Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Oberste SM[original query] |
---|
Randomized controlled clinical trial of bivalent oral poliovirus vaccine and inactivated poliovirus vaccine in Nigerian children
Tagbo BN , Verma H , Mahmud ZM , Ernest K , Nnani RO , Chukwubike C , Craig KT , Hamisu A , Weldon WC , Oberste SM , Jeyaseelan V , Braka F , Mkanda P , Esangbedo D , Olowu A , Nwaze E , Sutter RW . J Infect Dis 2020 226 (2) 299-307 BACKGROUND: We conducted a trial in Nigeria to assess the immunogenicity of the new bOPV + IPV immunization schedule and gains in type 2 immunity with addition of second dose of IPV. The trial was conducted in August 2016-March 2017 period, well past the tOPV-bOPV switch in April 2016. METHODS: This was an open-label, two-arm, non-inferiority, multi-center, randomized controlled trial. We enrolled 572 infants of age ≤14 days and randomized them into two arms. Arm A received bOPV at birth, 6 and 10 weeks, bOPV+IPV at week 14 and IPV at week 18. Arm B received IPV each at 6, 10, 14 weeks and bOPV at 18 weeks of age. RESULTS: Seroconversion rates for poliovirus types 1 and 3, respectively, were 98.9% (95%CI:96.7-99.8) and 98.1% (95%CI:88.2-94.8) in Arm A, and 89.6% (95%CI:85.4-93.0) and 98.5% (95%CI:96.3-99.6) in Arm B. Type 2 seroconversion with one dose IPV in Arm A was 72.0% (95%CI:66.2-77.3), which increased significantly with addition of second dose to 95.9% (95%CI:92.8-97.9). CONCLUSION: This first trial on the new EPI schedule in a sub-Saharan African country demonstrated excellent immunogenicity against poliovirus types 1 and 3, and substantial/enhanced immunogenicity against poliovirus type 2 after 1 to 2 doses of IPV respectively. |
Poliovirus seroprevalence before and after interruption of poliovirus transmission in Kano state, Nigeria
Iliyasu Z , Verma H , Craig KT , Nwaze E , Ahmad-Shehu A , Jibir BW , Gwarzo GD , Gajida AU , Weldon WC , Oberste SM , Takane M , Mkanda P , Muhammad AJ , Sutter RW . Vaccine 2016 34 (42) 5125-5131 INTRODUCTION: In September 2015, Nigeria was removed from the list of polio-endemic countries after more than 12months had passed since the detection of last wild poliovirus case in the country on 24 July 2014. We are presenting here a report of two polio seroprevalence surveys conducted in September 2013 and October 2014, respectively, in the Kano state of northern Nigeria. METHODS: Health facility based seroprevalence surveys were undertaken at Murtala Mohammad Specialist Hospital, Kano. Parents or guardians of children aged 6-9months, 36-47months, 5-9years and 10-14years in 2013 and 6-9months and 19-22months (corresponding to 6-9months range at the time of 2013 survey) in 2014 presenting to the outpatient department, were approached for participation, screened for eligibility and asked to provide informed consent. A questionnaire was administered and a blood sample collected for polio neutralization assay. RESULTS: Among subjects aged 6-9months in the 2013 survey, seroprevalence was 58% (95% confidence interval [CI] 51-66%) to poliovirus type 1, 42% (95% CI 34-50%) to poliovirus type 2, and 52% (95% CI 44-60%) to poliovirus type 3. Among children 36-47months and older, seroprevalence was 85% or higher for all three serotypes. In 2014, seroprevalence in 6-9month infants was 72% (95% CI 65-79%) for type 1, 59% (95% CI 52-66%) for type 2, and 65% (95% CI 57-72%) for type 3 and in 19-22months, 80% (95% CI 74-85%), 57% (49-63%) and 78% (71-83%) respectively. Seroprevalence was positively associated with history of increasing oral poliovirus vaccine doses. CONCLUSIONS: There was significant improvement in seroprevalence in 2014 over the 2013 levels indicating a positive impact of recent programmatic interventions. However the continued low seroprevalence in 6-9month age is a concern and calls for improved immunization efforts to sustain the polio-free Nigeria. |
Cold Chain and Virus Free chloroplast-made Booster Vaccine to Confer Immunity Against Different Polio Virus Serotypes.
Chan HT , Xiao Y , Weldon WC , Oberste SM , Chumakov K , Daniell H . Plant Biotechnol J 2016 14 (11) 2190-2200 ![]() The WHO recommends complete withdrawal of Oral Polio Vaccine (OPV) Type 2 by April 2016 globally and replacing with at least one dose of Inactivated Poliovirus Vaccine (IPV). However, high-cost, limited supply of IPV, persistent circulating vaccine-derived polioviruses transmission and need for subsequent boosters remain unresolved. To meet this critical need, a novel strategy of a low cost cold-chain free plant-made viral protein 1 (VP1) subunit oral booster vaccine after single IPV dose is reported. Codon optimization of the VP1 gene enhanced expression by 50-fold in chloroplasts. Oral boosting of VP1 expressed in plant cells with plant-derived adjuvants after single priming with IPV significantly increased VP1-IgG1 and VP1-IgA titers when compared to lower IgG1 or negligible IgA titers with IPV injections. IgA plays a pivotal role in polio eradication because of its transmission through contaminated water or sewer systems. Neutralizing antibody titers (~3.17-10.17 log2 titer) and serpositivity (70-90%) against all three poliovirus Sabin serotypes were observed with two doses of IPV and plant-cell oral boosters but single dose of IPV resulted in poor neutralization. Lyophilized plant cells expressing VP1 stored at ambient temperature maintained efficacy and preserved antigen folding/assembly indefinitely, thereby eliminating cold-chain currently required for all vaccines. Replacement of OPV with this booster vaccine and the next steps in clinical translation of FDA approved antigens and adjuvants are discussed. |
Environmental enteropathy, oral vaccine failure and growth faltering in infants in Bangladesh
Naylor C , Lu M , Haque R , Mondal D , Buonomo E , Nayak U , Mychaleckyj JC , Kirkpatrick B , Colgate R , Carmolli M , Dickson D , van der Klis F , Weldon W , Oberste SM , Ma JZ , Petri WA . EBioMedicine 2015 2 (11) 1759-66 Background: Environmental enteropathy (EE) is a subclinical enteric condition found in low-income countries that is characterized by intestinal inflammation, reduced intestinal absorption, and gut barrier dysfunction. We aimed to assess if EE impairs the success of oral polio and rotavirus vaccines in infants in Bangladesh. Methods: We conducted a prospective observational study of 700 infants from an urban slum of Dhaka, Bangladesh from May 2011 to November 2014. Infants were enrolled in the first week of life and followed to age one year through biweekly home visits with EPI vaccines administered and growth monitored. EE was operationally defied as enteric inflammation measured by any one of the fecal biomarkers reg1B, alpha-1-antitrypsin, MPO, calprotectin, or neopterin. Oral polio vaccine success was evaluated by immunogenicity, and rotavirus vaccine response was evaluated by immunogenicity and protection from disease. This study is registered with ClinicalTrials.gov, number NCT01375647. Findings: EE was present in greater than 80% of infants by 12. weeks of age. Oral poliovirus and rotavirus vaccines failed in 20.2% and 68.5% of the infants respectively, and 28.6% were malnourished (HAZ. <. -2) at one year of age. In contrast, 0%, 9.0%, 7.9% and 3.8% of infants lacked protective levels of antibody from tetanus, Haemophilus influenzae type b, diphtheria and measles vaccines respectively. EE was negatively associated with oral polio and rotavirus response but not parenteral vaccine immunogenicity. Biomarkers of systemic inflammation and measures of maternal health were additionally predictive of both oral vaccine failure and malnutrition. The selected biomarkers from multivariable analysis accounted for 46.3% variation in delta HAZ. 24% of Rotarix® IgA positive individuals can be attributed to the selected biomarkers. Interpretation: EE as well as systemic inflammation and poor maternal health were associated with oral but not parenteral vaccine underperformance and risk for future growth faltering. These results offer a potential explanation for the burden of these problems in low-income problems, allow early identification of infants at risk, and suggest pathways for intervention. Funding: The Bill and Melinda Gates Foundation (OPP1017093). © 2015 The Authors. |
Achieving high seroprevalence against polioviruses in Sri Lanka - results from a serological survey, 2014
Gamage D , Palihawadana P , Mach O , Weldon WC , Oberste SM , Sutter RW . J Epidemiol Glob Health 2015 5 S67-71 The immunization program in Sri Lanka consistently reaches >90% coverage with oral poliovirus vaccines (OPV), and no polio supplementary vaccination campaigns have been conducted since 2003. We evaluated serological protection against polioviruses in children. A cross-sectional community-based survey was performed in three districts of Sri Lanka (Colombo, Badulla, and Killinochchi). Randomly selected children in four age groups (9-11months, 3-4years, 7-9years, and 15years) were tested for poliovirus neutralizing antibodies. All 400 enrolled children completed the study. The proportion of seropositive children for poliovirus Type 1 and Type 2 was >95% for all age groups; for poliovirus Type 3 it was 95%, 90%, 77%, and 75% in the respective age groups. The vaccination coverage in our sample based on vaccination cards or parental recall was >90% in all age groups. Most Sri Lankan children are serologically protected against polioviruses through routine immunization only. This seroprevalence survey provided baseline data prior to the anticipated addition of inactivated poliovirus vaccine (IPV) into the Sri Lankan immunization program and the switch from trivalent OPV (tOPV) to bivalent OPV (bOPV). |
Monovalent type-1 oral poliovirus vaccine given at short intervals in Pakistan: a randomised controlled, four-arm, open-label, non-inferiority trial
Mir F , Quadri F , Mach O , Ahmed I , Bhatti Z , Khan A , Rehman NU , Durry E , Salama M , Oberste SM , Weldon WC , Sutter RW , Zaidi AK . Lancet Infect Dis 2015 15 (8) 889-97 BACKGROUND: Supplementary immunisation activities with oral poliovirus vaccines (OPVs) are usually separated by 4 week intervals; however, shorter intervals have been used in security-compromised areas and for rapid outbreak responses. We assessed the immunogenicity of monovalent type-1 oral poliovirus vaccine (mOPV1) given at shorter than usual intervals in Karachi, Pakistan. METHODS: This was a multicentre, randomised, controlled, four-arm, open-label, non-inferiority trial done at five primary health-care centres in low-income communities in and around Karachi, Pakistan. Eligible participants were healthy newborn babies with a birthweight of at least 2.5 kg, for whom informed consent was provided by their parent or guardian, and lived less than 30 km from the study clinic. After receiving a birth dose of trivalent OPV, we enrolled and randomly assigned newborn babies (1:1:1:1) to receive two doses of mOPV1 with an interval of 1 week (mOPV1-1 week), 2 weeks (mOPV1-2 weeks), or 4 weeks (mOPV1-4 weeks) between doses, or two doses of bivalent OPV (bOPV) with an interval of 4 weeks between doses (bOPV-4 weeks). We gave the first study dose of OPV at age 6 weeks. We did the randomisation with a centrally generated, computerised allocation sequence with blocks of 16; participants' families and study physicians could not feasibly be masked to the allocations. Trial participants were excluded from local supplementary immunisation activities during the study period. The primary outcome was non-inferiority (within a 20% margin) between groups in seroconversion to type-1 poliovirus. The primary and safety analyses were done in the per-protocol population of infants who received all three doses of vaccine. This trial is registered with ClinicalTrials.gov, number NCT01586572, and is closed to new participants. FINDINGS: Between March 1, 2012, and May 31, 2013, we enrolled 1009 newborn babies, and randomly assigned 829 (82%) to treatment. 554 (67%) of the 829 babies were included in the per-protocol analysis. Proportions of seroconversion to type-1 poliovirus were 107/135 (79%, 95% CI 72.4-86.1) with mOPV1-1 week, 108/135 (80%, 73.2-86.8) with mOPV1-2 weeks, 129/148 (87%, 80.9-92.0) with mOPV1-4 weeks, and 107/136 (79%, 71.8-85.6) with bOPV-4 weeks. Non-inferiority was shown between groups and no significant differences were noted. Ten participants died during the trial. Seven of these deaths occurred during the lead-in period before randomisation (two from diarrhoea, five from unknown causes). Three infants died from sepsis after random assignment. No deaths were attributed to the procedures or vaccines. Additionally, we noted no events of vaccine-associated paralysis. INTERPRETATION: We identified no significant differences in responses to mOPV1 given with shorter intervals between doses than with the standard 4 week intervals. The short-interval strategy could be particularly beneficial when temporary windows of opportunity for safe access can be granted in areas of conflict-eg, during cease-fire periods. In such situations, we recommend shortening the interval between OPV doses to 7 days. FUNDING: World Health Organization. |
Immunogenicity of poliovirus vaccines in chronically malnourished infants: a randomized controlled trial in Pakistan
Saleem AF , Mach O , Quadri F , Khan A , Bhatti Z , Rehman NU , Zaidi S , Weldon WC , Oberste SM , Salama M , Sutter RW , Zaidi AK . Vaccine 2015 33 (24) 2757-63 Reaching high population immunity against polioviruses (PV) is essential to achieving global polio eradication. Efficacy of oral poliovirus vaccine (OPV) varies and is lower among children living in tropical areas with impoverished environments. Malnutrition found as a risk factor for lower serological protection against PV. We compared whether inactivated polio vaccine (IPV) can be used to rapidly close the immunity gap among chronically malnourished (stunted) infants in Pakistan who will not be eligible for the 14 week IPV dose in routine EPI schedule. A phase 3, multicenter 4-arm randomized controlled trial conducted at five Primary Health Care (PHC) centers in Karachi, Pakistan. Infants, 9-12 months were stratified by length for age Z score into chronically malnourished and normally nourished. Infants were randomized to receive one dose of either bivalent OPV (bOPV) alone or bOPV+IPV. Baseline seroprevalence of PV antibodies and serum immune response to study vaccine dose were assessed by neutralization assay. Vaccine PV shedding in stool was evaluated 7 days after a bOPV challenge dose. Sera and stool were analyzed from 852/928 (92%) enrolled children. At baseline, the seroprevalence was 85.6% (n=386), 73.6% (n=332), and 70.7% (n=319) in malnourished children against PV types 1, 2 and 3 respectively; and 94.1% (n=448), 87.0% (n=441) and 83.6% (n=397) in the normally nourished group (p<0.05). Children had previously received 9-10 doses of bOPV (80%) or tOPV (20%). One dose of IPV+bOPV given to malnourished children increased their serological protection (PV1, n=201, 97.6%; PV2, n=198, 96.1% and PV3, n=189, 91.7%) to parity with normally nourished children who had not received IPV (p=<0.001). Seroconversion and boosting for all three serotypes was significantly more frequent in children who received IPV+bOPV than in those with bOPV only (p<0.001) in both strata. Shedding of polioviruses in stool did not differ between study groups and ranged from 2.4% (n=5) to 7.1% (n=15). In malnourished children the shedding was reduced after bOPV+IPV compared to bOPV only. Chronically malnourished infants were more likely to be unprotected against polioviruses than normal infants. bOPV+IPV helped close the immunity gap better than bOPV alone. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure