Last data update: Nov 22, 2024. (Total: 48197 publications since 2009)
Records 1-30 (of 209 Records) |
Query Trace: Nichol ST[original query] |
---|
Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda.
Amman BR , Nyakarahuka L , McElroy AK , Dodd KA , Sealy TK , Schuh AJ , Shoemaker TR , Balinandi S , Atimnedi P , Kaboyo W , Nichol ST , Towner JS . Emerg Infect Dis 2014 20 (10) 1761-4 Marburg virus (MARV) and Ravn virus (RAVV), collectively called marburgviruses, cause Marburg hemorrhagic fever (MHF) in humans. In July 2007, 4 cases of MHF (1 fatal) occurred in miners at Kitaka Mine in southern Uganda. Later, MHF occurred in 2 tourists who visited Python Cave, ≈50 km from Kitaka Mine. One of the tourists was from the United States (December 2007) and 1 was from the Netherlands (July 2008); 1 case was fatal (1,2,3). The cave and the mine each contained 40,000–100,000 Rousettus aegyptiacus bats (Egyptian fruit bats). | | Longitudinal investigations of the outbreaks at both locations were initiated by the Viral Special Pathogens Branch of the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA, and Entebbe, Uganda) in collaboration with the Uganda Wildlife Authority (UWA) and the Uganda Virus Research Institute (UVRI). During these studies, genetically diverse MARVs and RAVVs were isolated directly from bat tissues, and infection levels of the 2 viruses were found to increase in juvenile bats on a predictable bi-annual basis (4,5). However, investigations at Kitaka Mine were stopped when the miners exterminated the bat colony by restricting egress from the cave with papyrus reed barriers and then entangling the bats in fishing nets draped over the exits. The trapping continued for weeks, and the entrances were then sealed with sticks and plastic. These depopulation efforts were documented by researchers from UVRI, the CDC, the National Institute of Communicable Diseases (Sandringham, South Africa), and UWA during site visits to Kitaka Mine (Technical Appendix Figure). In August 2008, thousands of dead bats were found piled in the forest, and by November 2008, there was no evidence of bats living in the mine; whether 100% extermination was achieved is unknown. CDC, UVRI, and UWA recommended against extermination, believing that any results would be temporary and that such efforts could exacerbate the problem if bat exclusion methods were not complete and permanent (6,7). |
Seroepidemiological investigation of Crimean Congo hemorrhagic fever virus in livestock in Uganda, 2017
Nyakarahuka L , Kyondo J , Telford C , Whitesell A , Tumusiime A , Mulei S , Baluku J , Cossaboom CM , Cannon DL , Montgomery JM , Lutwama JJ , Nichol ST , Balinandi SK , Klena JD , Shoemaker TR . PLoS One 2023 18 (11) e0288587 Crimean-Congo Hemorrhagic fever (CCHF) is an important zoonotic disease transmitted to humans both by tick vectors and contact with fluids from an infected animal or human. Although animals are not symptomatic when infected, they are the main source of human infection. Uganda has reported sporadic human outbreaks of CCHF in various parts of the country since 2013. We designed a nationwide epidemiological study to investigate the burden of CCHF in livestock. A total of 3181 animals were sampled; 1732 cattle (54.4%), 1091 goats (34.3%), and 358 sheep (11.3%) resulting in overall livestock seropositivity of IgG antibodies against CCHF virus (CCHFV) of 31.4% (999/3181). Seropositivity in cattle was 16.9% and in sheep and goats was 48.8%. Adult and juvenile animals had higher seropositivity compared to recently born animals, and seropositivity was higher in female animals (33.5%) compared to male animals (24.1%). Local breeds had higher (36.8%) compared to exotic (2.8%) and cross breeds (19.3%). Animals that had a history of abortion or stillbirth had higher seropositivity compared to those without a history of abortion or stillbirth. CCHFV seropositivity appeared to be generally higher in northern districts of the country, though spatial trends among sampled districts were not examined. A multivariate regression analysis using a generalized linear mixed model showed that animal species, age, sex, region, and elevation were all significantly associated with CCHFV seropositivity after adjusting for the effects of other model predictors. This study shows that CCHFV is actively circulating in Uganda, posing a serious risk for human infection. The results from this study can be used to help target surveillance efforts for early case detection in animals and limit subsequent spillover into humans. |
Single-dose mucosal replicon-particle vaccine protects against lethal Nipah virus infection up to 3 days after vaccination
Welch SR , Spengler JR , Genzer SC , Coleman-McCray JD , Harmon JR , Sorvillo TE , Scholte FEM , Rodriguez SE , O'Neal TJ , Ritter JM , Ficarra G , Davies KA , Kainulainen MH , Karaaslan E , Bergeron É , Goldsmith CS , Lo MK , Nichol ST , Montgomery JM , Spiropoulou CF . Sci Adv 2023 9 (31) eadh4057 Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease. |
A countrywide seroepidemiological survey of Rift Valley fever in livestock, Uganda, 2017
Nyakarahuka L , Kyondo J , Telford C , Whitesell A , Tumusiime A , Mulei S , Baluku J , Cossaboom CM , Cannon DL , Montgomery JM , Lutwama JJ , Nichol ST , Balinandi S , Klena JD , Shoemaker TR . Am J Trop Med Hyg 2023 109 (3) 548-553 In 2016, an outbreak of Rift Valley fever was reported in the Kabale District in Uganda for the first time in 48 years. Three human cases were confirmed by polymerase chain reaction, and subsequent serological investigations revealed an overall IgG seropositivity of 13% in humans and 13% in animals. In response to this reemergence, we designed a countrywide survey to determine the seropositivity of anti-Rift Valley fever virus (RVFV) IgG antibodies in livestock. Samples were collected from 27 districts and tested for RVFV anti-IgG antibodies. A total of 3,181 livestock samples were tested, of which 54.4% were cattle (1,732 of 3,181), 34.3% were goats (1,091 of 3,181), and 11.3% were sheep (358 of 3,181). Overall RVFV seropositivity was 6.9% (221 of 3,181). Seroprevalence was greater in cattle (10.7%) compared with goats (2.6%) and sheep (2.0%), among females (7.5%) compared with males (5.2%), and among adults (7.6%) compared with juveniles (4.9%) and nurslings (6.4%). Exotic breeds and animals with a history of abortion or stillbirth also had greater odds of RVFV seropositivity. Animals grazed under tethering and paddocking had greater RVFV seropositivity compared with animals that grazed communally, and livestock in the western and eastern regions had the greatest seroprevalence. In a multivariate regression model, animal species (odds ratio [OR], 6.4; 95% CI, 3.5-11.4) and age (OR, 2.3; 95% CI, 1.4-3.6) were associated significantly with RVFV seropositivity. This study could be important in developing risk-based surveillance for early outbreak detection to limit the spread of RVFV in both human and animal populations. |
Sustained replication of synthetic canine distemper virus defective genomes in vitro and in vivo (preprint)
Tilston-Lunel NL , Welch SR , Nambulli S , de Vries RD , Ho GW , Wentworth DE , Shabman R , Nichol ST , Spiropoulou CF , de Swart RL , Rennick LJ , Duprex WP . bioRxiv 2021 2021.06.11.448162 Defective interfering (DI) genomes restrict viral replication and induce type-I interferon. Since DI genomes have been proposed as vaccine adjuvants or therapeutic antiviral agents, it is important to understand their generation, delineate their mechanism of action, develop robust production capacities, assess their safety and in vivo longevity and determine their long-term effects. To address this, we generated a recombinant (r) canine distemper virus (CDV) from an entirely synthetic molecular clone designed using the genomic sequence from a clinical isolate obtained from a free-ranging raccoon with distemper. rCDV was serially passaged in vitro to identify DI genomes that naturally arise during rCDV replication. Defective genomes were identified by Sanger and next-generation sequencing techniques and predominant genomes were synthetically generated and cloned into T7-driven plasmids. Fully encapsidated DI particles (DIPs) were then generated using a rationally attenuated rCDV as a producer virus to drive DI genome replication. We demonstrate these DIPs interfere with rCDV replication in a dose-dependent manner in vitro. Finally, we show sustained replication of a fluorescent DIP in experimentally infected ferrets over a period of 14 days. Most importantly, DIPs were isolated from the lymphoid tissues which are a major site of CDV replication. Our established pipeline for detection, generation and assaying DIPs is transferable to highly pathogenic paramyxoviruses and will allow qualitative and quantitative assessment of the therapeutic effects of DIP administration on disease outcome.Importance Defective interfering (DI) genomes have long been considered inconvenient artifacts that suppressed viral replication in vitro. However, advances in sequencing technologies have led to DI genomes being identified in clinical samples, implicating them in disease progression and outcome. It has been suggested that DI genomes could be harnessed therapeutically. Negative strand RNA virus research has provided a rich pool of natural DI genomes over many years and they are probably the best understood in vitro. Here, we demonstrate identification, synthesis, production and experimental inoculation of novel CDV DI genomes in highly susceptible ferrets. These results provide important evidence that rationally designed and packaged DI genomes can survive the course of a wild-type virus infection. |
New Lineage of Lassa Virus, Togo, 2016.
Whitmer SLM , Strecker T , Cadar D , Dienes HP , Faber K , Patel K , Brown SM , Davis WG , Klena JD , Rollin PE , Schmidt-Chanasit J , Fichet-Calvet E , Noack B , Emmerich P , Rieger T , Wolff S , Fehling SK , Eickmann M , Mengel JP , Schultze T , Hain T , Ampofo W , Bonney K , Aryeequaye JND , Ribner B , Varkey JB , Mehta AK , Lyon GM 3rd , Kann G , De Leuw P , Schuettfort G , Stephan C , Wieland U , Fries JWU , Kochanek M , Kraft CS , Wolf T , Nichol ST , Becker S , Ströher U , Günther S . Emerg Infect Dis 2018 24 (3) 599-602 We describe a strain of Lassa virus representing a putative new lineage that was isolated from a cluster of human infections with an epidemiologic link to Togo. This finding extends the known range of Lassa virus to Togo. |
Chapare Hemorrhagic Fever and Virus Detection in Rodents in Bolivia in 2019.
LoayzaMafayle R , Morales-Betoulle ME , Romero C , Cossaboom CM , Whitmer S , AlvarezAguilera CE , AvilaArdaya C , CruzZambrana M , DvalosAnajia A , MendozaLoayza N , Montao AM , MoralesAlvis FL , RevolloGuzmn J , SasasMartnez S , AlarcnDeLaVega G , MedinaRamrez A , MolinaGutirrez JT , CornejoPinto AJ , SalasBacci R , Brignone J , Garcia J , Aez A , Mendez-Rico J , Luz K , Segales A , TorrezCruz KM , Valdivia-Cayoja A , Amman BR , Choi MJ , Erickson BR , Goldsmith C , Graziano JC , Joyce A , Klena JD , Leach A , Malenfant JH , Nichol ST , Patel K , Sealy T , Shoemaker T , Spiropoulou CF , Todres A , Towner JS , Montgomery JM . N Engl J Med 2022 386 (24) 2283-2294 BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.). |
Risk Factors for Ebola Virus Persistence in Semen of Survivors - Liberia.
Dyal J , Kofman A , Kollie JZ , Fankhauser J , Orone R , Soka MJ , Glaybo U , Kiawu A , Freeman E , Giah G , Tony HD , Faikai M , Jawara M , Kamara K , Kamara S , Flowers B , Kromah ML , Desamu-Thorpe R , Graziano J , Brown S , Morales-Betoulle ME , Cannon DL , Su K , Linderman SL , Plucinski M , Rogier E , Bradbury RS , Secor WE , Bowden KE , Phillips C , Carrington MN , Park YH , Martin MP , Del Pilar Aguinaga M , Mushi R , Haberling DL , Ervin ED , Klena JD , Massaquoi M , Nyenswah T , Nichol ST , Chiriboga DE , Williams DE , Hinrichs SH , Ahmed R , Vonhm BT , Rollin PE , Purpura LJ , Choi MJ . Clin Infect Dis 2022 76 (3) e849-e856 BACKGROUND: Long-term persistence of Ebola virus (EBOV) in immunologically-privileged sites has been implicated in recent outbreaks of Ebola Virus Disease (EVD) in Guinea and the Democratic Republic of Congo. This study was designed to understand how the acute course of EVD, convalescence, and host immune and genetic factors may play a role in prolonged viral persistence in semen. METHODS: A cohort of 131 male EVD survivors in Liberia were enrolled in a case-case study. "Early clearers" were defined as those with two consecutive negative EBOV semen tests by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) at least two weeks apart within 1 year after discharge from the Ebola Treatment Unit (ETU) or acute EVD. "Late clearers" had detectable EBOV RNA by rRT-PCR over one year following ETU discharge or acute EVD. Retrospective histories of their EVD clinical course were collected by questionnaire, followed by complete physical exams and blood work. RESULTS: Compared to early clearers, late clearers were older (median 42.5 years, p = 0.0001) and experienced fewer severe clinical symptoms (median 2, p = 0.006). Late clearers had more lens opacifications (OR 3.9, 95%CI 1.1-13.3, p = 0.03), after accounting for age, higher total serum IgG3 titers (p = 0.007) and increased expression of the HLA-C*03:04 allele (OR 0.14, 95% CI 0.02-0.70, p = 0.007). CONCLUSIONS: Older age, decreased illness severity, elevated total serum IgG3 and HLA-C*03:04 allele expression may be risk factors for the persistence of EBOV in the semen of EVD survivors. EBOV persistence in semen may also be associated with its persistence in other immunologically protected sites, such as the eye. |
Defective Interfering Viral Particle Treatment Reduces Clinical Signs and Protects Hamsters from Lethal Nipah Virus Disease.
Welch SR , Spengler JR , Harmon JR , Coleman-McCray JD , Scholte FEM , Genzer SC , Lo MK , Montgomery JM , Nichol ST , Spiropoulou CF . mBio 2022 13 (2) e0329421 Defective interfering particles (DIs) contain a considerably smaller genome than the parental virus but retain replication competency. As DIs can directly or indirectly alter propagation kinetics of the parental virus, they offer a novel approach to antiviral therapy, capitalizing on knowledge from natural infection. However, efforts to translate in vitro inhibition to in vivo screening models remain limited. We investigated the efficacy of virus-like particles containing DI genomes (therapeutic infectious particles [TIPs]) in the Syrian hamster model of lethal Nipah virus (NiV) disease. We found that coadministering a high dose of TIPs intraperitoneally with virus challenge improved clinical course and reduced lethality. To mimic natural exposure, we also evaluated lower-dose TIP delivery and virus challenge intranasally, finding equally efficacious reduction in disease severity and overall lethality. Eliminating TIP replicative capacity decreased efficacy, suggesting protection via direct inhibition. These data provide evidence that TIP-mediated treatment can confer protection against disease and lethal outcome in a robust animal NiV model, supporting further development of TIP treatment for NiV and other high-consequence pathogens. IMPORTANCE Here, we demonstrate that treatment with defective interfering particles (DIs), a natural by-product of viral infection, can significantly improve the clinical course and outcome of viral disease. When present with their parental virus, DIs can directly or indirectly alter viral propagation kinetics and exert potent inhibitory properties in cell culture. We evaluated the efficacy of a selection of virus-like particles containing DI genomes (TIPs) delivered intranasally in a lethal hamster model of Nipah virus disease. We demonstrate significantly improved clinical outcomes, including reduction in both lethality and the appearance of clinical signs. This work provides key efficacy data in a robust model of Nipah virus disease to support further development of TIP-mediated treatment against high-consequence viral pathogens. |
Lassa virus replicon particle vaccine protects strain 13/N guinea pigs against challenge with geographically and genetically diverse viral strains.
Spengler JR , Kainulainen MH , Welch SR , Coleman-McCray JAD , Harmon JR , Condrey JA , Scholte FEM , Nichol ST , Montgomery JM , Albariño CG , Spiropoulou CF . J Infect Dis 2022 226 (9) 1545-1550 Lassa virus (LASV) causes mild to severe hemorrhagic fever disease in humans. Strain 13/N guinea pigs are highly susceptible to infection with LASV strain Josiah (clade IV), providing a critical model system for therapeutics and vaccine development. To develop additional models of disease, we detail the clinical course in guinea pigs infected with 5 geographically and genetically diverse LASV strains. Two of the developed models (LASV clades II and III) were then used to evaluate efficacy of a virus replicon particle (VRP) vaccine against heterologous LASV challenge, demonstrating complete protection against clinical disease after a single vaccination dose. |
Immunobiology of Crimean-Congo hemorrhagic fever
Rodriguez SE , Hawman DW , Sorvillo TE , O'Neal TJ , Bird BH , Rodriguez LL , Bergeron É , Nichol ST , Montgomery JM , Spiropoulou CF , Spengler JR . Antiviral Res 2022 199 105244 Human infection with Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne pathogen in the family Nairoviridae, can result in a spectrum of outcomes, ranging from asymptomatic infection through mild clinical signs to severe or fatal disease. Studies of CCHFV immunobiology have investigated the relationship between innate and adaptive immune responses with disease severity, attempting to elucidate factors associated with differential outcomes. In this article, we begin by highlighting unanswered questions, then review current efforts to answer them. We discuss in detail current clinical studies and research in laboratory animals on CCHF, including immune targets of infection and adaptive and innate immune responses. We summarize data about the role of the immune response in natural infections of animals and humans and experimental studies in vitro and in vivo and from evaluating immune-based therapies and vaccines, and present recommendations for future research. |
Rapid establishment of a frontline field laboratory in response to an imported outbreak of Ebola virus disease in western Uganda, June 2019.
Schuh AJ , Kyondo J , Graziano J , Balinandi S , Kainulainen MH , Tumusiime A , Nyakarahuka L , Mulei S , Baluku J , Lonergan W , Mayer O , Masereka R , Masereka F , Businge E , Gatare A , Kabyanga L , Muhindo S , Mugabe R , Makumbi I , Kayiwa J , Wetaka MM , Brown V , Ojwang J , Nelson L , Millard M , Nichol ST , Montgomery JM , Taboy CH , Lutwama JJ , Klena JD . PLoS Negl Trop Dis 2021 15 (12) e0009967 The Democratic Republic of the Congo (DRC) declared an Ebola virus disease (EVD) outbreak in North Kivu in August 2018. By June 2019, the outbreak had spread to 26 health zones in northeastern DRC, causing >2,000 reported cases and >1,000 deaths. On June 10, 2019, three members of a Congolese family with EVD-like symptoms traveled to western Uganda's Kasese District to seek medical care. Shortly thereafter, the Viral Hemorrhagic Fever Surveillance and Laboratory Program (VHF program) at the Uganda Virus Research Institute (UVRI) confirmed that all three patients had EVD. The Ugandan Ministry of Health declared an outbreak of EVD in Uganda's Kasese District, notified the World Health Organization, and initiated a rapid response to contain the outbreak. As part of this response, UVRI and the United States Centers for Disease Control and Prevention, with the support of Uganda's Public Health Emergency Operations Center, the Kasese District Health Team, the Superintendent of Bwera General Hospital, the United States Department of Defense's Makerere University Walter Reed Project, and the United States Mission to Kampala's Global Health Security Technical Working Group, jointly established an Ebola Field Laboratory in Kasese District at Bwera General Hospital, proximal to an Ebola Treatment Unit (ETU). The laboratory consisted of a rapid containment kit for viral inactivation of patient specimens and a GeneXpert Instrument for performing Xpert Ebola assays. Laboratory staff tested 76 specimens from alert and suspect cases of EVD; the majority were admitted to the ETU (89.3%) and reported recent travel to the DRC (58.9%). Although no EVD cases were detected by the field laboratory, it played an important role in patient management and epidemiological surveillance by providing diagnostic results in <3 hours. The integration of the field laboratory into Uganda's National VHF Program also enabled patient specimens to be referred to Entebbe for confirmatory EBOV testing and testing for other hemorrhagic fever viruses that circulate in Uganda. |
Sustained Replication of Synthetic Canine Distemper Virus Defective Genomes In Vitro and In Vivo.
Tilston-Lunel NL , Welch SR , Nambulli S , de Vries RD , Ho GW , Wentworth DE , Shabman R , Nichol ST , Spiropoulou CF , de Swart RL , Rennick LJ , Duprex WP . mSphere 2021 6 (5) e0053721 Defective interfering (DI) genomes restrict viral replication and induce type I interferon. Since DI genomes have been proposed as vaccine adjuvants or therapeutic antiviral agents, it is important to understand their generation, delineate their mechanism of action, develop robust production capacities, assess their safety and in vivo longevity, and determine their long-term effects. To address this, we generated a recombinant canine distemper virus (rCDV) from an entirely synthetic molecular clone designed using the genomic sequence from a clinical isolate obtained from a free-ranging raccoon with distemper. rCDV was serially passaged in vitro to identify DI genomes that naturally arise during rCDV replication. Defective genomes were identified by Sanger and next-generation sequencing techniques, and predominant genomes were synthetically generated and cloned into T7-driven plasmids. Fully encapsidated DI particles (DIPs) were then generated using a rationally attenuated rCDV as a producer virus to drive DI genome replication. We demonstrate that these DIPs interfere with rCDV replication in a dose-dependent manner in vitro. Finally, we show sustained replication of a fluorescent DIP in experimentally infected ferrets over a period of 14 days. Most importantly, DIPs were isolated from the lymphoid tissues, which are a major site of CDV replication. Our established pipeline for detection, generation, and assaying DIPs is transferable to highly pathogenic paramyxoviruses and will allow qualitative and quantitative assessment of the therapeutic effects of DIP administration on disease outcome. IMPORTANCE Defective interfering (DI) genomes have long been considered inconvenient artifacts that suppressed viral replication in vitro. However, advances in sequencing technologies have led to DI genomes being identified in clinical samples, implicating them in disease progression and outcome. It has been suggested that DI genomes might be harnessed therapeutically. Negative-strand RNA virus research has provided a rich pool of natural DI genomes over many years, and they are probably the best understood in vitro. Here, we demonstrate the identification, synthesis, production, and experimental inoculation of novel CDV DI genomes in highly susceptible ferrets. These results provide important evidence that rationally designed and packaged DI genomes can survive the course of a wild-type virus infection. |
Development and implementation of the Ebola exposure window calculator: A tool for Ebola virus disease outbreak field investigations
Whitesell A , Bustamante ND , Stewart M , Freeman J , Dismer AM , Alarcon W , Kofman A , Ben Hamida A , Nichol ST , Damon I , Haberling DL , Keita M , Mbuyi G , Armstrong G , Juang D , Dana J , Choi MJ . PLoS One 2021 16 (8) e0255631 During an Ebola virus disease (EVD) outbreak, calculating the exposure window of a confirmed case can assist field investigators in identifying the source of infection and establishing chains of transmission. However, field investigators often have difficulty calculating this window. We developed a bilingual (English/French), smartphone-based field application to assist field investigators in determining the exposure window of an EVD case. The calculator only requires the reported date of symptoms onset and the type of symptoms present at onset or the date of death. Prior to the release of this application, there was no similar electronic capability to enable consistent calculation of EVD exposure windows for field investigators. The Democratic Republic of the Congo Ministry of Health endorsed the application and incorporated it into trainings for field staff. Available for Apple and Android devices, the calculator continues to be downloaded even as the eastern DRC outbreak resolved. We rapidly developed and implemented a smartphone application to estimate the exposure window for EVD cases in an outbreak setting. |
Inference of Nipah virus evolution, 1999-2015.
Whitmer SLM , Lo MK , Sazzad HMS , Zufan S , Gurley ES , Sultana S , Amman B , Ladner JT , Rahman MZ , Doan S , Satter SM , Flora MS , Montgomery JM , Nichol ST , Spiropoulou CF , Klena JD . Virus Evol 2021 7 (1) veaa062 Despite near-annual human outbreaks of Nipah virus (NiV) disease in Bangladesh, typically due to individual spillover events from the local bat population, only twenty whole-genome NiV sequences exist from humans and ten from bats. NiV whole-genome sequences from annual outbreaks have been challenging to generate, primarily due to the low viral load in human throat swab and serum specimens. Here, we used targeted enrichment with custom NiV-specific probes and generated thirty-five additional unique full-length genomic sequences directly from human specimens and viral isolates. We inferred the temporal and geographic evolutionary history of NiV in Bangladesh and expanded a tool to visualize NiV spatio-temporal spread from a Bayesian continuous diffusion analysis. We observed that strains from Bangladesh segregated into two distinct clades that have intermingled geographically in Bangladesh over time and space. As these clades expanded geographically and temporally, we did not observe evidence for significant branch and site-specific selection, except for a single site in the Henipavirus L polymerase. However, the Bangladesh 1 and 2 clades are differentiated by mutations initially occurring in the polymerase, with additional mutations accumulating in the N, G, F, P, and L genes on external branches. Modeling the historic geographical and temporal spread demonstrates that while widespread, NiV does not exhibit significant genetic variation in Bangladesh. Thus, future public health measures should address whether NiV within in the bat population also exhibits comparable genetic variation, if zoonotic transmission results in a genetic bottleneck and if surveillance techniques are detecting only a subset of NiV. Copyright © 2020 Published by Oxford University Press 2020. This work is written by a US Government employee and is in the public domain in the US. |
Screening and Identification of Lujo Virus Inhibitors Using a Recombinant Reporter Virus Platform.
Welch SR , Spengler JR , Genzer SC , Chatterjee P , Flint M , Bergeron É , Montgomery JM , Nichol ST , Albariño CG , Spiropoulou CF . Viruses 2021 13 (7) Lujo virus (LUJV), a highly pathogenic arenavirus, was first identified in 2008 in Zambia. To aid the identification of effective therapeutics for LUJV, we developed a recombinant reporter virus system, confirming reporter LUJV comparability with wild-type virus and its utility in high-throughput antiviral screening assays. Using this system, we evaluated compounds with known and unknown efficacy against related arenaviruses, with the aim of identifying LUJV-specific and potential new pan-arenavirus antivirals. We identified six compounds demonstrating robust anti-LUJV activity, including several compounds with previously reported activity against other arenaviruses. These data provide critical evidence for developing broad-spectrum antivirals against high-consequence arenaviruses. |
Viral replicon particles protect IFNAR(-/-) mice against lethal Crimean-Congo hemorrhagic fever virus challenge three days after vaccination
Spengler JR , Welch SR , Scholte FEM , Rodriguez SE , Harmon JR , Coleman-McCray JD , Nichol ST , Montgomery JM , Bergeron É , Spiropoulou CF . Antiviral Res 2021 191 105090 Crimean-Congo hemorrhagic fever virus (CCHFV) causes mild to severe and fatal disease in humans. Person-to-person transmission is common, necessitating the availability of rapidly deliverable therapeutic and prophylactic interventions to mitigate CCHFV spread. Previously, we showed complete protection using one dose of a viral replicon particle (VRP) vaccine administered 28 days before CCHFV challenge. In order to determine the utility of the VRP vaccine for rapid vaccination protocols, we assessed the efficacy of such vaccination administered at various intervals relative to challenge in IFNAR(-/-) mice. Unvaccinated mice uniformly succumbed to disease by 8 days post infection (dpi). All mice vaccinated 14, 7, or 3 days prior to CCHFV challenge survived infection. Mice vaccinated -14 or -7 dpi were fully protected from clinical disease, whereas mice inoculated -3 dpi developed signs of disease prior to recovering to baseline values 5-9 dpi. These data support the utility of the VRP vaccine for modified short course vaccination protocols to protect against disease and severe outcomes. |
Hantavirus infection is inhibited by griffithsin in cell culture
Shrivastava-Ranjan P , Lo MK , Chatterjee P , Flint M , Nichol ST , Montgomery JM , O'Keefe BR , Spiropoulou CF . Front Cell Infect Microbiol 2020 10 561502 Andes virus (ANDV) and Sin Nombre virus (SNV), highly pathogenic hantaviruses, cause hantavirus pulmonary syndrome in the Americas. Currently no therapeutics are approved for use against these infections. Griffithsin (GRFT) is a high-mannose oligosaccharide-binding lectin currently being evaluated in phase I clinical trials as a topical microbicide for the prevention of human immunodeficiency virus (HIV-1) infection (ClinicalTrials.gov Identifiers: NCT04032717, NCT02875119) and has shown broad-spectrum in vivo activity against other viruses, including severe acute respiratory syndrome coronavirus, hepatitis C virus, Japanese encephalitis virus, and Nipah virus. In this study, we evaluated the in vitro antiviral activity of GRFT and its synthetic trimeric tandemer 3mGRFT against ANDV and SNV. Our results demonstrate that GRFT is a potent inhibitor of ANDV infection. GRFT inhibited entry of pseudo-particles typed with ANDV envelope glycoprotein into host cells, suggesting that it inhibits viral envelope protein function during entry. 3mGRFT is more potent than GRFT against ANDV and SNV infection. Our results warrant the testing of GRFT and 3mGRFT against ANDV infection in animal models. |
Vaccination of contacts of Ebola virus disease survivors to prevent further transmission.
Doshi RH , Fleming M , Mukoka AK , Carter RJ , Hyde TB , Choi M , Nzaji MK , Bateyi SH , Christie A , Nichol ST , Damon IK , Beach M , Musenga EM , Fitter DL . Lancet Glob Health 2020 8 (12) e1455-e1456 On April 10, 2020, just 2 days before the anticipated declaration of the end of the North Kivu and Ituri Ebola virus disease (EVD) outbreak in DR Congo, and 53 days after the last confirmed case of EVD had been reported, a new case was confirmed. Sequencing of patient samples from the case in April and six others that followed indicated that these cases were likely to have come from a reintroduction of the virus from a persistently infected survivor.1 This group of cases marked the second flare-up linked to an EVD survivor during this outbreak. In November, 2019, a relapse case in North Kivu resulted in widespread transmission across multiple health zones, helping to extend the outbreak by at least 3 months. |
A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells.
Hua BL , Scholte FE , Ohlendorf V , Kopp A , Marklewitz M , Drosten C , Nichol ST , Spiropoulou C , Junglen S , Bergeron É . Elife 2020 9 Crimean-Congo Hemorrhagic Fever (CCHF) is the most widely distributed tick-borne viral infection in the world. Strikingly, reported mortality rates for CCHF are extremely variable, ranging from 5 to 80% (1). CCHF virus (CCHFV, Nairoviridae) exhibits extensive genomic sequence diversity across strains (2, 3). It is currently unknown if genomic diversity is a factor contributing to variation in its pathogenicity. We obtained complete genome sequences of CCHFV directly from the tick reservoir. These new strains belong to a solitary lineage named Europe 2 that is circumstantially reputed to be less pathogenic than the epidemic strains from Europe 1 lineage. We identified a single tick-specific amino acid variant in the viral glycoprotein region that dramatically reduces its fusion activity in human cells, providing evidence that a GPC variant, present in ticks, have severely impaired function in human cells. |
Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases.
Lo MK , Albariño CG , Perry JK , Chang S , Tchesnokov EP , Guerrero L , Chakrabarti A , Shrivastava-Ranjan P , Chatterjee P , McMullan LK , Martin R , Jordan R , Götte M , Montgomery JM , Nichol ST , Flint M , Porter D , Spiropoulou CF . Proc Natl Acad Sci U S A 2020 117 (43) 26946-26954 Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted. |
Ebola Response Priorities in the Time of Covid-19.
Christie A , Neatherlin JC , Nichol ST , Beach M , Redfield RR . N Engl J Med 2020 383 (13) 1202-1204 On April 10, 2020, a total of 53 days after the last patient with Ebola virus disease (EVD) had been isolated and more than 23 months since the start of the 10th EVD outbreak in the Democratic Republic of Congo (DRC), a new confirmed case was reported in the Beni health zone. This case, and the six that followed, brought the total to 3462 cases — the second-largest Ebola outbreak in history. Although the outbreak was declared over on June 25, 2020, additional cases attributable to persistently infected survivors may occur. Therefore, surveillance and rapid-response capacity should be maintained, not only for a duration equivalent to two incubation periods (42 days) after the last confirmed case tested negative, but also for at least 90 additional days of enhanced surveillance. |
Lassa virus antigen distribution and inflammation in the ear of infected strain 13/N guinea pigs
Huynh T , Gary JM , Welch SR , Coleman-McCray J , Harmon JR , Kainulainen MH , Bollweg BC , Ritter JM , Shieh WJ , Nichol ST , Zaki SR , Spiropoulou CF , Spengler JR . Antiviral Res 2020 183 104928 Sudden sensorineuronal hearing loss (SNHL) is reported in approximately one-third of survivors of Lassa fever (LF) and remains the most prominent cause of Lassa virus- (LASV) associated morbidity in convalescence. Using a guinea pig model of LF, and incorporating animals from LASV vaccine trials, we investigated viral antigen distribution and histopathology in the ear of infected animals to elucidate the pathogenesis of hearing loss associated with LASV infection. Antigen was detected only in animals that succumbed to disease and was found within structures of the inner ear that are intimately associated with neural detection and/or translation of auditory stimuli and in adjacent vasculature. No inflammation or viral cytopathic changes were observed in the inner ear or surrounding structures in these animals. In contrast, no viral antigen was detected in the ear of surviving animals. However, all survivors that exhibited clinical signs of disease during the course of infection developed perivascular mononuclear inflammation within and adjacent to the ear, indicating an ongoing inflammatory response in these animals that may contribute to hearing loss. These data contribute to the knowledge of LASV pathogenesis in the auditory system, support an immune-mediated process resulting in LASV-associated hearing loss, and demonstrate that vaccination protecting animals from clinical disease can also prevent infection-associated auditory pathology. |
Characteristics of Ebola virus disease survivor blood and semen in Liberia: Serology and RT-PCR
Kofman A , Linderman S , Su K , Purpura LJ , Ervin E , Brown S , Morales-Betoulle M , Graziano J , Cannon DL , Klena JD , Desamu-Thorpe R , Fankhauser J , Orone R , Soka M , Glaybo U , Massaquoi M , Nysenswah T , Nichol ST , Kollie J , Kiawu A , Freeman E , Giah G , Tony H , Faikai M , Jawara M , Kamara K , Kamara S , Flowers B , Mohammed K , Chiriboga D , Williams DE , Hinrichs SH , Ahmed R , Vonhm B , Rollin PE , Choi MJ . Clin Infect Dis 2020 73 (11) e3641-e3646 INTRODUCTION: Ebola virus (EBOV), species Zaire ebolavirus, may persist in the semen of male survivors of Ebola Virus Disease (EVD). We conducted a study of male survivors of the 2014-2016 EVD outbreak in Liberia and evaluated their immune responses to EBOV. We report here findings from the serologic testing of blood for EBOV-specific antibodies, molecular testing for EBOV in blood and semen, and serologic testing of peripheral blood mononuclear cells (PBMCs) in a subset of study participants. METHODS: We tested for EBOV RNA in blood by qRT-PCR, and for anti-EBOV-specific IgM and IgG antibodies by enzyme-linked immunosorbent assay (ELISA) for 126 study participants. We performed peripheral blood mononuclear cell (PBMC) analysis on a subgroup of 26 IgG-negative participants. RESULTS: All 126 participants tested negative for EBOV RNA in blood by qRT-PCR. The blood of 26 participants tested negative for EBOV-specific IgG antibodies by ELISA. PBMCs were collected from 23/26 EBOV IgG-negative participants. Of these, 1/23 participants had PBMCs which produced anti-EBOV-specific IgG antibodies upon stimulation with EBOV-specific GP and NP antigens. DISCUSSION: The blood of EVD survivors, collected when they did not have symptoms meeting the case definition for acute or relapsed EVD, is unlikely to pose a risk for EBOV transmission. We identified one IgM/IgG negative participant who had PBMCs which produced anti-EBOV-specific antibodies upon stimulation. Immunogenicity following acute EBOV infection may exist along a spectrum and absence of antibody response should not be exclusionary in determining an individual's status as a survivor of EVD. |
Seoul virus infection and spread in US home-based ratteries-rat and human testing results from a multistate outbreak investigation.
Knust B , Brown S , de St Maurice A , Whitmer S , Koske SE , Ervin E , Patel K , Graziano J , Morales-Betoulle ME , House J , Cannon D , Kerins J , Holzbauer S , Austin C , Gibbons-Burgener S , Colton L , Dunn J , Zufan S , Choi MJ , Davis WR , Chiang CF , Manning CR , Roesch L , Shoemaker T , Purpura L , McQuiston J , Peterson D , Radcliffe R , Garvey A , Christel E , Morgan L , Scheftel J , Kazmierczak J , Klena JD , Nichol ST , Rollin PE . J Infect Dis 2020 222 (8) 1311-1319 BACKGROUND: During 2017, a multi-state outbreak investigation occurred following the confirmation of Seoul virus (SEOV) infections in people and pet rats. A total of 147 humans and 897 rats were tested. METHODS: In addition to IgG and IgM serology and traditional RT-PCR, novel quantitative RT-PCR primers/probe were developed, and whole genome sequencing was performed. RESULTS: Seventeen people had SEOV IgM, indicating recent infection; seven reported symptoms and three were hospitalized. All patients recovered. Thirty-one facilities in 11 US states had SEOV infection, and among those with >/=10 rats tested, rat IgG prevalence ranged 2-70% and SEOV RT-PCR positivity ranged 0-70%. Human lab-confirmed cases were significantly associated with rat IgG positivity and RT-PCR positivity (p=0.03 and p=0.006, respectively). Genomic sequencing identified >99.5% homology between SEOV sequences in this outbreak, and these were >99% identical to SEOV associated with previous pet rat infections in England, the Netherlands, and France. Frequent trade of rats between home-based ratteries contributed to transmission of SEOV between facilities. CONCLUSIONS: Pet rat owners, breeders, and the healthcare and public health community should be aware and take steps to prevent SEOV transmission in pet rats and to humans. Biosecurity measures and diagnostic testing can prevent further infections. |
The Crimean-Congo Hemorrhagic Fever Virus NSm Protein is Dispensable for Growth In Vitro and Disease in Ifnar -/- Mice.
Welch SR , Scholte FEM , Spengler JR , Ritter JM , Coleman-McCray JD , Harmon JR , Nichol ST , Zaki SR , Spiropoulou CF , Bergeron E . Microorganisms 2020 8 (5) Crimean-Congo hemorrhagic fever virus (CCHFV) is a tri-segmented, tick-borne nairovirus that causes disease of ranging severity in humans. The CCHFV M segment encodes a complex glycoprotein precursor (GPC) that undergoes extensive endoproteolytic cleavage, giving rise to two structural proteins (Gn and Gc) required for virus attachment and entry, and to multiple non-structural proteins (NSm, GP160, GP85, and GP38). The functions of these non-structural proteins remain largely unclear. Here, we investigate the role of NSm during infection by generating a recombinant CCHFV lacking the complete NSm domain (10200NSm) and observing CCHFV NSm replication in cell lines and pathogenicity in Ifnar(-/-) mice. Our data demonstrate that the NSm domain is dispensable for viral replication in vitro, and, despite the delayed onset of clinical signs, CCHFV lacking this domain caused severe or lethal disease in infected mice. |
Immunologic timeline of Ebola virus disease and recovery in humans
McElroy AK , Akondy RS , McLlwain DR , Chen H , Bjornson-Hooper Z , Mukherjee N , Mehta AK , Nolan G , Nichol ST , Spiropoulou CF . JCI Insight 2020 5 (10) A complete understanding of human immune responses to Ebola virus infection is limited by the availability of specimens and the requirement for biosafety level 4 (BSL-4) containment. In an effort to bridge this gap, we evaluated cryopreserved PBMCs from 4 patients who survived Ebola virus disease (EVD) using an established mass cytometry antibody panel to characterize various cell populations during both the acute and convalescent phases. Acute loss of nonclassical monocytes and myeloid DCs, especially CD1c+ DCs, was noted. Classical monocyte proliferation and CD38 upregulation on plasmacytoid DCs coincided with declining viral load. Unsupervised analysis of cell abundance demonstrated acute declines in monocytic, NK, and T cell populations, but some populations, many of myeloid origin, increased in abundance during the acute phase, suggesting emergency hematopoiesis. Despite cell losses during the acute phase, upregulation of Ki-67 correlated with recovery of cell populations over time. These data provide insights into the human immune response during EVD. |
Rift Valley fever virus vaccination induces long-lived, antigen-specific human T cell responses
Harmon JR , Barbeau DJ , Nichol ST , Spiropoulou CF , McElroy AK . NPJ Vaccines 2020 5 (1) 17 Rift Valley fever virus (RVFV) is a zoonotic arbovirus of clinical significance in both livestock and humans. A formalin-inactivated virus preparation was initially developed for human use and tested in laboratory workers in the 1960s. Vaccination resulted in generation of neutralizing antibody titers in most recipients, but neutralization titers waned over time, necessitating frequent booster doses. In this study, T cell-based immune responses to the formalin-inactivated vaccine were examined in a cohort of seven individuals who received between 1 and 6 doses of the vaccine. RVFV-specific T cell responses were detectable up to 24 years post vaccination. Peripheral blood mononuclear cells from this cohort of individuals were used to map out the viral epitopes targeted by T cells in humans. These data provide tools for assessing human RVFV-specific T cell responses and are thus a valuable resource for future human RVFV vaccine efforts. |
Changing contact patterns over disease progression: Nipah virus as a case study
Lee KH , Nikolay B , Sazzad HMS , Hossain MJ , Khan Akmd , Rahman M , Satter SM , Nichol ST , Klena JD , Pulliam JRC , Kilpatrick AM , Sultana S , Afroj S , Daszak P , Luby S , Cauchemez S , Salje H , Gurley E . J Infect Dis 2020 222 (3) 438-442 Contact patterns play a key role in disease transmission, and variation in contacts during the course of illness can influence transmission, particularly when accompanied by changes in host infectiousness. We used surveys among 1,642 contacts of 94 Nipah case-patients in Bangladesh to determine how contact patterns (physical and with bodily fluids) changed as disease progressed in severity. The number of contacts increased with severity and, for case-patients who died, peaked on the day of death. Given transmission has only been observed among fatal Nipah cases, our findings suggest changes in contact patterns during illness contribute to risk of infection. |
Experimental infection of Egyptian rousette bats (Rousettus aegyptiacus) with Sosuga virus demonstrates potential transmission routes for a bat-borne human pathogenic paramyxovirus
Amman BR , Schuh AJ , Sealy TK , Spengler JR , Welch SR , Kirejczyk SGM , Albarino CG , Nichol ST , Towner JS . PLoS Negl Trop Dis 2020 14 (3) e0008092 In August 2012, a wildlife biologist became severely ill after becoming infected with a novel paramyxovirus, termed Sosuga virus. In the weeks prior to illness, the patient worked with multiple species of bats in South Sudan and Uganda, including Egyptian rousette bats (ERBs: Rousettus aegyptiacus). A follow-up study of Ugandan bats found multiple wild-caught ERBs to test positive for SOSV in liver and spleen. To determine the competency of these bats to act as a natural reservoir host for SOSV capable of infecting humans, captive-bred ERBs were inoculated with a recombinant SOSV, representative of the patient's virus sequence. The bats were inoculated subcutaneously, sampled daily (blood, urine, fecal, oral and rectal swabs) and serially euthanized at predetermined time points. All inoculated bats became infected with SOSV in multiple tissues and blood, urine, oral, rectal and fecal swabs tested positive for SOSV RNA. No evidence of overt morbidity or mortality were observed in infected ERBs, although histopathological examination showed subclinical disease in a subset of tissues. Importantly, SOSV was isolated from oral/rectal swabs, urine and feces, demonstrating shedding of infectious virus concomitant with systemic infection. All bats euthanized at 21 days post-inoculation (DPI) seroconverted to SOSV between 16 and 21 DPI. These results are consistent with ERBs being competent reservoir hosts for SOSV with spillover potential to humans. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 22, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure