Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Munyua Peninah[original query] |
---|
First cases of SARS-CoV-2 infection and secondary transmission in Kisumu, Kenya
Tippett Barr Beth A , Herman-Roloff Amy , Mburu Margaret , Murnane Pamela M , Sang Norton , Bukusi Elizabeth , Oele Elizabeth , Odhiambo Albert , Lewis-Kulzer Jayne , Onyango Clayton O , Hunsperger Elizabeth , Odhiambo Francesca , Joseph Rachel H , Munyua Peninah , Othieno Kephas , Mulwa Edwin , Akelo Victor , Muok Erick , Bulterys Marc , Nzioka Charles , Cohen Craig R . PLoS Glob Public Health 2022 2 (9) e0000951 We investigated the first 152 laboratory-confirmed SARS-CoV-2 cases (125 primary and 27 secondary) and their 248 close contacts in Kisumu County, Kenya. Conducted June 10–October 8, 2020, this study included interviews and sample collection at enrolment and 14–21 days later. Median age was 35 years (IQR 28–44); 69.0% reported COVID-19 related symptoms, most commonly cough (60.0%), headache (55.2%), fever (53.3%) and loss of taste or smell (43.8%). One in five were hospitalized, 34.4% >25 years of age had at least one comorbidity, and all deaths had comorbidities. Adults ≥25 years with a comorbidity were 3.15 (95% CI 1.37–7.26) times more likely to have been hospitalized or died than participants without a comorbidity. Infectious comorbidities included HIV, tuberculosis, and malaria, but no current cases of influenza, respiratory syncytial virus, dengue fever, leptospirosis or chikungunya were identified. Thirteen (10.4%) of the 125 primary infections transmitted COVID-19 to 27 close contacts, 158 (63.7%) of whom resided or worked within the same household. Thirty-one percent (4 of 13) of those who transmitted COVID-19 to secondary cases were health care workers; no known secondary transmissions occurred between health care workers. This rapid assessment early in the course of the COVID-19 pandemic identified some context-specific characteristics which conflicted with the national line-listing of cases, and which have been substantiated in the year since. These included over two-thirds of cases reporting the development of symptoms during the two weeks after diagnosis, compared to the 7% of cases reported nationally; over half of cases reporting headaches, and nearly half of all cases reporting loss of taste and smell, none of which were reported at the time by the World Health Organization to be common symptoms. This study highlights the importance of rapid in-depth assessments of outbreaks in understanding the local epidemiology and response measures required. |
Low-Level Middle East Respiratory Syndrome Coronavirus among Camel Handlers, Kenya, 2019.
Munyua PM , Ngere I , Hunsperger E , Kochi A , Amoth P , Mwasi L , Tong S , Mwatondo A , Thornburg N , Widdowson MA , Njenga MK . Emerg Infect Dis 2021 27 (4) 1201-1205 Although seroprevalence of Middle East respiratory coronavirus syndrome is high among camels in Africa, researchers have not detected zoonotic transmission in Kenya. We followed a cohort of 262 camel handlers in Kenya during April 2018-March 2020. We report PCR-confirmed Middle East respiratory coronavirus syndrome in 3 asymptomatic handlers. |
Portable Rabies Virus Sequencing in Canine Rabies Endemic Countries Using the Oxford Nanopore MinION.
Gigante CM , Yale G , Condori RE , Costa NC , Long NV , Minh PQ , Chuong VD , Tho ND , Thanh NT , Thin NX , Hanh NTH , Wambura G , Ade F , Mito O , Chuchu V , Muturi M , Mwatondo A , Hampson K , Thumbi SM , Thomae BG , de Paz VH , Meneses S , Munyua P , Moran D , Cadena L , Gibson A , Wallace RM , Pieracci EG , Li Y . Viruses 2020 12 (11) ![]() ![]() As countries with endemic canine rabies progress towards elimination by 2030, it will become necessary to employ techniques to help plan, monitor, and confirm canine rabies elimination. Sequencing can provide critical information to inform control and vaccination strategies by identifying genetically distinct virus variants that may have different host reservoir species or geographic distributions. However, many rabies testing laboratories lack the resources or expertise for sequencing, especially in remote or rural areas where human rabies deaths are highest. We developed a low-cost, high throughput rabies virus sequencing method using the Oxford Nanopore MinION portable sequencer. A total of 259 sequences were generated from diverse rabies virus isolates in public health laboratories lacking rabies virus sequencing capacity in Guatemala, India, Kenya, and Vietnam. Phylogenetic analysis provided valuable insight into rabies virus diversity and distribution in these countries and identified a new rabies virus lineage in Kenya, the first published canine rabies virus sequence from Guatemala, evidence of rabies spread across an international border in Vietnam, and importation of a rabid dog into a state working to become rabies-free in India. Taken together, our evaluation highlights the MinION's potential for low-cost, high volume sequencing of pathogens in locations with limited resources. |
Investigating the meat pathway as a source of human nontyphoidal Salmonella bloodstream infections and diarrhea in East Africa.
Crump JA , Thomas KM , Benschop J , Knox MA , Wilkinson DA , Midwinter AC , Munyua P , Ochieng JB , Bigogo GM , Verani JR , Widdowson MA , Prinsen G , Cleaveland S , Karimuribo ED , Kazwala RR , Mmbaga BT , Swai ES , French NP , Zadoks RN . Clin Infect Dis 2020 73 (7) e1570-e1578 ![]() BACKGROUND: Salmonella Enteritidis and Salmonella Typhimurium are major causes of bloodstream infection and diarrheal disease in East Africa. Sources of human infection, including the role of the meat pathway, are poorly understood. METHODS: We collected cattle, goat, and poultry meat pathway samples from December 2015 through August 2017 in Tanzania and isolated Salmonella using standard methods. Meat pathway isolates were compared with nontyphoidal Salmonella (NTS) isolated from persons with bloodstream infection and diarrheal disease from 2007 through 2017 from Kenya by core genome multi-locus sequence typing (cgMLST). Isolates were characterized for antimicrobial resistance, virulence genes, and diversity. RESULTS: We isolated NTS from 164 meat pathway samples. Of 172 human NTS isolates, 90 (52.3%) from stool and 82 (47.7%) from blood, 53 (30.8%) were Salmonella Enteritidis ST11 and 62 (36.0%) Salmonella Typhimurium ST313. We identified cgMLST clusters within Salmonella Enteritidis ST11, Salmonella Heidelberg ST15, Salmonella Typhimurium ST 19, and Salmonella II 42:r:- ST1208 that included both human and meat pathway isolates. Salmonella Typhimurium ST313 was isolated exclusively from human samples. Human and poultry isolates bore more antimicrobial resistance and virulence genes and were less diverse than isolates from other sources. CONCLUSIONS: Our findings suggest that the meat pathway may be an important source of human infection by some clades of Salmonella Enteritidis ST11 in East Africa, but not of human Salmonella Typhimurium ST313 infection. Research is needed to systematically examine the contribution of other types of meat, animal products, produce, water, and environmental exposures to nontyphoidal Salmonella disease in East Africa. |
Identification and characterization of influenza A viruses in selected domestic animals in Kenya, 2010-2012.
Munyua P , Onyango C , Mwasi L , Waiboci LW , Arunga G , Fields B , Mott JA , Cardona CJ , Kitala P , Nyaga PN , Njenga MK . PLoS One 2018 13 (2) e0192721 ![]() BACKGROUND: Influenza A virus subtypes in non-human hosts have not been characterized in Kenya. We carried out influenza surveillance in selected domestic animals and compared the virus isolates with isolates obtained in humans during the same period. METHODS: We collected nasal swabs from pigs, dogs and cats; oropharyngeal and cloacal swabs from poultry; and blood samples from all animals between 2010 and 2012. A standardized questionnaire was administered to farmers and traders. Swabs were tested for influenza A by rtRT-PCR, virus isolation and subtyping was done on all positive swabs. All sera were screened for influenza A antibodies by ELISA, and positives were evaluated by hemagglutination inhibition (HI). Full genome sequencing was done on four selected pig virus isolates. RESULTS: Among 3,798 sera tested by ELISA, influenza A seroprevalence was highest in pigs (15.9%; 172/1084), 1.2% (3/258) in ducks, 1.4% (1/72) in cats 0.6% (3/467) in dogs, 0.1% (2/1894) in chicken and 0% in geese and turkeys. HI testing of ELISA-positive pig sera showed that 71.5% had positive titers to A/California/04/2009(H1N1). Among 6,289 swabs tested by rRT-PCR, influenza A prevalence was highest in ducks [1.2%; 5/423] and 0% in cats and turkeys. Eight virus isolates were obtained from pig nasal swabs collected in 2011 and were determined to be A(H1N1)pdm09 on subtyping. On phylogenetic analysis, four hemagglutinin segments from pig isolates clustered together and were closely associated with human influenza viruses that circulated in Kenya in 2011. CONCLUSION: Influenza A(H1N1)pdm09 isolated in pigs was genetically similar to contemporary human pandemic influenza virus isolates. This suggest that the virus was likely transmitted from humans to pigs, became established and circulated in Kenyan pig populations during the study period. Minimal influenza A prevalence was observed in the other animals studied. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure