nichol ST , Rollin PE , Lutwama J . Am J Trop Med Hyg 2019 100 (3) 659-671 In March 2016, an outbreak of Rift Valley fever (RVF) was identified in Kabale district, southwestern Uganda. A comprehensive outbreak investigation was initiated, including human, livestock, and mosquito vector investigations. Overall, four cases of acute, nonfatal human disease were identified, three by RVF virus (RVFV) reverse transcriptase polymerase chain reaction (RT-PCR), and one by IgM and IgG serology. Investigations of cattle, sheep, and goat samples from homes and villages of confirmed and probable RVF cases and the Kabale central abattoir found that eight of 83 (10%) animals were positive for RVFV by IgG serology; one goat from the home of a confirmed case tested positive by RT-PCR. Whole genome sequencing from three clinical specimens was performed and phylogenetic analysis inferred the relatedness of 2016 RVFV with the 2006-2007 Kenya-2 clade, suggesting previous introduction of RVFV into southwestern Uganda. An entomological survey identified three of 298 pools (1%) of Aedes and Coquillettidia species that were RVFV positive by RT-PCR. This was the first identification of RVFV in Uganda in 48 years and the 10(th) independent viral hemorrhagic fever outbreak to be confirmed in Uganda since 2010. |
Outbreak of yellow fever in central and southwestern Uganda, February-May 2016
Kwagonza L , Masiira B , Kyobe-Bosa H , Kadobera D , Atuheire EB , Lubwama B , Kagirita A , Katushabe E , Kayiwa JT , Lutwama JJ , Ojwang JC , Makumbi I , Ario AR , Borchert J , Zhu BP . BMC Infect Dis 2018 18 (1) 548 BACKGROUND: On 28 March, 2016, the Ministry of Health received a report on three deaths from an unknown disease characterized by fever, jaundice, and hemorrhage which occurred within a one-month period in the same family in central Uganda. We started an investigation to determine its nature and scope, identify risk factors, and to recommend eventually control measures for future prevention. METHODS: We defined a probable case as onset of unexplained fever plus >/=1 of the following unexplained symptoms: jaundice, unexplained bleeding, or liver function abnormalities. A confirmed case was a probable case with IgM or PCR positivity for yellow fever. We reviewed medical records and conducted active community case-finding. In a case-control study, we compared risk factors between case-patients and asymptomatic control-persons, frequency-matched by age, sex, and village. We used multivariate conditional logistic regression to evaluate risk factors. We also conducted entomological studies and environmental assessments. RESULTS: From February to May, we identified 42 case-persons (35 probable and seven confirmed), of whom 14 (33%) died. The attack rate (AR) was 2.6/100,000 for all affected districts, and highest in Masaka District (AR = 6.0/100,000). Men (AR = 4.0/100,000) were more affected than women (AR = 1.1/100,000) (p = 0.00016). Persons aged 30-39 years (AR = 14/100,000) were the most affected. Only 32 case-patients and 128 controls were used in the case control study. Twenty three case-persons (72%) and 32 control-persons (25%) farmed in swampy areas (ORadj = 7.5; 95%CI = 2.3-24); 20 case-patients (63%) and 32 control-persons (25%) who farmed reported presence of monkeys in agriculture fields (ORadj = 3.1, 95%CI = 1.1-8.6); and 20 case-patients (63%) and 35 control-persons (27%) farmed in forest areas (ORadj = 3.2; 95%CI = 0.93-11). No study participants reported yellow fever vaccination. Sylvatic monkeys and Aedes mosquitoes were identified in the nearby forest areas. CONCLUSION: This yellow fever outbreak was likely sylvatic and transmitted to a susceptible population probably by mosquito bites during farming in forest and swampy areas. A reactive vaccination campaign was conducted in the affected districts after the outbreak. We recommended introduction of yellow fever vaccine into the routine Uganda National Expanded Program on Immunization and enhanced yellow fever surveillance. |
Impact of a rapid results initiative approach on improving male partner involvement in prevention of mother to child transmission of HIV in Western Kenya
Akama E , Mburu M , Mutegi E , Nyanaro G , Otieno JP , Ndolo S , Ochanda B , Ojwang’ L , Lewis-Kulzer J , Abuogi L , Oyaro P , Cohen CR , Bukusi EA , Onono M . AIDS Behav 2018 22 (9) 1-10 A rapid results initiative (RRI) aimed at increasing male involvement in prevention of mother-to-child transmission (PMTCT) and service uptake among pregnant women at 116 antenatal clinics in Western Kenya was compared at baseline, during the RRI, and 3-months post-RRI. Male involvement increased from 7.4 to 54.2% during RRI (risk difference [RD] 0.47, CI 0.45–0.48) then 43.4% post-RRI (RD 0.36, CI 0.35–0.37). Among HIV-infected women, facility delivery increased from 40.0 to 49.9% (RD 0.10, 95% CI 0.06–0.13) and 65.0% post-RRI (RD 0.25, 95% CI 0.22–0.28). HIV-infected pregnant women linkage to HIV care increased from 58.6 to 85.9% (RD 0.27, CI 0.24–0.30) and 97.3% post-RRI (RD 0.39, CI 0.36–0.41). Time to ART initiation reduced from 29 days (interquartile range [IQR] 6–56) to 14 days (IQR 0–28) to 7 days (IQR 0–20). A male-centered RRI can significantly increase men’s engagement in antenatal care leading to improved partner utilization of PMTCT and antenatal services. |
Notes from the Field: Crimean-Congo hemorrhagic fever outbreak - Central Uganda, August-September 2017
Kizito S , Okello PE , Kwesiga B , Nyakarahuka L , Balinandi S , Mulei S , Kyondo J , Tumusiime A , Lutwama J , Ario AR , Ojwang J , Zhu BP . MMWR Morb Mortal Wkly Rep 2018 67 (22) 646-647 On August 20, 2017, physicians in two noncontiguous districts in central Uganda (Kyankwanzi and Nakaseke) reported two unrelated cases of Crimean-Congo hemorrhagic fever (CCHF). CCHF is the most widespread tickborne viral hemorrhagic fever in the world and represents a global health security threat (1–3); a single case of CCHF constitutes an outbreak. Humans are infected through tick bites or contact with the blood or body fluids of infected persons or animals. Treatment of infected patients is supportive, and the case-fatality rate ranges from 3%–40% (2,3). No licensed vaccine is available (2). Although CCHF cases were first reported in Uganda between 1958 and 1977, no subsequent cases were reported until 2013, when enhanced viral hemorrhagic fever surveillance capacity began to identify CCHF outbreaks (3–5). |
Investigation of an isolated case of human Crimean-Congo hemorrhagic fever in Central Uganda, 2015.
Balinandi S , Patel K , Ojwang J , Kyondo J , Mulei S , Tumusiime A , Lubwama B , Nyakarahuka L , Klena J , Lutwama J , Stroher U , Nichol ST , Shoemaker T . Int J Infect Dis 2018 68 88-93 BACKGROUND: Crimean-Congo hemorrhagic fever (CCHF) is the most geographically widespread tick-borne viral infection. Outbreaks of CCHF in sub-Saharan Africa are largely undetected and thus under-reported. On November 9, 2015, the National Viral Hemorrhagic Fever Laboratory at the Uganda Virus Research Institute received an alert for a suspect VHF case in a 33-year-old male who presented with VHF compatible signs and symptoms at Mengo Hospital in Kampala. METHODS: A blood sample from the suspect patient was tested by RT-PCR for CCHF and found positive. Serological testing on sequential blood specimens collected from this patient showed increasing anti-CCHFV IgM antibody titers, confirming recent infection. Repeat sampling of the confirmed case post recovery showed high titers for anti-CCHFV-specific IgG. An epidemiological outbreak investigation was initiated following the initial RT-PCR positive detection to identify any additional suspect cases. RESULTS: Only a single acute case of CCHF was detected from this outbreak. No additional acute CCHF cases were identified following field investigations. Environmental investigations collected 53 tick samples, with only 1, a Boophilus decoloratus, having detectable CCHFV RNA by RT-PCR. Full-length genomic sequencing on a viral isolate from the index human case showed the virus to be related to the DRC (Africa 2) lineage. CONCLUSIONS: This is the fourth confirmed CCHF outbreak in Uganda within 2 years after more than 50 years of no reported human CCHF cases in this country. Our investigations reaffirm the endemicity of CCHFV in Uganda, and shows that exposure to ticks poses a significant risk for human infection. These findings also reflect the importance of having an established national VHF surveillance system and diagnostic capacity in a developing country like Uganda, in order to identify the first cases of VHF outbreaks and rapidly respond to reduce secondary cases. Additional efforts should focus on implementing effective tick control methods and investigating the circulation of CCHFV throughout the country. |
Isolated case of Marburg virus disease, Kampala, Uganda, 2014
Nyakarahuka L , Ojwang J , Tumusiime A , Balinandi S , Whitmer S , Kyazze S , Kasozi S , Wetaka M , Makumbi I , Dahlke M , Borchert J , Lutwama J , Stroher U , Rollin PE , Nichol ST , Shoemaker TR . Emerg Infect Dis 2017 23 (6) 1001-1004 In September 2014, a single fatal case of Marburg virus was identified in a healthcare worker in Kampala, Uganda. The source of infection was not identified, and no secondary cases were identified. We describe the rapid identification, laboratory diagnosis, and case investigation of the third Marburg virus outbreak in Uganda. |
Effect of a clinical decision support system on early action on immunological treatment failure in patients with HIV in Kenya: A cluster randomised controlled trial
Oluoch T , Katana A , Kwaro D , Santas X , Langat P , Mwalili S , Muthusi K , Okeyo N , Ojwang JK , Cornet R , Abu-Hanna A , de Keizer N . Lancet HIV 2015 3018 (15) 00242-8 BACKGROUND: A clinical decision support system (CDSS) is a computer program that applies a set of rules to data stored in electronic health records to offer actionable recommendations. We aimed to establish whether a CDSS that supports detection of immunological treatment failure among patients with HIV taking antiretroviral therapy (ART) would improve appropriate and timely action. METHODS: We did this prospective, cluster randomised controlled trial in adults and children (aged ≥18 months) who were eligible for, and receiving, ART at HIV clinics in Siaya County, western Kenya. Health facilities were randomly assigned (1:1), via block randomisation (block size of two) with a computer-generated random number sequence, to use electronic health records either alone (control) or with CDSS (intervention). Facilities were matched by type and by number of patients enrolled in HIV care. The primary outcome measure was the difference between groups in the proportion of patients who experienced immunological treatment failure and had a documented clinical action. We used generalised linear mixed models with random effects to analyse clustered data. This trial is registered with ClinicalTrials.gov, number NCT01634802. FINDINGS: Between Sept 1, 2012, and Jan 31, 2014, 13 clinics, comprising 41 062 patients, were randomly assigned to the control group (n=6) or the intervention group (n=7). Data collection at each site took 12 months. Among patients eligible for ART, 10 358 (99%) of 10 478 patients were receiving ART at control sites and 10 991 (99%) of 11 028 patients were receiving ART at intervention sites. Of these patients, 1125 (11%) in the control group and 1342 (12%) in the intervention group had immunological treatment failure, of whom 332 (30%) and 727 (54%), respectively, received appropriate action. The likelihood of clinicians taking appropriate action on treatment failure was higher with CDSS alerts than with no decision support system (adjusted odds ratio 3·18, 95% CI 1·02-9·87). INTERPRETATION: CDSS significantly improved the likelihood of appropriate and timely action on immunological treatment failure. We expect our findings will be generalisable to virological monitoring of patients with HIV receiving ART once countries implement the 2015 WHO recommendation to scale up viral load monitoring. |
Do interoperable national information systems enhance availability of data to assess the effect of scale-up of HIV services on health workforce deployment in resource-limited countries?
Oluoch T , Muturi D , Kiriinya R , Waruru A , Lanyo K , Nguni R , Ojwang J , Waters KP , Richards J . Stud Health Technol Inform 2015 216 677-81 Sub-Saharan Africa (SSA) bears the heaviest burden of the HIV epidemic. Health workers play a critical role in the scale-up of HIV programs. SSA also has the weakest information and communication technology (ICT) infrastructure globally. Implementing interoperable national health information systems (HIS) is a challenge, even in developed countries. Countries in resource-limited settings have yet to demonstrate that interoperable systems can be achieved, and can improve quality of healthcare through enhanced data availability and use in the deployment of the health workforce. We established interoperable HIS integrating a Master Facility List (MFL), District Health Information Software (DHIS2), and Human Resources Information Systems (HRIS) through application programmers interfaces (API). We abstracted data on HIV care, health workers deployment, and health facilities geo-coordinates. Over 95% of data elements were exchanged between the MFL-DHIS and HRIS-DHIS. The correlation between the number of HIV-positive clients and nurses and clinical officers in 2013 was Rsquared=0.251 and Rsquared2=0.261 respectively. Wrong MFL codes, data type mis-match and hyphens in legacy data were key causes of data transmission errors. Lack of information exchange standards for aggregate data made programming time-consuming. |
Using information and communications technology in a national population-based survey: the Kenya AIDS Indicator Survey 2012
Ojwang JK , Lee VC , Waruru A , Ssempijja V , Ng'ang'a JG , Wakhutu BE , Kandege NO , Koske DK , Kamiru SM , Omondi KO , Kakinyi M , Kim AA , Oluoch T . J Acquir Immune Defic Syndr 2014 66 Suppl 1 S123-9 BACKGROUND: With improvements in technology, electronic data capture (EDC) for large surveys is feasible. EDC offers benefits over traditional paper-based data collection, including more accurate data, greater completeness of data, and decreased data cleaning burden. METHODS: The second Kenya AIDS Indicator Survey (KAIS 2012) was a population-based survey of persons aged 18 months to 64 years. A software application was designed to capture the interview, specimen collection, and home-based testing and counseling data. The application included: interview translations for local languages; options for single, multiple, and fill-in responses; and automated participant eligibility determination. Data quality checks were programmed to automate skip patterns and prohibit outlier responses. A data sharing architecture was developed to transmit the data in real-time from the field to a central server over a virtual private network. RESULTS: KAIS 2012 was conducted between October 2012 and February 2013. Overall, 68,202 records for the interviews, specimen collection, and home-based testing and counseling were entered into the application. Challenges arose during implementation, including poor connectivity and a systems malfunction that created duplicate records, which prevented timely data transmission to the central server. Data cleaning was minimal given the data quality control measures. CONCLUSIONS: KAIS 2012 demonstrated the feasibility of using EDC in a population-based survey. The benefits of EDC were apparent in data quality and minimal time needed for data cleaning. Several important lessons were learned, such as the time and monetary investment required before survey implementation, the importance of continuous application testing, and contingency plans for data transmission due to connectivity challenges. |
The Kenya AIDS indicator survey 2012: rationale, methods, description of participants, and response rates
Waruiru W , Kim AA , Kimanga DO , Ng'ang'a J , Schwarcz S , Kimondo L , Ng'ang'a A , Umuro M , Mwangi M , Ojwang JK , Maina WK . J Acquir Immune Defic Syndr 2014 66 Suppl 1 S3-s12 BACKGROUND: Cross-sectional population-based surveys are essential surveillance tools for tracking changes in HIV epidemics. In 2007, Kenya implemented the first AIDS Indicator Survey [Kenya AIDS Indicator Survey (KAIS) 2007], a nationally representative, population-based survey that collected demographic and behavioral data and blood specimens from individuals aged 15-64 years. Kenya's second AIDS Indicator Survey (KAIS 2012) was conducted to monitor changes in the epidemic, evaluate HIV prevention, care, and treatment initiatives, and plan for an efficient and effective response to the HIV epidemic. METHODS: KAIS 2012 was a cross-sectional 2-stage cluster sampling design, household-based HIV serologic survey that collected information on households as well as demographic and behavioral data from Kenyans aged 18 months to 64 years. Participants also provided blood samples for HIV serology and other related tests at the National HIV Reference Laboratory. RESULTS: Among 9300 households sampled, 9189 (98.8%) were eligible for the survey. Of the eligible households, 8035 (87.4%) completed household-level questionnaires. Of 16,383 eligible individuals aged 15-64 years and emancipated minors aged less than 15 years in these households, 13,720 (83.7%) completed interviews; 11,626 (84.7%) of the interviewees provided a blood specimen. Of 6302 eligible children aged 18 months to 14 years, 4340 (68.9%) provided a blood specimen. Of the 2094 eligible children aged 10-14 years, 1661 (79.3%) completed interviews. CONCLUSIONS: KAIS 2012 provided representative data to inform a strategic response to the HIV epidemic in the country. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure