Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-8 (of 8 Records) |
Query Trace: Neatherlin John[original query] |
---|
Ebola Virus Disease Outbreak - Democratic Republic of the Congo, August 2018-November 2019.
Aruna A , Mbala P , Minikulu L , Mukadi D , Bulemfu D , Edidi F , Bulabula J , Tshapenda G , Nsio J , Kitenge R , Mbuyi G , Mwanzembe C , Kombe J , Lubula L , Shako JC , Mossoko M , Mulangu F , Mutombo A , Sana E , Tutu Y , Kabange L , Makengo J , Tshibinkufua F , Ahuka-Mundeke S , Muyembe JJ , Ebola Response CDC , Alarcon Walter , Bonwitt Jesse , Bugli Dante , Bustamante Nirma D , Choi Mary , Dahl Benjamin A , DeCock Kevin , Dismer Amber , Doshi Reena , Dubray Christine , Fitter David , Ghiselli Margherita , Hall Noemi , Hamida Amen Ben , McCollum Andrea M , Neatherlin John , Raghunathan Pratima L , Ravat Fatima , Reynolds Mary G , Rico Adriana , Smith Nailah , Soke Gnakub Norbert , Trudeau Aimee T , Victory Kerton R , Worrell Mary Claire . MMWR Morb Mortal Wkly Rep 2019 68 (50) 1162-1165 On August 1, 2018, the Democratic Republic of the Congo Ministry of Health (DRC MoH) declared the tenth outbreak of Ebola virus disease (Ebola) in DRC, in the North Kivu province in eastern DRC on the border with Uganda, 8 days after another Ebola outbreak was declared over in northwest Équateur province. During mid- to late-July 2018, a cluster of 26 cases of acute hemorrhagic fever, including 20 deaths, was reported in North Kivu province.* Blood specimens from six patients hospitalized in the Mabalako health zone and sent to the Institut National de Recherche Biomédicale (National Biomedical Research Institute) in Kinshasa tested positive for Ebola virus. Genetic sequencing confirmed that the outbreaks in North Kivu and Équateur provinces were unrelated. From North Kivu province, the outbreak spread north to Ituri province, and south to South Kivu province (1). On July 17, 2019, the World Health Organization designated the North Kivu and Ituri outbreak a public health emergency of international concern, based on the geographic spread of the disease to Goma, the capital of North Kivu province, and to Uganda and the challenges to implementing prevention and control measures specific to this region (2). This report describes the outbreak in the North Kivu and Ituri provinces. As of November 17, 2019, a total of 3,296 Ebola cases and 2,196 (67%) deaths were reported, making this the second largest documented outbreak after the 2014-2016 epidemic in West Africa, which resulted in 28,600 cases and 11,325 deaths.(†) Since August 2018, DRC MoH has been collaborating with partners, including the World Health Organization, the United Nations Children's Fund, the United Nations Office for the Coordination of Humanitarian Affairs, the International Organization of Migration, The Alliance for International Medical Action (ALIMA), Médecins Sans Frontières, DRC Red Cross National Society, and CDC, to control the outbreak. Enhanced communication and effective community engagement, timing of interventions during periods of relative stability, and intensive training of local residents to manage response activities with periodic supervision by national and international personnel are needed to end the outbreak. |
Pilot Investigation of SARS-CoV-2 Secondary Transmission in Kindergarten Through Grade 12 Schools Implementing Mitigation Strategies - St. Louis County and City of Springfield, Missouri, December 2020.
Dawson P , Worrell MC , Malone S , Tinker SC , Fritz S , Maricque B , Junaidi S , Purnell G , Lai AM , Neidich JA , Lee JS , Orscheln RC , Charney R , Rebmann T , Mooney J , Yoon N , Petit M , Schmidt S , Grabeel J , Neill LA , Barrios LC , Vallabhaneni S , Williams RW , Goddard C , Newland JG , Neatherlin JC , Salzer JS . MMWR Morb Mortal Wkly Rep 2021 70 (12) 449-455 Many kindergarten through grade 12 (K-12) schools offering in-person learning have adopted strategies to limit the spread of SARS-CoV-2, the virus that causes COVID-19 (1). These measures include mandating use of face masks, physical distancing in classrooms, increasing ventilation with outdoor air, identification of close contacts,* and following CDC isolation and quarantine guidance(†) (2). A 2-week pilot investigation was conducted to investigate occurrences of SARS-CoV-2 secondary transmission in K-12 schools in the city of Springfield, Missouri, and in St. Louis County, Missouri, during December 7-18, 2020. Schools in both locations implemented COVID-19 mitigation strategies; however, Springfield implemented a modified quarantine policy permitting student close contacts aged ≤18 years who had school-associated contact with a person with COVID-19 and met masking requirements during their exposure to continue in-person learning.(§) Participating students, teachers, and staff members with COVID-19 (37) from 22 schools and their school-based close contacts (contacts) (156) were interviewed, and contacts were offered SARS-CoV-2 testing. Among 102 school-based contacts who received testing, two (2%) had positive test results indicating probable school-based SARS-CoV-2 secondary transmission. Both contacts were in Springfield and did not meet criteria to participate in the modified quarantine. In Springfield, 42 student contacts were permitted to continue in-person learning under the modified quarantine; among the 30 who were interviewed, 21 were tested, and none received a positive test result. Despite high community transmission, SARS-CoV-2 transmission in schools implementing COVID-19 mitigation strategies was lower than that in the community. Until additional data are available, K-12 schools should continue implementing CDC-recommended mitigation measures (2) and follow CDC isolation and quarantine guidance to minimize secondary transmission in schools offering in-person learning. |
Minimal SARS-CoV-2 Transmission After Implementation of a Comprehensive Mitigation Strategy at a School - New Jersey, August 20-November 27, 2020.
Volpp KG , Kraut BH , Ghosh S , Neatherlin J . MMWR Morb Mortal Wkly Rep 2021 70 (11) 377-381 During fall 2020, many U.S. kindergarten through grade 12 (K-12) schools closed campuses and instituted remote learning to limit in-school transmission of SARS-CoV-2, the virus that causes COVID-19 (1,2). A New Jersey grade 9-12 boarding school with 520 full-time resident students, 255 commuter students, and 405 faculty and staff members implemented a comprehensive mitigation strategy that included universal masking, testing, upgraded air-handling equipment to improve ventilation, physical distancing of ≥6 ft, contact tracing, and quarantine and isolation protocols to prevent and control transmission of SARS-CoV-2 among students, faculty, and staff members. Mandatory twice-weekly screening using real-time reverse transcription-polymerase chain reaction (RT-PCR) testing of all students and staff members during August 20-November 27, 2020, resulted in the testing of 21,449 specimens. A total of 19 (5%) of 405 faculty and staff members and eight (1%) of 775 students received positive test results; only two identified cases were plausibly caused by secondary transmission on campus. Comprehensive mitigation approaches including frequent testing and universal masking can help prevent outbreaks in in-person high school settings even when community transmission is ongoing. |
SARS-CoV-2 Transmission Associated with High School Wrestling Tournaments - Florida, December 2020-January 2021.
Atherstone C , Siegel M , Schmitt-Matzen E , Sjoblom S , Jackson J , Blackmore C , Neatherlin J . MMWR Morb Mortal Wkly Rep 2021 70 (4) 141-143 On December 7, 2020, local public health officials in Florida county A were notified of a person with an antigen-positive SARS-CoV-2 test* result who had attended two high school wrestling tournaments held in the county on December 4 and 5. The tournaments included 10 participating high schools from three counties. The host school (school A in county A) participated in the tournaments on both days; five high school teams from two counties participated the first day only; four additional high school teams from the three counties participated the second day. A total of 130 wrestlers, coaches, and referees attended the tournaments (Table). During December 8-9, 13 wrestlers from school A received positive SARS-CoV-2 test results (Figure), including nine who were symptomatic, two who were asymptomatic, and two for whom symptom status at time of specimen collection was unknown. Local public health officials in the three counties initiated an investigation(†) and tested specimens from an additional 40 attendees from nine of the 10 participating schools. A total of 54 (41.5%) of the 130 tournament attendees received testing, and 38 cases of SARS-CoV-2 infection were identified; the minimum attack rate was 30.2% (38 of 126(§)), and 70.4% (38 of 54) of tests had a positive result. Among contacts of the 38 COVID-19 patients, 446 were determined by investigators to meet the CDC definition of a close contact,(¶) including 62 who were household contacts and 384 who were in-school contacts (classmates, teachers, noncompeting wrestling team members, and other school athletic team members). Among these 446 contacts, five had received a diagnosis of COVID-19 during June-November and were excluded from attack rate calculations. Among 95 (21.3%) contacts who received SARS-CoV-2 testing, 41 (43.2%) received a positive test result (minimum attack rate = 9.3% [41 of 441]); 21 (51.2%) persons with positive test results were symptomatic, eight (19.5%) were asymptomatic, and symptom status for 12 (29.3%) was unknown at the time of specimen collection. Among contacts, attack rates were highest among household members (30.0%) and wrestling team members who did not attend the tournament (20.3%), as were the percentages of positive test results (60.0% among household members and 54.2% among team members). Among all contacts, the odds of receiving a positive test result were highest among household contacts (odds ratio = 2.7; 95% confidence interval = 1.2-6.0). Local health authorities reported the death of one adult contact aged >50 years. |
Evaluation of Abbott BinaxNOW Rapid Antigen Test for SARS-CoV-2 Infection at Two Community-Based Testing Sites - Pima County, Arizona, November 3-17, 2020.
Prince-Guerra JL , Almendares O , Nolen LD , Gunn JKL , Dale AP , Buono SA , Deutsch-Feldman M , Suppiah S , Hao L , Zeng Y , Stevens VA , Knipe K , Pompey J , Atherstone C , Bui DP , Powell T , Tamin A , Harcourt JL , Shewmaker PL , Medrzycki M , Wong P , Jain S , Tejada-Strop A , Rogers S , Emery B , Wang H , Petway M , Bohannon C , Folster JM , MacNeil A , Salerno R , Kuhnert-Tallman W , Tate JE , Thornburg NJ , Kirking HL , Sheiban K , Kudrna J , Cullen T , Komatsu KK , Villanueva JM , Rose DA , Neatherlin JC , Anderson M , Rota PA , Honein MA , Bower WA . MMWR Morb Mortal Wkly Rep 2021 70 (3) 100-105 Rapid antigen tests, such as the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW), offer results more rapidly (approximately 15-30 minutes) and at a lower cost than do highly sensitive nucleic acid amplification tests (NAATs) (1). Rapid antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in symptomatic persons (2), but data are lacking on test performance in asymptomatic persons to inform expanded screening testing to rapidly identify and isolate infected persons (3). To evaluate the performance of the BinaxNOW rapid antigen test, it was used along with real-time reverse transcription-polymerase chain reaction (RT-PCR) testing to analyze 3,419 paired specimens collected from persons aged ≥10 years at two community testing sites in Pima County, Arizona, during November 3-17, 2020. Viral culture was performed on 274 of 303 residual real-time RT-PCR specimens with positive results by either test (29 were not available for culture). Compared with real-time RT-PCR testing, the BinaxNOW antigen test had a sensitivity of 64.2% for specimens from symptomatic persons and 35.8% for specimens from asymptomatic persons, with near 100% specificity in specimens from both groups. Virus was cultured from 96 of 274 (35.0%) specimens, including 85 (57.8%) of 147 with concordant antigen and real-time RT-PCR positive results, 11 (8.9%) of 124 with false-negative antigen test results, and none of three with false-positive antigen test results. Among specimens positive for viral culture, sensitivity was 92.6% for symptomatic and 78.6% for asymptomatic individuals. When the pretest probability for receiving positive test results for SARS-CoV-2 is elevated (e.g., in symptomatic persons or in persons with a known COVID-19 exposure), a negative antigen test result should be confirmed by NAAT (1). Despite a lower sensitivity to detect infection, rapid antigen tests can be an important tool for screening because of their quick turnaround time, lower costs and resource needs, high specificity, and high positive predictive value (PPV) in settings of high pretest probability. The faster turnaround time of the antigen test can help limit transmission by more rapidly identifying infectious persons for isolation, particularly when used as a component of serial testing strategies. |
Ebola Response Priorities in the Time of Covid-19.
Christie A , Neatherlin JC , Nichol ST , Beach M , Redfield RR . N Engl J Med 2020 383 (13) 1202-1204 On April 10, 2020, a total of 53 days after the last patient with Ebola virus disease (EVD) had been isolated and more than 23 months since the start of the 10th EVD outbreak in the Democratic Republic of Congo (DRC), a new confirmed case was reported in the Beni health zone. This case, and the six that followed, brought the total to 3462 cases — the second-largest Ebola outbreak in history. Although the outbreak was declared over on June 25, 2020, additional cases attributable to persistently infected survivors may occur. Therefore, surveillance and rapid-response capacity should be maintained, not only for a duration equivalent to two incubation periods (42 days) after the last confirmed case tested negative, but also for at least 90 additional days of enhanced surveillance. |
Pathogen surveillance in the informal settlement, Kibera, Kenya, using a metagenomics approach.
Hendriksen RS , Lukjancenko O , Munk P , Hjelmso MH , Verani JR , Ng'eno E , Bigogo G , Kiplangat S , Oumar T , Bergmark L , Roder T , Neatherlin JC , Clayton O , Hald T , Karlsmose S , Pamp SJ , Fields B , Montgomery JM , Aarestrup FM . PLoS One 2019 14 (10) e0222531 BACKGROUND: Worldwide, the number of emerging and re-emerging infectious diseases is increasing, highlighting the importance of global disease pathogen surveillance. Traditional population-based methods may fail to capture important events, particularly in settings with limited access to health care, such as urban informal settlements. In such environments, a mixture of surface water runoff and human feces containing pathogenic microorganisms could be used as a surveillance surrogate. METHOD: We conducted a temporal metagenomic analysis of urban sewage from Kibera, an urban informal settlement in Nairobi, Kenya, to detect and quantify bacterial and associated antimicrobial resistance (AMR) determinants, viral and parasitic pathogens. Data were examined in conjunction with data from ongoing clinical infectious disease surveillance. RESULTS: A large variation of read abundances related to bacteria, viruses, and parasites of medical importance, as well as bacterial associated antimicrobial resistance genes over time were detected. Significant increased abundances were observed for a number of bacterial pathogens coinciding with higher abundances of AMR genes. Vibrio cholerae as well as rotavirus A, among other virus peaked in several weeks during the study period whereas Cryptosporidium spp. and Giardia spp, varied more over time. CONCLUSION: The metagenomic surveillance approach for monitoring circulating pathogens in sewage was able to detect putative pathogen and resistance loads in an urban informal settlement. Thus, valuable if generated in real time to serve as a comprehensive infectious disease agent surveillance system with the potential to guide disease prevention and treatment. The approach may lead to a paradigm shift in conducting real-time global genomics-based surveillance in settings with limited access to health care. |
Evaluation of TaqMan Array Card (TAC) for the Detection of Central Nervous System Infections in Kenya.
Onyango CO , Loparev V , Lidechi S , Bhullar V , Schmid DS , Radford K , Lo MK , Rota P , Johnson BW , Munoz J , Oneko M , Burton D , Black CM , Neatherlin J , Montgomery JM , Fields B . J Clin Microbiol 2017 55 (7) 2035-2044 Infections of the central nervous system (CNS) are often acute with significant morbidity and mortality. Routine diagnosis of such infections is limited in developing countries and requires modern equipment in advanced laboratories that may be unavailable to a number of patients in sub-Saharan Africa. We developed a TaqMan Array Card (TAC) that detects multiple pathogens simultaneously from cerebrospinal fluid (CSF). The 21-pathogen TAC assays include two parasites (Balamuthia mandrillaris and Acanthamoeba), six bacterial pathogens (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Mycoplasma pneumoniae, Mycobacterium tuberculosis, and Bartonella) and 13 viruses (parechovirus, dengue, nipah, varicella zoster, mumps, measles, lyssa, herpes simplex virus 1 and 2, Epstein Barr virus, enterovirus, cytomegalovirus and chikungunya). The card also includes human RNAse P as a nucleic acid extraction control and an internal manufacturer control (glyceraldehyde 3-phosphate dehydrogenase (GAPDH)). This CNS-TAC can test up to eight samples for all 21 agents within 2.5 hours following nucleic acid extraction. The assay was validated for linearity, limit of detection, sensitivity and specificity by either using live viruses (dengue, mumps and measles) or nucleic acid material (nipah and chikungunya). Of the 120 samples tested by individual real-time PCR (IRTP), 35 were positive for eight different targets while CNS-TAC detected 37 positive samples across nine different targets. The TAC assays showed 85.6% sensitivity and 96.7% specificity across the assays. This assay may be useful for outbreak investigation and surveillance of suspected neurological disease. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure