Last data update: May 16, 2025. (Total: 49299 publications since 2009)
Records 1-6 (of 6 Records) |
Query Trace: Montague J[original query] |
---|
The Need for a Tiered Registry for US Gene Drive Governance.
Warmbrod KL , Kobokovich AL , West R , Gronvall GK , Montague M . Health Secur 2022 20 (1) 43-49 ![]() ![]() Scientists have explored gene drive technologies with the aim of controlling vector-borne diseases, including malaria, which killed an estimated 386,000 people in 2019.1 Gene drives are genetic modifications that can be used to create populations where a particular gene is passed from a parent organism to its offspring at a higher rate than would be expected under natural inheritance conditions.2 For example, mosquitoes that transmit malaria may be modified with a gene drive so that surviving offspring inherit and spread a gene that inhibits or alters the mosquitoes' infection potential. The drive would spread over subsequent generations, resulting in limited malaria transmission. Other gene drive strategies are designed to dramatically reduce the population of the carrying organism, such as a mosquito. Due to the broad-acting and potentially irreversible nature of these tools, current regulations may not be sufficient to mitigate the unique risks posed by gene drive technologies.3 |
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection.
Mesquita RD , Vionette-Amaral RJ , Lowenberger C , Rivera-Pomar R , Monteiro FA , Minx P , Spieth J , Carvalho AB , Panzera F , Lawson D , Torres AQ , Ribeiro JM , Sorgine MH , Waterhouse RM , Montague MJ , Abad-Franch F , Alves-Bezerra M , Amaral LR , Araujo HM , Araujo RN , Aravind L , Atella GC , Azambuja P , Berni M , Bittencourt-Cunha PR , Braz GR , Calderon-Fernandez G , Carareto CM , Christensen MB , Costa IR , Costa SG , Dansa M , Daumas-Filho CR , De-Paula IF , Dias FA , Dimopoulos G , Emrich SJ , Esponda-Behrens N , Fampa P , Fernandez-Medina RD , da Fonseca RN , Fontenele M , Fronick C , Fulton LA , Gandara AC , Garcia ES , Genta FA , Giraldo-Calderon GI , Gomes B , Gondim KC , Granzotto A , Guarneri AA , Guigo R , Harry M , Hughes DS , Jablonka W , Jacquin-Joly E , Juarez MP , Koerich LB , Latorre-Estivalis JM , Lavore A , Lawrence GG , Lazoski C , Lazzari CR , Lopes RR , Lorenzo MG , Lugon MD , Majerowicz D , Marcet PL , Mariotti M , Masuda H , Megy K , Melo AC , Missirlis F , Mota T , Noriega FG , Nouzova M , Nunes RD , Oliveira RL , Oliveira-Silveira G , Ons S , Pagola L , Paiva-Silva GO , Pascual A , Pavan MG , Pedrini N , Peixoto AA , Pereira MH , Pike A , Polycarpo C , Prosdocimi F , Ribeiro-Rodrigues R , Robertson HM , Salerno AP , Salmon D , Santesmasses D , Schama R , Seabra-Junior ES , Silva-Cardoso L , Silva-Neto MA , Souza-Gomes M , Sterkel M , Taracena ML , Tojo M , Tu ZJ , Tubio JM , Ursic-Bedoya R , Venancio TM , Walter-Nuno AB , Wilson D , Warren WC , Wilson RK , Huebner E , Dotson EM , Oliveira PL . Proc Natl Acad Sci U S A 2015 112 (48) 14936-14941 ![]() Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome ( approximately 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods. |
Analysis of putative mucosal SHIV susceptibility factors during repeated DMPA treatments in pigtail macaques
Butler K , Ritter J , Ellis S , Henning TR , Montague J , Zaki S , Garber D , McNicholl JM , Kersh EN . J Med Primatol 2015 44 (5) 286-95 BACKGROUND: Depot-medroxyprogesterone acetate (DMPA) has been associated in some studies with increased HIV susceptibility in women. We used a pigtail macaque model to document the effects of repeated DMPA treatments and their potential contribution to increased SHIV susceptibility. METHODS: Nine pigtails were administered 2.5, 1.5, or 0.5 mg/kg DMPA in study weeks one and four. Menstrual cycling, vaginal epithelial thickness, and other SHIV susceptibility factors were monitored for a mean of 24 study weeks. RESULTS: All DMPA treatments suppressed menstrual cycling and increased vaginal pH. The vaginal epithelium thinned naturally during baseline menstrual cycles (from mean of 351 to 161 mum in late-luteal phase). Following DMPA, the non-nucleated layer was temporarily absent. Two weeks post-second DMPA injection, mean epithelial thickness was 53, 45, and 167 mum for the descending doses, respectively. CONCLUSIONS: All animals showed temporal vaginal epithelial thinning with loss of the non-nucleated layer, and vaginal pH changes post-DMPA injections. |
Exserohilum infections associated with contaminated steroid injections: a clinicopathologic review of 40 cases
Ritter JM , Muehlenbachs A , Blau DM , Paddock CD , Shieh WJ , Drew CP , Batten BC , Bartlett JH , Metcalfe MG , Pham CD , Lockhart SR , Patel M , Liu L , Jones TL , Greer PW , Montague JL , White E , Rollin DC , Seales C , Stewart D , Deming MV , Brandt ME , Zaki SR . Am J Pathol 2013 183 (3) 881-92 September 2012 marked the beginning of the largest reported outbreak of infections associated with epidural and intra-articular injections. Contamination of methylprednisolone acetate with the black mold, Exserohilum rostratum, was the primary cause of the outbreak, with >13,000 persons exposed to the potentially contaminated drug, 741 confirmed drug-related infections, and 55 deaths. Fatal meningitis and localized epidural, paraspinal, and peripheral joint infections occurred. Tissues from 40 laboratory-confirmed cases representing these various clinical entities were evaluated by histopathological analysis, special stains, and IHC to characterize the pathological features and investigate the pathogenesis of infection, and to evaluate methods for detection of Exserohilum in formalin-fixed, paraffin-embedded (FFPE) tissues. Fatal cases had necrosuppurative to granulomatous meningitis and vasculitis, with thrombi and abundant angioinvasive fungi, with extensive involvement of the basilar arterial circulation of the brain. IHC was a highly sensitive method for detection of fungus in FFPE tissues, demonstrating both hyphal forms and granular fungal antigens, and PCR identified Exserohilum in FFPE and fresh tissues. Our findings suggest a pathogenesis for meningitis involving fungal penetration into the cerebrospinal fluid at the injection site, with transport through cerebrospinal fluid to the basal cisterns and subsequent invasion of the basilar arteries. Further studies are needed to characterize Exserohilum and investigate the potential effects of underlying host factors and steroid administration on the pathogenesis of infection. |
Diagnosis of influenza from respiratory autopsy tissues: detection of virus by real-time reverse transcription-PCR in 222 cases.
Denison AM , Blau DM , Jost HA , Jones T , Rollin D , Gao R , Liu L , Bhatnagar J , Deleon-Carnes M , Shieh WJ , Paddock CD , Drew C , Adem P , Emery SL , Shu B , Wu KH , Batten B , Greer PW , Smith CS , Bartlett J , Montague JL , Patel M , Xu X , Lindstrom S , Klimov AI , Zaki SR . J Mol Diagn 2011 13 (2) 123-8 ![]() The recent influenza pandemic, caused by a novel H1N1 influenza A virus, as well as the seasonal influenza outbreaks caused by varieties of influenza A and B viruses, are responsible for hundreds of thousands of deaths worldwide. Few studies have evaluated the utility of real-time reverse transcription-PCR to detect influenza virus RNA from formalin-fixed, paraffin-embedded tissues obtained at autopsy. In this work, respiratory autopsy tissues from 442 suspect influenza cases were tested by real-time reverse transcription-PCR for seasonal influenza A and B and 2009 pandemic influenza A (H1N1) viruses and the results were compared to those obtained by immunohistochemistry. In total, 222 cases were positive by real-time reverse transcription-PCR, and of 218 real-time, reverse transcription-PCR-positive cases also tested by immunohistochemistry, only 107 were positive. Although formalin-fixed, paraffin-embedded tissues can be used for diagnosis, frozen tissues offer the best chance to make a postmortem diagnosis of influenza because these tissues possess nucleic acids that are less degraded and, as a consequence, provide longer sequence information than that obtained from fixed tissues. We also determined that testing of all available respiratory tissues is critical for optimal detection of influenza virus in postmortem tissues. |
2009 pandemic influenza A (H1N1): pathology and pathogenesis of 100 fatal cases in the United States
Shieh WJ , Blau DM , Denison AM , Deleon-Carnes M , Adem P , Bhatnagar J , Sumner J , Liu L , Patel M , Batten B , Greer P , Jones T , Smith C , Bartlett J , Montague J , White E , Rollin D , Gao R , Seales C , Jost H , Metcalfe M , Goldsmith CS , Humphrey C , Schmitz A , Drew C , Paddock C , Uyeki TM , Zaki SR . Am J Pathol 2010 177 (1) 166-75 In the spring of 2009, a novel influenza A (H1N1) virus emerged in North America and spread worldwide to cause the first influenza pandemic since 1968. During the first 4 months, over 500 deaths in the United States had been associated with confirmed 2009 pandemic influenza A (H1N1) [2009 H1N1] virus infection. Pathological evaluation of respiratory specimens from initial influenza-associated deaths suggested marked differences in viral tropism and tissue damage compared with seasonal influenza and prompted further investigation. Available autopsy tissue samples were obtained from 100 US deaths with laboratory-confirmed 2009 H1N1 virus infection. Demographic and clinical data of these case-patients were collected, and the tissues were evaluated by multiple laboratory methods, including histopathological evaluation, special stains, molecular and immunohistochemical assays, viral culture, and electron microscopy. The most prominent histopathological feature observed was diffuse alveolar damage in the lung in all case-patients examined. Alveolar lining cells, including type I and type II pneumocytes, were the primary infected cells. Bacterial co-infections were identified in >25% of the case-patients. Viral pneumonia and immunolocalization of viral antigen in association with diffuse alveolar damage are prominent features of infection with 2009 pandemic influenza A (H1N1) virus. Underlying medical conditions and bacterial co-infections contributed to the fatal outcome of this infection. More studies are needed to understand the multifactorial pathogenesis of this infection. |
- Page last reviewed:Feb 1, 2024
- Page last updated:May 16, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure