Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-16 (of 16 Records) |
Query Trace: Ng TF[original query] |
---|
A diverse group of small circular ssDNA viral genomes in human and non-human primate stools.
Ng TF , Zhang W , Sachsenröder J , Kondov NO , da Costa AC , Vega E , Holtz LR , Wu G , Wang D , Stine CO , Antonio M , Mulvaney US , Muench MO , Deng X , Ambert-Balay K , Pothier P , Vinjé J , Delwart E . Virus Evol 2015 1 (1) vev017 ![]() Viral metagenomics sequencing of fecal samples from outbreaks of acute gastroenteritis from the US revealed the presence of small circular ssDNA viral genomes encoding a replication initiator protein (Rep). Viral genomes were ∼2.5 kb in length, with bi-directionally oriented Rep and capsid (Cap) encoding genes and a stem loop structure downstream of Rep. Several genomes showed evidence of recombination. By digital screening of an in-house virome database (1.04 billion reads) using BLAST, we identified closely related sequences from cases of unexplained diarrhea in France. Deep sequencing and PCR detected such genomes in 7 of 25 US (28 percent) and 14 of 21 French outbreaks (67 percent). One of eighty-five sporadic diarrhea cases in the Gambia was positive by PCR. Twenty-two complete genomes were characterized showing that viruses from patients in the same outbreaks were closely related suggesting common origins. Similar genomes were also characterized from the stools of captive chimpanzees, a gorilla, a black howler monkey, and a lemur that were more diverse than the human stool-associated genomes. The name smacovirus is proposed for this monophyletic viral clade. Possible tropism include mammalian enteric cells or ingested food components such as infected plants. No evidence of viral amplification was found in immunodeficient mice orally inoculated with smacovirus-positive stool supernatants. A role for smacoviruses in diarrhea, if any, remains to be demonstrated. |
Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses (preprint)
Marine RL , Magana LC , Castro CJ , Zhao K , Montmayeur AM , Schmidt A , Diez-Valcarce M , Fan Ng TF , Vinje J , Burns CC , Allan Nix W , Rota PA , Oberste MS . bioRxiv 2019 705632 Next-generation sequencing is a powerful tool for virological surveillance. While Illumina® and Ion Torrent® sequencing platforms are used extensively for generating viral RNA genome sequences, there is limited data comparing different platforms. We evaluated the Illumina MiSeq, Ion Torrent PGM and Ion Torrent S5 platforms using a panel of sixteen specimens containing picornaviruses and human caliciviruses (noroviruses and sapoviruses). The specimens were processed, using combinations of three library preparation and five sequencing kits, to assess the quality and completeness of assembled viral genomes, and an estimation of cost per sample to generate the data was calculated. The choice of library preparation kit and sequencing platform was found to impact the breadth of genome coverage and accuracy of consensus viral genomes. The Ion Torrent S5 outperformed the older Ion Torrent PGM platform in data quality and cost, and generated the highest proportion of reads for enterovirus D68 samples. However, indels at homopolymer regions impacted the accuracy of consensus genome sequences. For lower throughput sequencing runs (i.e., Ion Torrent 510 or Illumina MiSeq Nano V2), the cost per sample was lower on the MiSeq platform, whereas with higher throughput runs (Ion Torrent 530 or Illumina MiSeq V2) the cost per sample was comparable. These findings suggest that the Ion Torrent S5 and Illumina MiSeq platforms are both viable options for genomic sequencing of RNA viruses, each with specific advantages and tradeoffs. |
Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses.
Marine RL , Magana LC , Castro CJ , Zhao K , Montmayeur AM , Schmidt A , Diez-Valcarce M , Fan Ng TF , Vinje J , Burns CC , Allan Nix W , Rota PA , Oberste MS . J Virol Methods 2020 280 113865 ![]() Next-generation sequencing is a powerful tool for virological surveillance. While Illumina(R) and Ion Torrent(R) sequencing platforms are used extensively for generating viral RNA genome sequences, there is limited data comparing different platforms. The Illumina MiSeq, Ion Torrent PGM and Ion Torrent S5 platforms were evaluated using a panel of sixteen specimens containing picornaviruses and human caliciviruses (noroviruses and sapoviruses). The specimens were processed, using combinations of three library preparation and five sequencing kits, to assess the quality and completeness of assembled viral genomes, and an estimation of cost per sample to generate the data was calculated. The choice of library preparation kit and sequencing platform was found to impact the breadth of genome coverage and accuracy of consensus viral genomes. The Ion Torrent S5 510 chip runs produced more reads at a lower cost per sample than the highest output Ion Torrent PGM 318 chip run, and generated the highest proportion of reads for enterovirus D68 samples. However, indels at homopolymer regions impacted the accuracy of consensus genome sequences. For lower throughput sequencing runs (i.e., Ion Torrent 510 and Illumina MiSeq Nano V2), the cost per sample was lower on the MiSeq platform, whereas with higher throughput runs (Ion Torrent 530 and Illumina MiSeq V2) there is less of a difference in the cost per sample between the two sequencing platforms ($5.47-$10.25 more per sample for an Ion Torrent 530 chip run when multiplexing 24 samples). These findings suggest that the Ion Torrent S5 and Illumina MiSeq platforms are both viable options for genomic sequencing of RNA viruses, each with specific advantages and tradeoffs. |
Genomic Characterization of Three Melon Necrotic Spot Viruses Detected in Human Stool Specimens.
Marine R , Castro C , Magana L , Ng TF , Aswath K , Collins N , Park GW , Vinje J , Oberste MS . Genome Announc 2017 5 (11) ![]() The complete coding sequences of three melon necrotic spot viruses (MNSVs) were obtained from viral metagenomics of stool samples from patients with acute gastroenteritis. These genomes were most similar to Spanish strains sequenced in 2003 and a novel MNSV watermelon strain in 2014. |
Detection and Genomic Characterization of Enterovirus D68 in Respiratory Samples Isolated in the United States in 2016.
Ng TF , Montmayeur A , Castro C , Cone M , Stringer J , Lamson DM , Rogers SL , Wang Chern SW , Magana L , Marine R , Rubino H , Serinaldi D , George KS , Nix WA . Genome Announc 2016 4 (6) ![]() ![]() The genomic sequences of three 2016 enterovirus D68 (EV-D68) strains were obtained from respiratory samples of patients from Florida, Texas, and New York. These EV-D68 sequences share highest nucleotide identities with strains that circulated in North America, Europe, and Asia in 2014-2015. |
Molecular characterization of a novel orthomyxovirus from rainbow and steelhead trout (Oncorhynchus mykiss).
Batts WN , LaPatra SE , Katona R , Leis E , Ng TF , Brieuc MS , Breyta RB , Purcell MK , Conway CM , Waltzek TB , Delwart E , Winton JR . Virus Res 2017 230 38-49 ![]() A novel virus, rainbow trout orthomyxovirus (RbtOV), was isolated in 1997 and again in 2000 from commercially-reared rainbow trout (Oncorhynchus mykiss) in Idaho, USA. The virus grew optimally in the CHSE-214 cell line at 15 degrees C producing a diffuse cytopathic effect; however, juvenile rainbow trout exposed to cell culture-grown virus showed no mortality or gross pathology. Electron microscopy of preparations from infected cell cultures revealed the presence of typical orthomyxovirus particles. The complete genome of RbtOV is comprised of eight linear segments of single-stranded, negative-sense RNA having highly conserved 5' and 3'-terminal nucleotide sequences. Another virus isolated in 2014 from steelhead trout (also O. mykiss) in Wisconsin, USA, and designated SttOV was found to have eight genome segments with high amino acid sequence identities (89-99%) to the corresponding genes of RbtOV, suggesting these new viruses are isolates of the same virus species and may be more widespread than currently realized. The new isolates had the same genome segment order and the closest pairwise amino acid sequence identities of 16-42% with Infectious salmon anemia virus (ISAV), the type species and currently only member of the genus Isavirus in the family Orthomyxoviridae. However, pairwise comparisons of the predicted amino acid sequences of the 10 RbtOV and SttOV proteins with orthologs from representatives of the established orthomyxoviral genera and a phylogenetic analysis using the PB1 protein showed that while RbtOV and SttOV clustered most closely with ISAV, they diverged sufficiently to merit consideration as representatives of a novel genus. A set of PCR primers was designed using conserved regions of the PB1 gene to produce amplicons that may be sequenced for identification of similar fish orthomyxoviruses in the future. |
High-Throughput Next Generation Sequencing of Polioviruses.
Montmayeur AM , Ng TF , Schmidt A , Zhao K , Magana L , Iber J , Castro CJ , Chen Q , Henderson E , Ramos E , Shaw J , Tatusov RL , Dybdahl-Sissoko N , Endegue-Zanga MC , Adeniji JA , Oberste MS , Burns CC . J Clin Microbiol 2016 55 (2) 606-615 ![]() Poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the VP1 capsid region is the current standard method for PV surveillance; however, the whole genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole genome sequencing protocols for poliovirus isolates and FTA cards using NGS, aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random RT, amplification, and the Nextera XT DNA Library Preparation Kit produced significantly better results than other preparations. Average viral reads per total reads, a measurement of efficiency, is as high as 84.2% +/- 15.6%; PV genomes covering >99-100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach can facilitate the detection of a diverse range of PV, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to previous studies on other viruses, our results showed that filtration and nuclease treatment did not produce discernable increases in sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. |
Investigation of epizootic papillomatosis in bluegill Lepomis macrochirus (Rafinesque 1810) using next-generation sequencing.
Dill JA , Williams SM , Leary JH , Ng TF , Camus AC . J Fish Dis 2016 40 (7) 947-952 ![]() Orocutaneous neplasms in fish have been recognized for over a century. Most are benign epidermal hyperplasias and papillomas, with rare squamous cell carcinomas. In the brown bullhead Ameiurus nebulous, evidence suggests a possible chemical aetiology, while virus or virus-like particles have been demonstrated in other species. Some sources relate tumour development to potential interactions between environmental contaminants and viruses. Several tumour-associtaed cirus particles have been tentatively identified based on morphology only, including herpesviruses, retroviruses, adenoviruses and others. |
Bunyaviruses are common in male and female Ixodes scapularis ticks in central Pennsylvania
Sakamoto JM , Ng TF , Suzuki Y , Tsujimoto H , Deng X , Delwart E , Rasgon JL . PeerJ 2016 4 e2324 The blacklegged tick Ixodes scapularis is widely distributed in the United States and transmits multiple pathogens to humans, wildlife and domestic animals. Recently, several novel viruses in the family Bunyaviridae (South Bay virus (SBV) and Blacklegged tick phlebovirus (BTPV)) were identified infecting female I. scapularis ticks collected in New York State. We used metagenomic sequencing to investigate the distribution of viruses infecting male and female I. scapularis ticks collected in Centre County, Pennsylvania. We identified both SBV and BTPV in both male and female ticks from all collection locations. The role of male I. scapularis in pathogen epidemiology has been overlooked because they rarely bite and are not considered important pathogen vectors. However, males may act as reservoirs for pathogens that can then be transmitted to females during mating. Our data highlight the importance of examining all potential avenues of pathogen maintenance and transmission throughout the vector-pathogen life cycle in order to understand the epidemiology of tick-borne pathogens. |
Complete Sequence of the Smallest Polyomavirus Genome, Giant Guitarfish (Rhynchobatus djiddensis) Polyomavirus 1.
Dill JA , Ng TF , Camus AC . Genome Announc 2016 4 (3) ![]() Polyomaviruses are known to infect mammals and birds. Deep sequencing and metagenomic analysis identified the first polyomavirus from a cartilaginous fish, the giant guitarfish (Rhynchobatus djiddensis). Giant guitarfish polyomavirus 1 (GfPyV1) has typical polyomavirus genome organization, but is the smallest polyomavirus genome (3.96 kb) described to date. |
Genomic Sequence of the First Porcine Rotavirus Group H Strain in the United States.
Hull JJ , Marthaler D , Rossow S , Ng TF , Montmayeur AM , Magana L , Moon SS , Jiang B . Genome Announc 2016 4 (2) ![]() The genomic sequence of a rotavirus group H was identified in the intestine of a diarrheal pig in the United States, designated RVH/Pig-wt/USA/MN9.65/2008/GxP[x]. |
Characterization of a Salivirus (Picornaviridae) from a Diarrheal Child in Guatemala.
Ng TF , Magana L , Montmayeur A , Lopez MR , Gregoricus N , Oberste MS , Vinje J , Nix WA . Genome Announc 2016 4 (1) ![]() The complete genome sequence of a salivirus was identified in a stool sample from a Guatemalan child with acute gastroenteritis during a 2009 norovirus outbreak. This genome (genotype A1 strain GUT/2009/A-1746) shares 82% to 94% genome-wide nucleotide identity with saliviruses from the United States, China, Germany, and Nigeria, representing the first salivirus sequence from Central America. |
Rabovirus: a proposed new picornavirus genus that is phylogenetically basal to enteroviruses and sapeloviruses.
Ng TF , Sachsenroder J , Reuter G , Knowles NJ , Delwart E , Johne R . Arch Virol 2015 160 (10) 2569-75 ![]() We have sequenced the genome of a novel picornavirus, rabovirus A (rat-borne virus, RaBoV-A, NC_026314), which was present in the feces of a Norway rat (Rattus norvegicus) from Berlin, Germany. This virus is related to members of the genera Enterovirus and Sapelovirus. RaboV-A contains a type II IRES that is unlike the type I IRES elements of enteroviruses and the type IV elements of sapeloviruses. Its genome is marked by an L protein and a chymotrypsin-like 2A protease. Our analysis of genome organization, pairwise identities, motif, phylogenic and UTR (GIMPU) indicates that RaBoV-A potentially represents a new picornavirus genus, for which we propose the name "Rabovirus". Spread by their rodent hosts and detected in New York and Berlin rats, these viruses may have a wide geographic distribution. |
A tortoise-infecting picornavirus expands the host range of the family Picornaviridae
Ng TF , Wellehan JF , Coleman JK , Kondov NO , Deng X , Waltzek TB , Reuter G , Knowles NJ , Delwart E . Arch Virol 2015 160 (5) 1319-23 While picornaviruses can cause diseases in many mammals, little is known of their host range for replication in non-mammalian vertebrates. Here, a picornavirus in liver and kidney tissues from diseased Sulawesi tortoises (Indotestudo forsteni) was genetically characterized. Tortoise rafivirus A (ToRaV-A, KJ415177) represents a potential new genus in the family Picornaviridae, for which we propose the name "Rafivirus". Our finding confirms the susceptibility of reptiles to picornaviruses. |
Divergent picobirnaviruses in human feces.
Ng TF , Vega E , Kondov NO , Markey C , Deng X , Gregoricus N , Vinje J , Delwart E . Genome Announc 2014 2 (3) ![]() The near-complete genomes of two picobirnaviruses (PBVs) in diarrheal stool samples, human picobirnaviruses D and E (HuPBV-D and -E), were genetically characterized. Their RNA-dependent RNA polymerase (RdRp) protein sequences had <66% identities to known PBVs. Due to a single nucleotide insertion, the open reading frame 2 (ORF2) in segment 1 of HuPBV-D was interrupted by a stop codon. A small stem-loop structure overlying the stop codon may result in translational readthrough into the rest of ORF2. |
Feline fecal virome reveals novel and prevalent enteric viruses.
Ng TF , Mesquita JR , Nascimento MS , Kondov NO , Wong W , Reuter G , Knowles NJ , Vega E , Esona MD , Deng X , Vinje J , Delwart E . Vet Microbiol 2014 171 102-11 ![]() Humans keep more than 80 million cats worldwide, ensuring frequent exposure to their viruses. Despite such interactions the enteric virome of cats remains poorly understood. We analyzed a fecal sample from a single healthy cat from Portugal using viral metagenomics and detected five eukaryotic viral genomes. These viruses included a novel picornavirus (proposed genus "Sakobuvirus") and bocavirus (feline bocavirus 2), a variant of feline astrovirus 2 and sequence fragments of a highly divergent feline rotavirus and picobirnavirus. Feline sakobuvirus A represents the prototype species of a proposed new genus in the Picornaviridae family, distantly related to human salivirus and kobuvirus. Feline astroviruses (mamastrovirus 2) are the closest known relatives of the classic human astroviruses (mamastrovirus 1), suggestive of past cross-species transmission. Presence of these viruses by PCR among Portuguese cats was detected in 13% (rotavirus), 7% (astrovirus), 6% (bocavirus), 4% (sakobuvirus), and 4% (picobirnavirus) of 55 feline fecal samples. Co-infections were frequent with 40% (4/10) of infected cats shedding more than one of these five viruses. Our study provides an initial description of the feline fecal virome indicating a high level of asymptomatic infections. Availability of the genome sequences of these viruses will facilitate future tropism and feline disease association studies. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure