Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-30 (of 124 Records) |
Query Trace: Monroe B[original query] |
---|
Timing of influenza antiviral therapy and risk of death in adults hospitalized with influenza-associated pneumonia, FluSurv-NET, 2012-2019
Tenforde MW , Noah KP , O'Halloran AC , Kirley PD , Hoover C , Alden NB , Armistead I , Meek J , Yousey-Hindes K , Openo KP , Witt LS , Monroe ML , Ryan PA , Falkowski A , Reeg L , Lynfield R , McMahon M , Hancock EB , Hoffman MR , McGuire S , Spina NL , Felsen CB , Gaitan MA , Lung K , Shiltz E , Thomas A , Schaffner W , Talbot HK , Crossland MT , Price A , Masalovich S , Adams K , Holstein R , Sundaresan D , Uyeki TM , Reed C , Bozio CH , Garg S . Clin Infect Dis 2025 80 (2) 461-468 BACKGROUND: Pneumonia is common in adults hospitalized with laboratory-confirmed influenza, but the association between timeliness of influenza antiviral treatment and severe clinical outcomes in patients with influenza-associated pneumonia is not well characterized. METHODS: We included adults aged ≥18 years hospitalized with laboratory-confirmed influenza and a discharge diagnosis of pneumonia over 7 influenza seasons (2012-2019) sampled from a multistate population-based surveillance network. We evaluated 3 treatment groups based on timing of influenza antiviral initiation relative to admission date (day 0, day 1, days 2-5). Baseline characteristics and clinical outcomes were compared across groups using unweighted counts and weighted percentages accounting for the complex survey design. Logistic regression models were generated to evaluate the association between delayed treatment and 30-day all-cause mortality. RESULTS: A total of 26 233 adults were sampled in the analysis. Median age was 71 years and most (92.2%) had ≥1 non-immunocompromising condition. Overall, 60.9% started antiviral treatment on day 0, 29.5% on day 1, and 9.7% on days 2-5 (median, 2 days). Baseline characteristics were similar across groups. Thirty-day mortality occurred in 7.5%, 8.5%, and 10.2% of patients who started treatment on day 0, day 1, and days 2-5, respectively. Compared to those treated on day 0, adjusted odds ratio for death was 1.14 (95% confidence interval [CI], 1.01-1.27) in those starting treatment on day 1 and 1.40 (95% CI, 1.17-1.66) in those starting on days 2-5. CONCLUSIONS: Delayed initiation of antiviral treatment in patients hospitalized with influenza-associated pneumonia was associated with higher risk of death, highlighting the importance of timely initiation of antiviral treatment at admission. |
Elevating larval source management as a key strategy for controlling malaria and other vector-borne diseases in Africa
Okumu F , Moore SJ , Selvaraj P , Yafin AH , Juma EO , Shirima GG , Majambere S , Hardy A , Knols BGJ , Msugupakulya BJ , Finda M , Kahamba N , Thomsen E , Ahmed A , Zohdy S , Chaki P , DeChant P , Fornace K , Govella N , Gowelo S , Hakizimana E , Hamainza B , Ijumba JN , Jany W , Kafy HT , Kaindoa EW , Kariuki L , Kiware S , Kweka EJ , Lobo NF , Marrenjo D , Matoke-Muhia D , Mbogo C , McCann RS , Monroe A , Ndenga BA , Ngowo HS , Ochomo E , Opiyo M , Reithinger R , Sikaala CH , Tatarsky A , Takudzwa D , Trujillano F , Sherrard-Smith E . Parasit Vectors 2025 18 (1) 45 ![]() ![]() Larval source management (LSM) has a long history of advocacy and successes but is rarely adopted where funds are limited. The World Health Organization (WHO) guidelines on malaria prevention recommend the use of LSM as a supplementary intervention to the core vector control methods (insecticide-treated nets and indoor residual spraying), arguing that its feasibility in many settings can be limited by larval habitats being numerous, transient, and difficult to find or treat. Another key argument is that there is insufficient high-quality evidence for its effectiveness to support wide-scale implementation. However, the stagnation of progress towards malaria elimination demands that we consider additional options to the current emphasis on insecticidal commodities targeting adult mosquitoes inside homes. This letter is the result of a global, crossdisciplinary collaboration comprising: (a) detailed online expert discussions, (b) a narrative review of countries that have eliminated local malaria transmission, and (c) a mathematical modeling exercise using two different approaches. Together, these efforts culminated in seven key recommendations for elevating larval source management as a strategy for controlling malaria and other mosquito-borne diseases in Africa (Box 1). LSM encompasses the use of larvicide (a commodity) as well as various environmental sanitation measures. Together, these efforts lead to the long-term reduction of mosquito populations, which benefits the entire community by controlling both disease vector and nuisance mosquitoes. In this paper, we argue that the heavy reliance on large-scale cluster-randomized controlled trials (CRTs) to generate evidence on epidemiological endpoints restricts the recommendation of approaches to only those interventions that can be measured by functional units and deliver relatively uniform impact and, therefore, are more likely to receive financial support for conducting these trials. The explicit impacts of LSM may be better captured by using alternative evaluation approaches, especially high-quality operational data and a recognition of locally distinct outcomes and tailored strategies. LSM contributions are also evidenced by the widespread use of LSM strategies in nearly all countries that have successfully achieved malaria elimination. Two modelling approaches demonstrate that a multifaceted strategy, which incorporates LSM as a central intervention alongside other vector control methods, can effectively mitigate key biological threats such as insecticide resistance and outdoor biting, leading to substantial reductions in malaria cases in representative African settings. This argument is extended to show that the available evidence is sufficient to establish the link between LSM approaches and reduced disease transmission of mosquito-borne illnesses. What is needed now is a significant boost in the financial resources and public health administration structures necessary to train, employ and deploy local-level workforces tasked with suppressing mosquito populations in scientifically driven and ecologically sensitive ways. In conclusion, having WHO guidelines that recognize LSM as a key intervention to be delivered in multiple contextualized forms would open the door to increased flexibility for funding and aid countries in implementing the strategies that they deem appropriate. Financially supporting the scale-up of LSM with high-quality operations monitoring for vector control in combination with other core tools can facilitate better health. The global health community should reconsider how evidence and funding are used to support LSM initiatives. |
Effect of a spatial repellent on malaria incidence in an area of western Kenya characterised by high malaria transmission, insecticide resistance, and universal coverage of insecticide treated nets (part of the AEGIS Consortium): a cluster-randomised, controlled trial
Ochomo EO , Gimnig JE , Awori Q , Abong'o B , Oria P , Ashitiba NK , Polo B , Moshi V , Otanga H , Adung'o F , Ouma EA , Outa S , Ramaita E , Levine R , Odongo W , Harvey SA , Monroe A , Hudson A , Sandberg B , Hendrickson J , Zhao X , Zhou R , Liu F , Achee NL , Grieco JP . Lancet 2024 BACKGROUND: Spatial repellent products are used for prevention of insect bites, and a body of evidence exists on spatial repellent entomological efficacy. A new option for vector control, spatial repellent products are designed to release active ingredient into the air for disruption of human-vector contact thereby reducing human exposure to mosquito-borne pathogens. Clinical trials have shown spatial repellent epidemiological efficacy against Aedes-borne viruses but inconclusive outcomes against malaria. We aimed to show and quantify the protective efficacy of spatial repellents in reducing malaria infection incidence in Busia County, Kenya. METHODS: A prospective, cluster-randomised, controlled trial in Busia County, western Kenya was done to quantify the efficacy of a transfluthrin-based spatial repellent against human malaria infection following mass distribution of insecticide treated nets. Investigators, staff, and study participants were masked to cluster allocation. Infection incidence was measured by microscopy in children aged 6 months to younger than 10 years during a 4-month baseline (March-July 2021) and 24-month follow-up period with intervention (October, 2021-October, 2023). From 58 clusters (29 intervention, 29 placebo), a total of 1526 and 1546 participants from two consecutive, 12-month cohorts were assessed for first-time malaria infection (primary endpoint) by survival analysis at interim and end-of-trial timepoints, respectively. This trial is registered with ClinicalTrials.gov, NCT04766879 and is complete. FINDINGS: The outcome of the primary endpoint indicated that spatial repellents significantly reduced the hazard rate of first-time malaria infection by 33·4% (95% CI 11·1-50·1; p=0·0058) and the hazard rate of overall new malaria infections by 32·1% (15·9-45·2; p=0·0004). No reported adverse events and serious adverse events were deemed to be associated with the spatial repellent. INTERPRETATION: Our trial provides the first evidence of a demonstrative spatial repellent protective efficacy in reducing risk of malaria infection in an African setting characterised by high malaria transmission, pyrethroid resistant malaria vectors, and high coverage of insecticide treated nets. Results support spatial repellent products as a beneficial component of malaria prevention. FUNDING: This study was funded by Unitaid to the University of Notre Dame. |
Social vulnerability, intervention utilization, and outcomes in US adults hospitalized with influenza
Adams K , Yousey-Hindes K , Bozio CH , Jain S , Kirley PD , Armistead I , Alden NB , Openo KP , Witt LS , Monroe ML , Kim S , Falkowski A , Lynfield R , McMahon M , Hoffman MR , Shaw YP , Spina NL , Rowe A , Felsen CB , Licherdell E , Lung K , Shiltz E , Thomas A , Talbot HK , Schaffner W , Crossland MT , Olsen KP , Chang LW , Cummings CN , Tenforde MW , Garg S , Hadler JL , O'Halloran A . JAMA Netw Open 2024 7 (11) e2448003 IMPORTANCE: Seasonal influenza is associated with substantial disease burden. The relationship between census tract-based social vulnerability and clinical outcomes among patients with influenza remains unknown. OBJECTIVE: To characterize associations between social vulnerability and outcomes among patients hospitalized with influenza and to evaluate seasonal influenza vaccine and influenza antiviral utilization patterns across levels of social vulnerability. DESIGN, SETTING, AND PARTICIPANTS: This retrospective repeated cross-sectional study was conducted among adults with laboratory-confirmed influenza-associated hospitalizations from the 2014 to 2015 through the 2018 to 2019 influenza seasons. Data were from a population-based surveillance network of counties within 13 states. Data analysis was conducted in December 2023. EXPOSURE: Census tract-based social vulnerability. MAIN OUTCOMES AND MEASURES: Associations between census tract-based social vulnerability and influenza outcomes (intensive care unit admission, invasive mechanical ventilation and/or extracorporeal membrane oxygenation support, and 30-day mortality) were estimated using modified Poisson regression as adjusted prevalence ratios. Seasonal influenza vaccine and influenza antiviral utilization were also characterized across levels of social vulnerability. RESULTS: Among 57 964 sampled cases, the median (IQR) age was 71 (58-82) years; 55.5% (95% CI, 51.5%-56.0%) were female; 5.2% (5.0%-5.4%) were Asian or Pacific Islander, 18.3% (95% CI, 18.0%-18.6%) were Black or African American, and 64.6% (95% CI, 64.2%-65.0%) were White; and 6.6% (95% CI, 6.4%-68%) were Hispanic or Latino and 74.7% (95% CI, 74.3%-75.0%) were non-Hispanic or Latino. High social vulnerability was associated with higher prevalence of invasive mechanical ventilation and/or extracorporeal membrane oxygenation support (931 of 13 563 unweighted cases; adjusted prevalence ratio [aPR], 1.25 [95% CI, 1.13-1.39]), primarily due to socioeconomic status (790 of 11 255; aPR, 1.31 [95% CI, 1.17-1.47]) and household composition and disability (773 of 11 256; aPR, 1.20 [95% CI, 1.09-1.32]). Vaccination status, presence of underlying medical conditions, and respiratory symptoms partially mediated all significant associations. As social vulnerability increased, the proportion of patients receiving seasonal influenza vaccination declined (-19.4% relative change across quartiles; P < .001) as did the proportion vaccinated by October 31 (-6.8%; P < .001). No differences based on social vulnerability were found in in-hospital antiviral receipt, but early in-hospital antiviral initiation (-1.0%; P = .01) and prehospital antiviral receipt (-17.3%; P < .001) declined as social vulnerability increased. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, social vulnerability was associated with a modestly increased prevalence of invasive mechanical ventilation and/or extracorporeal membrane oxygenation support among patients hospitalized with influenza. Contributing factors may have included worsened baseline respiratory health and reduced receipt of influenza prevention and prehospital or early in-hospital treatment interventions among persons residing in low socioeconomic areas. |
Severe and fatal Rocky Mountain spotted fever after exposure in Tecate, Mexico - California, July 2023-January 2024
Kjemtrup AM , Hacker JK , Monroe M , Williams V , Lines C , Lopez K , Paddock CD , Carpenter A , Salzer JS , Villalba JA , Bhatnagar J , Shah S , Iniguez-Stevens E , Efthemeou TC , Hernandez V , Vugia DJ , Kramer VL . MMWR Morb Mortal Wkly Rep 2024 73 (47) 1069-1075 Rocky Mountain spotted fever (RMSF) is a tickborne disease endemic in areas of the Americas. Persistent high incidence of the disease exists in northern Mexico, perpetuated by local populations of brown dog ticks (Rhipicephalus sanguineus sensu lato) and free-roaming dogs. Six cases of RMSF caused by Rickettsia rickettsii, including three deaths, were reported to the California Department of Public Health during July 2023-January 2024. All six patients were eventually determined to have had exposure to R. rickettsii in Tecate, Mexico, a municipality on the U.S. border that had not been previously described as a high-risk RMSF area. Identification and reporting of the cases were complicated by challenges in diagnosis. The serious nature of the disease and delays in initiating appropriate treatment can result in life-threatening consequences. Epidemiologic collaborations among local, state, federal, and international public health agencies were essential to identifying Tecate as the location of exposure. Further collaborations will be important for directing future prevention measures. Increased health care provider awareness of RMSF is critical on both sides of the border to facilitate earlier diagnosis and initiation of appropriate treatment. |
Underutilization of influenza antiviral treatment among children and adolescents at higher risk for influenza-associated complications - United States, 2023-2024
Frutos AM , Ahmad HM , Ujamaa D , O'Halloran AC , Englund JA , Klein EJ , Zerr DM , Crossland M , Staten H , Boom JA , Sahni LC , Halasa NB , Stewart LS , Hamdan O , Stopczynski T , Schaffner W , Talbot HK , Michaels MG , Williams JV , Sutton M , Hendrick MA , Staat MA , Schlaudecker EP , Tesini BL , Felsen CB , Weinberg GA , Szilagyi PG , Anderson BJ , Rowlands JV , Khalifa M , Martinez M , Selvarangan R , Schuster JE , Lynfield R , McMahon M , Kim S , Nunez VT , Ryan PA , Monroe ML , Wang YF , Openo KP , Meek J , Yousey-Hindes K , Alden NB , Armistead I , Rao S , Chai SJ , Kirley PD , Toepfer AP , Dawood FS , Moline HL , Uyeki TM , Ellington S , Garg S , Bozio CH , Olson SM . MMWR Morb Mortal Wkly Rep 2024 73 (45) 1022-1029 Annually, tens of thousands of U.S. children and adolescents are hospitalized with seasonal influenza virus infection. Both influenza vaccination and early initiation of antiviral treatment can reduce complications of influenza. Using data from two U.S. influenza surveillance networks for children and adolescents aged <18 years with medically attended, laboratory-confirmed influenza for whom antiviral treatment is recommended, the percentage who received treatment was calculated. Trends in antiviral treatment of children and adolescents hospitalized with influenza from the 2017-18 to the 2023-2024 influenza seasons were also examined. Since 2017-18, when 70%-86% of hospitalized children and adolescents with influenza received antiviral treatment, the proportion receiving treatment notably declined. Among children and adolescents with influenza during the 2023-24 season, 52%-59% of those hospitalized received antiviral treatment. During the 2023-24 season, 31% of those at higher risk for influenza complications seen in the outpatient setting in one network were prescribed antiviral treatment. These findings demonstrate that influenza antiviral treatment is underutilized among children and adolescents who could benefit from treatment. All hospitalized children and adolescents, and those at higher risk for influenza complications in the outpatient setting, should receive antiviral treatment as soon as possible for suspected or confirmed influenza. |
Burden of respiratory syncytial virus-associated hospitalizations in US adults, October 2016 to September 2023
Havers FP , Whitaker M , Melgar M , Pham H , Chai SJ , Austin E , Meek J , Openo KP , Ryan PA , Brown C , Como-Sabetti K , Sosin DM , Barney G , Tesini BL , Sutton M , Talbot HK , Chatelain R , Daily Kirley P , Armistead I , Yousey-Hindes K , Monroe ML , Tellez Nunez V , Lynfield R , Esquibel CL , Engesser K , Popham K , Novak A , Schaffner W , Markus TM , Swain A , Patton ME , Kim L . JAMA Netw Open 2024 7 (11) e2444756 IMPORTANCE: Respiratory syncytial virus (RSV) infection can cause severe illness in adults. However, there is considerable uncertainty in the burden of RSV-associated hospitalizations among adults prior to RSV vaccine introduction. OBJECTIVE: To describe the demographic characteristics of adults hospitalized with laboratory-confirmed RSV and to estimate annual rates and numbers of RSV-associated hospitalizations, intensive care unit (ICU) admissions, and in-hospital deaths. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study used data from the RSV Hospitalization Surveillance Network (RSV-NET), a population-based surveillance platform that captures RSV-associated hospitalizations in 58 counties in 12 states, covering approximately 8% of the US population. The study period spanned 7 surveillance seasons from 2016-2017 through 2022-2023. Included cases from RSV-NET were nonpregnant hospitalized adults aged 18 years or older residing in the surveillance catchment area and with a positive RSV test result. EXPOSURE: Laboratory-confirmed RSV-associated hospitalization, defined as a positive RSV test result within 14 days before or during hospitalization. MAIN OUTCOMES AND MEASURES: Hospitalization rates per 100 000 adult population, stratified by age group. After adjusting for test sensitivity and undertesting for RSV in adults hospitalized with acute respiratory illnesses, rates were extrapolated to the US population to estimate annual numbers of RSV-associated hospitalizations. Clinical outcome data were used to estimate RSV-associated ICU admissions and in-hospital deaths. RESULTS: From the 2016 to 2017 through the 2022 to 2023 RSV seasons, there were 16 575 RSV-associated hospitalizations in adults (median [IQR] age, 70 [58-81] years; 9641 females [58.2%]). Excluding the 2020 to 2021 and the 2021 to 2022 seasons, when the COVID-19 pandemic affected RSV circulation, hospitalization rates ranged from 48.9 (95% CI, 33.4-91.5) per 100 000 adults in 2016 to 2017 to 76.2 (95% CI, 55.2-122.7) per 100 000 adults in 2017 to 2018. Rates were lowest among adults aged 18 to 49 years (8.6 [95% CI, 5.7-16.8] per 100 000 adults in 2016-2017 to 13.1 [95% CI, 11.0-16.1] per 100 000 adults in 2022-2023) and highest among adults 75 years or older (244.7 [95% CI, 207.9-297.3] per 100 000 adults in 2022-2023 to 411.4 [95% CI, 292.1-695.4] per 100 000 adults in 2017-2018). Annual hospitalization estimates ranged from 123 000 (95% CI, 84 000-230 000) in 2016 to 2017 to 193 000 (95% CI, 140 000-311 000) in 2017 to 2018. Annual ICU admission estimates ranged from 24 400 (95% CI, 16 700-44 800) to 34 900 (95% CI, 25 500-55 600) for the same seasons. Estimated annual in-hospital deaths ranged from 4680 (95% CI, 3570-6820) in 2018 to 2019 to 8620 (95% CI, 6220-14 090) in 2017 to 2018. Adults 75 years or older accounted for 45.6% (range, 43.1%-48.8%) of all RSV-associated hospitalizations, 38.6% (range, 36.7%-41.0%) of all ICU admissions, and 58.7% (range, 51.9%-67.1%) of all in-hospital deaths. CONCLUSIONS AND RELEVANCE: In this cross-sectional study of adults hospitalized with RSV before the 2023 introduction of RSV vaccines, RSV was associated with substantial burden of hospitalizations, ICU admissions, and in-hospital deaths in adults, with the highest rates occurring in adults 75 years or older. Increasing RSV vaccination of older adults has the potential to reduce associated hospitalizations and severe clinical outcomes. |
Laboratory-confirmed influenza-associated hospitalizations among children and adults - Influenza Hospitalization Surveillance Network, United States, 2010-2023
Naquin A , O'Halloran A , Ujamaa D , Sundaresan D , Masalovich S , Cummings CN , Noah K , Jain S , Kirley PD , Alden NB , Austin E , Meek J , Yousey-Hindes K , Openo K , Witt L , Monroe ML , Henderson J , Nunez VT , Lynfield R , McMahon M , Shaw YP , McCahon C , Spina N , Engesser K , Tesini BL , Gaitan MA , Shiltz E , Lung K , Sutton M , Hendrick MA , Schaffner W , Talbot HK , George A , Zahid H , Reed C , Garg S , Bozio CH . MMWR Surveill Summ 2024 73 (6) 1-18 PROBLEM/CONDITION: Seasonal influenza accounts for 9.3 million-41 million illnesses, 100,000-710,000 hospitalizations, and 4,900-51,000 deaths annually in the United States. Since 2003, the Influenza Hospitalization Surveillance Network (FluSurv-NET) has been conducting population-based surveillance for laboratory-confirmed influenza-associated hospitalizations in the United States, including weekly rate estimations and descriptions of clinical characteristics and outcomes for hospitalized patients. However, a comprehensive summary of trends in hospitalization rates and clinical data collected from the surveillance platform has not been available. REPORTING PERIOD: 2010-11 through 2022-23 influenza seasons. DESCRIPTION OF SYSTEM: FluSurv-NET conducts population-based surveillance for laboratory-confirmed influenza-associated hospitalizations among children and adults. During the reporting period, the surveillance network included 13-16 participating sites each influenza season, with prespecified geographic catchment areas that covered 27 million-29 million persons and included an estimated 8.8%-9.5% of the U.S. population. A case was defined as a person residing in the catchment area within one of the participating states who had a positive influenza laboratory test result within 14 days before or at any time during their hospitalization. Each site abstracted case data from hospital medical records into a standardized case report form, with selected variables submitted to CDC on a weekly basis for rate estimations. Weekly and cumulative laboratory-confirmed influenza-associated hospitalization rates per 100,000 population were calculated for each season from 2010-11 through 2022-23 and stratified by patient age (0-4 years, 5-17 years, 18-49 years, 50-64 years, and ≥65 years), sex, race and ethnicity, influenza type, and influenza A subtype. During the 2020-21 season, only the overall influenza hospitalization rate was reported because case counts were insufficient to estimate stratified rates. RESULTS: During the 2010-11 to 2022-23 influenza seasons, laboratory-confirmed influenza-associated hospitalization rates varied significantly across seasons. Before the COVID-19 pandemic, hospitalization rates per 100,000 population ranged from 8.7 (2011-12) to 102.9 (2017-18) and had consistent seasonality. After SARS-CoV-2 emerged, the hospitalization rate for 2020-21 was 0.8, and the rate did not return to recent prepandemic levels until 2022-23. Inconsistent seasonality also was observed during 2020-21 through 2022-23, with influenza activity being very low during 2020-21, extending later than usual during 2021-22, and occurring early during 2022-23. Molecular assays, particularly multiplex standard molecular assays, were the most common influenza test type in recent seasons, increasing from 12% during 2017-18 for both pediatric and adult cases to 43% and 55% during 2022-23 for pediatric and adult cases, respectively. During each season, adults aged ≥65 years consistently had the highest influenza-associated hospitalization rate across all age groups, followed in most seasons by children aged 0-4 years. Black or African American and American Indian or Alaska Native persons had the highest age-adjusted influenza-associated hospitalization rates across these seasons. Among patients hospitalized with influenza, the prevalence of at least one underlying medical condition increased with increasing age, ranging from 36.9% among children aged 0-4 years to 95.4% among adults aged ≥65 years. Consistently across each season, the most common underlying medical conditions among children and adolescents were asthma, neurologic disorders, and obesity. The most common underlying medical conditions among adults were hypertension, obesity, chronic metabolic disease, chronic lung disease, and cardiovascular disease. The proportion of FluSurv-NET patients with acute respiratory signs and symptoms at hospital admission decreased from 90.6% during 2018-19 to 83.2% during 2022-23. Although influenza antiviral use increased during the 2010-11 through the 2017-18 influenza seasons, it decreased from 90.2% during 2018-19 to 79.1% during 2022-23, particularly among children and adolescents. Admission to the intensive care unit, need for invasive mechanical ventilation, and in-hospital death ranged from 14.1% to 22.3%, 4.9% to 11.1%, and 2.2% to 3.5% of patients hospitalized with influenza, respectively, during the reported surveillance period. INTERPRETATIONS: Influenza continues to cause severe morbidity and mortality, particularly in older adults, and disparities have persisted in racial and ethnic minority groups. Persons with underlying medical conditions represented a large proportion of patients hospitalized with influenza. Increased use of multiplex tests and other potential changes in facility-level influenza testing practices (e.g., influenza screening at all hospital admissions) could have implications for the detection of influenza infections among hospitalized patients. Antiviral use decreased in recent seasons, and explanations for the decrease should be further evaluated. PUBLIC HEALTH ACTION: Continued robust influenza surveillance is critical to monitor progress in efforts to encourage antiviral treatment and improve clinical outcomes for persons hospitalized with influenza. In addition, robust influenza surveillance can potentially reduce disparities by informing efforts to increase access to preventive measures for influenza and monitoring any subsequent changes in hospitalization rates. |
Evaluating acute viral gastroenteritis severity: Modified Vesikari and Clark scoring systems
Plancarte C , Stopczynski T , Hamdan L , Stewart LS , Rahman H , Amarin JZ , Chappell J , Wikswo ME , Dunn JR , Payne DC , Hall AJ , Spieker AJ , Halasa N . Hosp Pediatr 2024 OBJECTIVE: Acute gastroenteritis (AGE) is the second leading cause of death in children worldwide. Objectively evaluating disease severity is critical for assessing future interventions. We used data from a large, prospective surveillance study to assess risk factors associated with severe presentation using modified Vesikari score (MVS) and Clark score (CS) of severity. METHODS: From December 1, 2012 to June 30, 2016, AGE surveillance was performed for children between 15 days and 17 years old in the emergency, inpatient, and outpatient settings at Vanderbilt's Monroe Carell Jr. Children's Hospital in Nashville, TN. Stool specimens were tested for norovirus, sapovirus, rotavirus, and astrovirus. We compared demographic and clinical characteristics, along with the MVS and CS, by viral detection status and by setting. RESULTS: Of the 6309 eligible children, 4216 (67%) were enrolled, with 3256 (77%) providing a stool specimen. The median age was 1.9 years, 52% were male, and 1387 (43%) of the stool samples were virus positive. Younger age, male sex, hospitalization, and rotavirus detection were significantly associated with higher mean MVS and CS. Non-Hispanic Black race and ethnicity was associated with a lower mean MVS and CS as compared with non-Hispanic white race and ethnicity. Prematurity and enrollment in the ED were associated with higher mean CS. The 2 scoring systems were highly correlated. CONCLUSIONS: Rotavirus continues to be associated with more severe pediatric illness compared with other viral causes of AGE. MVS and CS systems yielded comparable results and can be useful tools to assess AGE severity. |
Sociodemographic and occupational characteristics associated with early and continued COVID-19 vaccine uptake among healthcare personnel: Monroe County, NY
Russ S , Myers C , Licherdell E , Bowden A , Chinchilli E , Dahhan R , Van Wijngaarden E , Plumb ID , Dumyati G . Vaccine 2024 OBJECTIVE: Identify characteristics of healthcare personnel (HCP) who did not have timely initiation of the COVID-19 primary series, as well as HCP who did not receive a booster vaccine. METHODS: Characteristics of HCP enrolled in a COVID-19 vaccine effectiveness study between 12/28/2020-12/01/2022 were compared by timing of receipt of 1st mRNA dose, and by receipt of a booster dose. Data for this retrospective cohort analysis came from HCP working at a large healthcare system in Monroe County, New York, and included standardized questionnaires and verified vaccination status. HCP were categorized by whether they received their 1stmRNA COVID-19 vaccine between 12/14/2020-03/30/2021 (earlier) or 04/01/2021-09/28/2021 (later) based on timing of local vaccine eligibility and mandates, and by whether they received a 3rdmRNA booster dose by 12/01/22. Logistic regression models were run to identify characteristics of HCP who had later 1stdose receipt or did not receive a booster. RESULTS: 3,375 HCP were enrolled. Of these, 86.8 % had early initiation of their 1stCOVID-19 vaccine, and 85.0 % received a booster dose. Low education, low household income, younger age (<50), non-White race and public health insurance were all significant predictors of later receipt of 1stdose and lack of uptake of a booster. However, advanced professional role was only found to be a significant predictor of early 1stdose receipt. CONCLUSIONS: Continual monitoring of COVID-19 vaccine uptake among HCP to identify those less likely to receive new booster doses will be crucial to support targeted vaccine campaigns in this important population. |
Early morning anopheline mosquito biting, a potential driver of malaria transmission in Busia County, western Kenya
Odero JI , Abong'o B , Moshi V , Ekodir S , Harvey SA , Ochomo E , Gimnig JE , Achee NL , Grieco JP , Oria PA , Monroe A . Malar J 2024 23 (1) 66 BACKGROUND: Insecticide-treated nets (ITNs) contributed significantly to the decline in malaria since 2000. Their protective efficacy depends not only on access, use, and net integrity, but also location of people within the home environment and mosquito biting profiles. Anopheline mosquito biting and human location data were integrated to identify potential gaps in protection and better understand malaria transmission dynamics in Busia County, western Kenya. METHODS: Direct observation of human activities and human landing catches (HLC) were performed hourly between 1700 to 0700 h. Household members were recorded as home or away; and, if at home, as indoors/outdoors, awake/asleep, and under a net or not. Aggregated data was analysed by weighting hourly anopheline biting activity with human location. Standard indicators of human-vector interaction were calculated using a Microsoft Excel template. RESULTS: There was no significant difference between indoor and outdoor biting for Anopheles gambiae sensu lato (s.l.) (RR = 0.82; 95% CI 0.65-1.03); significantly fewer Anopheles funestus were captured outdoors than indoors (RR = 0.41; 95% CI 0.25-0.66). Biting peaked before dawn and extended into early morning hours when people began to awake and perform routine activities, between 0400-0700 h for An. gambiae and 0300-0700 h for An. funestus. The study population away from home peaked at 1700-1800 h (58%), gradually decreased and remained constant at 10% throughout the night, before rising again to 40% by 0600-0700 h. When accounting for resident location, nearly all bites within the peri-domestic space (defined as inside household structures and surrounding outdoor spaces) occurred indoors for unprotected people (98%). Using an ITN while sleeping was estimated to prevent 79% and 82% of bites for An. gambiae and An. funestus, respectively. For an ITN user, most remaining exposure to bites occurred indoors in the hours before bed and early morning. CONCLUSION: While use of an ITN was estimated to prevent most vector bites in this context, results suggest gaps in protection, particularly in the early hours of the morning when biting peaks and many people are awake and active. Assessment of additional human exposure points, including outside of the peri-domestic setting, are needed to guide supplementary interventions for transmission reduction. |
Updating reproduction number estimates for Mpox in the Democratic Republic of Congo using surveillance data
Charniga K , McCollum AM , Hughes CM , Monroe B , Kabamba J , Lushima RS , Likafi T , Nguete B , Pukuta E , Muyamuna E , Tamfum JM , Karhemere S , Kaba D , Nakazawa Y . Am J Trop Med Hyg 2024 Incidence of human monkeypox (mpox) has been increasing in West and Central Africa, including in the Democratic Republic of Congo (DRC), where monkeypox virus (MPXV) is endemic. Most estimates of the pathogen's transmissibility in the DRC are based on data from the 1980s. Amid the global 2022 mpox outbreak, new estimates are needed to characterize the virus' epidemic potential and inform outbreak control strategies. We used the R package vimes to identify clusters of laboratory-confirmed mpox cases in Tshuapa Province, DRC. Cases with both temporal and spatial data were assigned to clusters based on the disease's serial interval and spatial kernel. We used the size of the clusters to infer the effective reproduction number, Rt, and the rate of zoonotic spillover of MPXV into the human population. Out of 1,463 confirmed mpox cases reported in Tshuapa Province between 2013 and 2017, 878 had both date of symptom onset and a location with geographic coordinates. Results include an estimated Rt of 0.82 (95% CI: 0.79-0.85) and a rate of 132 (95% CI: 122-143) spillovers per year assuming a reporting rate of 25%. This estimate of Rt is larger than most previous estimates. One potential explanation for this result is that Rt could have increased in the DRC over time owing to declining population-level immunity conferred by smallpox vaccination, which was discontinued around 1982. Rt could be overestimated if our assumption of one spillover event per cluster does not hold. Our results are consistent with increased transmissibility of MPXV in Tshuapa Province. |
Understanding psychosocial determinants of malaria behaviours in low-transmission settings: a scoping review
Casella A , Monroe A , Toso M , Hunter G , Underwood C , Pillai R , Hughes J , Van Lith LM , Cash S , Hwang J , Babalola S . Malar J 2024 23 (1) 15 BACKGROUND: Recent estimates show progress toward malaria elimination is slowing in many settings, underscoring the need for tailored approaches to fight the disease. In addition to essential structural changes, human behaviour plays an important role in elimination. Engagement in malaria behaviours depends in part on psychosocial determinants such as knowledge, perceived risk, and community norms. Understanding the state of research on psychosocial determinants in low malaria transmission settings is important to augment social and behaviour change practice. This review synthesizes research on psychosocial factors and malaria behaviours in low-transmission settings. METHODS: A systematic search of peer-reviewed literature and supplemental manual search of grey literature was conducted using key terms and eligibility criteria defined a priori. Publications from 2000-2020 in the English language were identified, screened, and analysed using inductive methods to determine the relationship between the measured psychosocial factors and malaria behaviours. RESULTS: Screening of 961 publications yielded 96 for inclusion. Nineteen articles collected data among subpopulations that are at increased risk of malaria exposure in low-transmission settings. Purposive and cluster randomized sampling were common sampling approaches. Quantitative, qualitative, and mixed-methods study designs were used. Knowledge, attitudes, and perceived risk were commonly measured psychosocial factors. Perceived response-efficacy, perceived self-efficacy, and community norms were rarely measured. Results indicate positive associations between malaria knowledge and attitudes, and preventive and care-seeking behaviour. Studies generally report high rates of correct knowledge, although it is comparatively lower among studies of high-risk groups. There does not appear to be sufficient extant evidence to determine the relationship between other psychosocial variables and behaviour. CONCLUSIONS: The review highlights the need to deploy more consistent, comprehensive measures of psychosocial factors and the importance of reaching subpopulations at higher risk of transmission in low transmission contexts. Malaria-related knowledge is generally high, even in settings of low transmission. Programmes and research should work to better understand the psychosocial factors that have been positively associated with prevention and care-seeking behaviours, such as norms, perceived response efficacy, perceived self-efficacy, and interpersonal communication. These factors are not necessarily distinct from that which research has shown are important in settings of high malaria transmission. However, the importance of each factor and application to malaria behaviour change programming in low-transmission settings is an area in need of further research. Existing instruments and approaches are available to support more systematic collection of psychosocial determinants and improved sampling approaches and should be applied more widely. Finally, while human behaviour is critical, health systems strengthening, and structural interventions are essential to achieve malaria elimination goals. |
Rabies experts on demand: A cross-sectional study describing the use of a rabies telehealth service
Baker SE , Ross YB , Ellison JA , Monroe BP , Orciari LA , Petersen BW , Rao AK , Wallace RM . Public Health Chall 2023 2 (3) BACKGROUND: Rabies expert on demand (REOD) telehealth service is provided by the U.S. Centers for Disease Control and Prevention (CDC) to assist public health practitioners, health providers, and the public to interpret national and international rabies prevention guidelines. REOD is staffed by subject matter experts of the CDC Poxvirus and Rabies Branch to assess each unique situation and provide evidence-based guidance to stakeholders. This study aims to describe the utilization of a rabies telehealth system and provide insight into common consultations. METHODS: A cross-sectional study of the nature of inquiries to REOD was done using the data collected from September 1, 2017 to September 30, 2021. An inquiry tracking form and Microsoft Access database were developed to document all inquiries received. Inquired ones were summarized to determine the frequency of inquiries by month, category, and location. RESULTS: Over a 49-month period, REOD received 5228 inquiries. Peak inquiries (n = 108) occurred during August 2019. The most frequent inquiries received pertained to risk assessment and management of rabies exposures (n = 1109), requests for testing assistance (n = 912), consultation for suspected human rabies (n = 746), rabies exposures and post-bite treatment occurring internationally (n = 310), and consultation for deviations in the recommended pre- and postexposure prophylaxis regimen (n = 300). CONCLUSION: REOD is a global resource for consultation related to managing rabies exposures, diagnostic issues, and rabies control strategies. REOD is a regularly utilized CDC service, as the demand for up-to-date rabies guidance remains high. REOD fulfills a critical role for the interpretation and consultation on rabies prevention guidelines to stakeholder. |
Association of chronic medical conditions with severe outcomes among nonpregnant adults 18-49 years old hospitalized with influenza, FluSurv-NET, 2011-2019
Famati EA , Ujamaa D , O'Halloran A , Kirley PD , Chai SJ , Armistead I , Alden NB , Yousey-Hindes K , Openo KP , Ryan PA , Monroe ML , Falkowski A , Kim S , Lynfield R , McMahon M , Angeles KM , Khanlian SA , Spina NL , Bennett NM , Gaitán MA , Shiltz E , Lung K , Thomas A , Talbot HK , Schaffner W , George A , Staten H , Bozio CH , Garg S . Open Forum Infect Dis 2023 10 (12) ofad599 BACKGROUND: Older age and chronic conditions are associated with severe influenza outcomes; however, data are only comprehensively available for adults ≥65 years old. Using data from the Influenza Hospitalization Surveillance Network (FluSurv-NET), we identified characteristics associated with severe outcomes in adults 18-49 years old hospitalized with influenza. METHODS: We included FluSurv-NET data from nonpregnant adults 18-49 years old hospitalized with laboratory-confirmed influenza during the 2011-2012 through 2018-2019 seasons. We used bivariate and multivariable logistic regression to determine associations between select characteristics and severe outcomes including intensive care unit (ICU) admission, invasive mechanical ventilation (IMV), and in-hospital death. RESULTS: A total of 16 140 patients aged 18-49 years and hospitalized with influenza were included in the analysis; the median age was 39 years, and 26% received current-season influenza vaccine before hospitalization. Obesity, asthma, and diabetes mellitus were the most common chronic conditions. Conditions associated with a significantly increased risk of severe outcomes included age group 30-39 or 40-49 years (IMV, age group 30-39 years: adjusted odds ratio [aOR], 1.25; IMV, age group 40-49 years: aOR, 1.36; death, age group 30-39 years: aOR, 1.28; death, age group 40-49 years: aOR, 1.69), being unvaccinated (ICU: aOR, 1.18; IMV: aOR, 1.25; death: aOR, 1.48), and having chronic conditions including extreme obesity and chronic lung, cardiovascular, metabolic, neurologic, or liver diseases (ICU: range aOR, 1.22-1.56; IMV: range aOR, 1.17-1.54; death: range aOR, 1.43-2.36). CONCLUSIONS: To reduce the morbidity and mortality associated with influenza among adults aged 18-49 years, health care providers should strongly encourage receipt of annual influenza vaccine and lifestyle/behavioral modifications, particularly among those with chronic medical conditions. |
Performance of established disease severity scores in predicting severe outcomes among adults hospitalized with influenza-FluSurv-NET, 2017-2018
Doyle JD , Garg S , O'Halloran AC , Grant L , Anderson EJ , Openo KP , Alden NB , Herlihy R , Meek J , Yousey-Hindes K , Monroe ML , Kim S , Lynfield R , McMahon M , Muse A , Spina N , Irizarry L , Torres S , Bennett NM , Gaitan MA , Hill M , Cummings CN , Reed C , Schaffner W , Talbot HK , Self WH , Williams D . Influenza Other Respir Viruses 2023 17 (12) e13228 BACKGROUND: Influenza is a substantial cause of annual morbidity and mortality; however, correctly identifying those patients at increased risk for severe disease is often challenging. Several severity indices have been developed; however, these scores have not been validated for use in patients with influenza. We evaluated the discrimination of three clinical disease severity scores in predicting severe influenza-associated outcomes. METHODS: We used data from the Influenza Hospitalization Surveillance Network to assess outcomes of patients hospitalized with influenza in the United States during the 2017-2018 influenza season. We computed patient scores at admission for three widely used disease severity scores: CURB-65, Quick Sepsis-Related Organ Failure Assessment (qSOFA), and the Pneumonia Severity Index (PSI). We then grouped patients with severe outcomes into four severity tiers, ranging from ICU admission to death, and calculated receiver operating characteristic (ROC) curves for each severity index in predicting these tiers of severe outcomes. RESULTS: Among 8252 patients included in this study, we found that all tested severity scores had higher discrimination for more severe outcomes, including death, and poorer discrimination for less severe outcomes, such as ICU admission. We observed the highest discrimination for PSI against in-hospital mortality, at 0.78. CONCLUSIONS: We observed low to moderate discrimination of all three scores in predicting severe outcomes among adults hospitalized with influenza. Given the substantial annual burden of influenza disease in the United States, identifying a prediction index for severe outcomes in adults requiring hospitalization with influenza would be beneficial for patient triage and clinical decision-making. |
Rabies surveillance in the United States during 2014
Monroe BP , Yager P , Blanton J , Birhane MG , Wadhwa A , Orciari L , Petersen B , Wallace R . J Am Vet Med Assoc 2016 248 (7) 777-88 The present report provides a detailed update on rabies epidemiology and events in the United States during 2014 as well as a brief summary of rabies events in 2015. Updates are also provided for Canada and Mexico. | | Rabies is caused by neurotrophic viruses of the genus Lyssavirus. It is almost always fatal once clinical signs develop, but is preventable if appropriate postexposure prophylaxis is administered in a timely manner. The primary route of transmission is through the bite of an infected mammal, but rabies may also be transmitted when fresh saliva from an infected animal comes into contact with a wound or mucous membranes. | | For human patients who have never been vaccinated against rabies, postexposure prophylaxis consists of immediate cleansing of any bite wounds with soap and water, infiltration of the wounds with human rabies immune globulin, and administration of 4 doses of rabies vaccine over the next 14 days.1,2 |
Severity of influenza-associated hospitalisations by influenza virus type and subtype in the USA, 2010-19: a repeated cross-sectional study
Sumner KM , Masalovich S , O'Halloran A , Holstein R , Reingold A , Kirley PD , Alden NB , Herlihy RK , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Monroe ML , Leegwater L , Henderson J , Lynfield R , McMahon M , McMullen C , Angeles KM , Spina NL , Engesser K , Bennett NM , Felsen CB , Lung K , Shiltz E , Thomas A , Talbot HK , Schaffner W , Swain A , George A , Rolfes MA , Reed C , Garg S . Lancet Microbe 2023 4 (11) e903-e912 BACKGROUND: Influenza burden varies across seasons, partly due to differences in circulating influenza virus types or subtypes. Using data from the US population-based surveillance system, Influenza Hospitalization Surveillance Network (FluSurv-NET), we aimed to assess the severity of influenza-associated outcomes in individuals hospitalised with laboratory-confirmed influenza virus infections during the 2010-11 to 2018-19 influenza seasons. METHODS: To evaluate the association between influenza virus type or subtype causing the infection (influenza A H3N2, A H1N1pdm09, and B viruses) and in-hospital severity outcomes (intensive care unit [ICU] admission, use of mechanical ventilation or extracorporeal membrane oxygenation [ECMO], and death), we used FluSurv-NET to capture data for laboratory-confirmed influenza-associated hospitalisations from the 2010-11 to 2018-19 influenza seasons for individuals of all ages living in select counties in 13 US states. All individuals had to have an influenza virus test within 14 days before or during their hospital stay and an admission date between Oct 1 and April 30 of an influenza season. Exclusion criteria were individuals who did not have a complete chart review; cases from sites that contributed data for three or fewer seasons; hospital-onset cases; cases with unidentified influenza type; cases of multiple influenza virus type or subtype co-infection; or individuals younger than 6 months and ineligible for the influenza vaccine. Logistic regression models adjusted for influenza season, influenza vaccination status, age, and FluSurv-NET site compared odds of in-hospital severity by virus type or subtype. When missing, influenza A subtypes were imputed using chained equations of known subtypes by season. FINDINGS: Data for 122 941 individuals hospitalised with influenza were captured in FluSurv-NET from the 2010-11 to 2018-19 seasons; after exclusions were applied, 107 941 individuals remained and underwent influenza A virus imputation when missing A subtype (43·4%). After imputation, data for 104 969 remained and were included in the final analytic sample. Averaging across imputed datasets, 57·7% (weighted percentage) had influenza A H3N2, 24·6% had influenza A H1N1pdm09, and 17·7% had influenza B virus infections; 16·7% required ICU admission, 6·5% received mechanical ventilation or ECMO, and 3·0% died (95% CIs had a range of less than 0·1% and are not displayed). Individuals with A H1N1pdm09 had higher odds of in-hospital severe outcomes than those with A H3N2: adjusted odds ratios (ORs) for A H1N1pdm09 versus A H3N2 were 1·42 (95% CI 1·32-1·52) for ICU admission; 1·79 (1·60-2·00) for mechanical ventilation or ECMO use; and 1·25 (1·07-1·46) for death. The adjusted ORs for individuals infected with influenza B versus influenza A H3N2 were 1·06 (95% CI 1·01-1·12) for ICU admission, 1·14 (1·05-1·24) for mechanical ventilation or ECMO use, and 1·18 (1·07-1·31) for death. INTERPRETATION: Despite a higher burden of hospitalisations with influenza A H3N2, we found an increased likelihood of in-hospital severe outcomes in individuals hospitalised with influenza A H1N1pdm09 or influenza B virus. Thus, it is important for individuals to receive an annual influenza vaccine and for health-care providers to provide early antiviral treatment for patients with suspected influenza who are at increased risk of severe outcomes, not only when there is high influenza A H3N2 virus circulation but also when influenza A H1N1pdm09 and influenza B viruses are circulating. FUNDING: The US Centers for Disease Control and Prevention. |
Correction: Methods and indicators for measuring patterns of human exposure to malaria vectors
Monroe A , Moore S , Okumu F , Kiware S , Lobo NF , Koenker H , Sherrard-Smith E , Gimnig J , Killeen GF . Malar J 2023 22 (1) 270 Following publication of the article [1], the authors flagged that there were some minor errors in the formulas of Additional file 1. These errors have since been corrected in the file. As a result of this correction, Fig. 2, which uses the illustrative data in Additional file 1, has also been corrected: in panel c of the figure, the value '60%' has been updated to '58%'. The authors would like to highlight that this corresponding update to the figure does not affect how their article should be interpreted; however, to ensure accurate calculations, it is important to ensure you use the corrected file if inputting your own data. The authors thank you for reading this erratum and apologize for any inconvenience caused. |
Clinical Trends Among U.S. Adults Hospitalized with COVID-19, March-December 2020 (preprint)
Garg S , Patel K , Pham H , Whitaker M , O'Halloran A , Milucky J , Anglin O , Kirley PD , Reingold A , Kawasaki B , Herlihy R , Yousey-Hindes K , Maslar A , Anderson EJ , Openo KP , Weigel A , Teno K , Ryan PA , Monroe ML , Reeg L , Kim S , Como-Sabetti K , Bye E , Shrum Davis S , Eisenberg N , Muse A , Barney G , Bennett NM , Felsen CB , Billing L , Shiltz J , Sutton M , Abdullah N , Talbot HK , Schaffner W , Hill M , Chatelain R , Wortham J , Taylor C , Hall A , Fry AM , Kim L , Havers FP . medRxiv 2021 2021.04.21.21255473 Background The COVID-19 pandemic has caused substantial morbidity and mortality.Objectives To describe monthly demographic and clinical trends among adults hospitalized with COVID-19.Design Pooled cross-sectional.Setting 99 counties within 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET).Patients U.S. adults (aged ≥18 years) hospitalized with laboratory-confirmed COVID-19 during March 1-December 31, 2020.Measurements Monthly trends in weighted percentages of interventions and outcomes including length of stay (LOS), intensive care unit admissions (ICU), invasive mechanical ventilation (IMV), vasopressor use and in-hospital death (death). Monthly hospitalization, ICU and death rates per 100,000 population.Results Among 116,743 hospitalized adults, median age was 62 years. Among 18,508 sampled adults, median LOS decreased from 6.4 (March) to 4.6 days (December). Remdesivir and systemic corticosteroid use increased from 1.7% and 18.9% (March) to 53.8% and 74.2% (December), respectively. Frequency of ICU decreased from 37.8% (March) to 20.5% (December). IMV (27.8% to 8.7%), vasopressors (22.7% to 8.8%) and deaths (13.9% to 8.7%) decreased from March to October; however, percentages of these interventions and outcomes remained stable or increased in November and December. Percentage of deaths significantly decreased over time for non-Hispanic White patients (p-value <0.01) but not non-Hispanic Black or Hispanic patients. Rates of hospitalization (105.3 per 100,000), ICU (20.2) and death (11.7) were highest during December.Limitations COVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country.Conclusions After initial improvement during April-October 2020, trends in interventions and outcomes worsened during November-December, corresponding with the 3rd peak of the U.S. pandemic. These data provide a longitudinal assessment of trends in COVID-19-associated outcomes prior to widespread COVID-19 vaccine implementation.Competing Interest StatementDr. Evan Anderson reports grants from Pfizer, grants from Merck, grants from PaxVax, grants from Micron, grants from Sanofi-Pasteur, grants from Janssen, grants from MedImmune, grants from GSK, personal fees from Sanofi-Pasteur, personal fees from Pfizer, personal fees from Medscape, personal fees from Kentucky Bioprocessing, Inc, personal fees from Sanofi-Pasteur, outside the submitted work. Dr. William Schaffner reports personal fees from VBI Vaccines, outside the submitted work. Funding StatementThis work was supported by the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement (grant CK17-1701) and through a Council of State and Territorial Epidemiologists cooperative agreement (grant NU38OT000297-02-00).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy. Sites participating in COVID-NET obtained approval from their respective state and local Institutional Review Boards, as applicable.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting check ist(s) and other pertinent material as supplementary files, if applicable.YesPublicly available data referred to in this analysis can be found at: https://gis.cdc.gov/grasp/covidnet/covid19_3.html https://gis.cdc.gov/grasp/covidnet/covid19_3.html |
Interim Analysis of Risk Factors for Severe Outcomes among a Cohort of Hospitalized Adults Identified through the U.S. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET) (preprint)
Kim L , Garg S , O'Halloran A , Whitaker M , Pham H , Anderson EJ , Armistead I , Bennett NM , Billing L , Como-Sabetti K , Hill M , Kim S , Monroe ML , Muse A , Reingold AL , Schaffner W , Sutton M , Talbot HK , Torres SM , Yousey-Hindes K , Holstein R , Cummings C , Brammer L , Hall AJ , Fry AM , Langley GE . medRxiv 2020 2020.05.18.20103390 Background As of May 15, 2020, the United States has reported the greatest number of coronavirus disease 2019 (COVID-19) cases and deaths globally.Objective To describe risk factors for severe outcomes among adults hospitalized with COVID-19.Design Cohort study of patients identified through the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network.Setting 154 acute care hospitals in 74 counties in 13 states.Patients 2491 patients hospitalized with laboratory-confirmed COVID-19 during March 1-May 2, 2020.Measurements Age, sex, race/ethnicity, and underlying medical conditions.Results Ninety-two percent of patients had ≥1 underlying condition; 32% required intensive care unit (ICU) admission; 19% invasive mechanical ventilation; 15% vasopressors; and 17% died during hospitalization. Independent factors associated with ICU admission included ages 50-64, 65-74, 75-84 and ≥85 years versus 18-39 years (adjusted risk ratio (aRR) 1.53, 1.65, 1.84 and 1.43, respectively); male sex (aRR 1.34); obesity (aRR 1.31); immunosuppression (aRR 1.29); and diabetes (aRR 1.13). Independent factors associated with in-hospital mortality included ages 50-64, 65-74, 75-84 and ≥85 years versus 18-39 years (aRR 3.11, 5.77, 7.67 and 10.98, respectively); male sex (aRR 1.30); immunosuppression (aRR 1.39); renal disease (aRR 1.33); chronic lung disease (aRR 1.31); cardiovascular disease (aRR 1.28); neurologic disorders (aRR 1.25); and diabetes (aRR 1.19). Race/ethnicity was not associated with either ICU admission or death.Limitation Data were limited to patients who were discharged or died in-hospital and had complete chart abstractions; patients who were still hospitalized or did not have accessible medical records were excluded.Conclusion In-hospital mortality for COVID-19 increased markedly with increasing age. These data help to characterize persons at highest risk for severe COVID-19-associated outcomes and define target groups for prevention and treatment strategies.Funding Source This work was supported by grant CK17-1701 from the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement and by Cooperative Agreement Number NU38OT000297-02-00 awarded to the Council of State and Territorial Epidemiologists from the Centers for Disease Control and Prevention.Competing Interest StatementH. Keipp Talbot reports personal fees from Seqirus outside the submitted work. William Schaffner reports personal fees from Pfizer and personal fees from Roche Diagnostics outside the submitted work. Evan Anderson reports personal fees from Abbvie and Pfizer outside the submitted work. H. Keipp Talbot reports grants from Sanofi outside the submitted work; Mary Hill reports grants from CSTE, during the conduct of the study; Melissa Sutton reports grants from CDC Emerging Infections Program during the conduct of the study; William Schaffner reports grants from CDC during the conduct of the study. Sue Kim reports grants from CSTE during the conduct of the study. Evan Anderson reports grants from Pfizer, grants from MedImmune, grants from Regeneron, grants from PaxVax, grants from Merck, grants from Novavax, grants from Sanofi-Pasteur, grants from Micron, outside the submitted work. Laurie Billing reports grants from the Council of State and Territorial Epidemiologists (CSTE) and the Centers for Disease Control and Prevention (CDC) during the conduct of the study.Funding StatementThis work was supported by grant CK17-1701 from the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement and by Cooperative Agreement Number NU38OT000297-02-00 awarded to the Council of State and Territorial Epidemiologists from the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that al clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAggregate data is available on CDC’s COVID-NET Interactive website. https://gis.cdc.gov/grasp/COVIDNet/COVID19_3.html https://gis.cdc.gov/grasp/COVIDNet/COVID19_5.html |
Updating reproduction number estimates for mpox in the Democratic Republic of Congo using surveillance data (preprint)
Charniga K , McCollum AM , Hughes CM , Monroe B , Kabamba J , Lushima RS , Likafi T , Nguete B , Pukuta E , Muyamuna E , Tamfum JJM , Karhemere S , Kaba D , Nakazawa Y . medRxiv 2023 17 Incidence of human mpox has been increasing in West and Central Africa, including in the Democratic Republic of Congo (DRC), where monkeypox virus (MPXV) is endemic. Most estimates of the pathogen's transmissibility in DRC are based on data from the 1980s. Amid the global 2022 mpox outbreak, new estimates are needed to characterize the virus' epidemic potential and inform outbreak control strategies. We used the R package vimes to identify clusters of laboratory-confirmed mpox cases in Tshuapa Province, DRC. Cases with both temporal and spatial data were assigned to clusters based on the disease's serial interval and spatial kernel. We used the size of the clusters to infer the effective reproduction number, R<inf>t</inf>, and the rate of zoonotic spillover of MPXV into the human population. Out of 1,463 confirmed mpox cases reported in Tshuapa Province between 2013 and 2017, 878 had both date of symptom onset and a location with geographic coordinates. Results include an estimated R<inf>t</inf> of 0.82 (95% CI: 0.79 - 0.85) and a rate of 132 (95% CI: 122 - 143) spillovers per year assuming a reporting rate of 0.25. This estimate of R<inf>t</inf> is larger compared to most previous estimates. One potential explanation for this result is that R<inf>t</inf> could have increased in DRC over time due to declining population-level immunity conferred by smallpox vaccination, which was discontinued around 1982. R<inf>t</inf> could be overestimated if our assumption of one spillover event per cluster does not hold. Our results are consistent with increased transmissibility of MPXV in Tshuapa Province. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Severity of Disease Among Adults Hospitalized with Laboratory-Confirmed COVID-19 Before and During the Period of SARS-CoV-2 B.1.617.2 (Delta) Predominance - COVID-NET, 14 States, January-August 2021.
Taylor CA , Patel K , Pham H , Whitaker M , Anglin O , Kambhampati AK , Milucky J , Chai SJ , Kirley PD , Alden NB , Armistead I , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Teno K , Weigel A , Monroe ML , Ryan PA , Henderson J , Nunez VT , Bye E , Lynfield R , Poblete M , Smelser C , Barney GR , Spina NL , Bennett NM , Popham K , Billing LM , Shiltz E , Abdullah N , Sutton M , Schaffner W , Talbot HK , Ortega J , Price A , Garg S , Havers FP , COVID-NET Surveillance Team . MMWR Morb Mortal Wkly Rep 2021 70 (43) 1513-1519 In mid-June 2021, B.1.671.2 (Delta) became the predominant variant of SARS-CoV-2, the virus that causes COVID-19, circulating in the United States. As of July 2021, the Delta variant was responsible for nearly all new SARS-CoV-2 infections in the United States.* The Delta variant is more transmissible than previously circulating SARS-CoV-2 variants (1); however, whether it causes more severe disease in adults has been uncertain. Data from the CDC COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), a population-based surveillance system for COVID-19-associated hospitalizations, were used to examine trends in severe outcomes in adults aged ≥18 years hospitalized with laboratory-confirmed COVID-19 during periods before (January-June 2021) and during (July-August 2021) Delta variant predominance. COVID-19-associated hospitalization rates among all adults declined during January-June 2021 (pre-Delta period), before increasing during July-August 2021 (Delta period). Among sampled nonpregnant hospitalized COVID-19 patients with completed medical record abstraction and a discharge disposition during the pre-Delta period, the proportion of patients who were admitted to an intensive care unit (ICU), received invasive mechanical ventilation (IMV), or died while hospitalized did not significantly change from the pre-Delta period to the Delta period. The proportion of hospitalized COVID-19 patients who were aged 18-49 years significantly increased, from 24.7% (95% confidence interval [CI] = 23.2%-26.3%) of all hospitalizations in the pre-Delta period, to 35.8% (95% CI = 32.1%-39.5%, p<0.01) during the Delta period. When examined by vaccination status, 71.8% of COVID-19-associated hospitalizations in the Delta period were in unvaccinated adults. Adults aged 18-49 years accounted for 43.6% (95% CI = 39.1%-48.2%) of all hospitalizations among unvaccinated adults during the Delta period. No difference was observed in ICU admission, receipt of IMV, or in-hospital death among nonpregnant hospitalized adults between the pre-Delta and Delta periods. However, the proportion of unvaccinated adults aged 18-49 years hospitalized with COVID-19 has increased as the Delta variant has become more predominant. Lower vaccination coverage in this age group likely contributed to the increase in hospitalized patients during the Delta period. COVID-19 vaccination is critical for all eligible adults, including those aged <50 years who have relatively low vaccination rates compared with older adults. |
Influenza antiviral use in patients hospitalized with laboratory-confirmed influenza in the United States, FluSurv-NET, 2015-2019
Tenforde MW , Cummings CN , O'Halloran AC , Rothrock G , Kirley PD , Alden NB , Meek J , Yousey-Hindes K , Openo KP , Anderson EJ , Monroe ML , Kim S , Nunez VT , McMahon M , McMullen C , Khanlian SA , Spina NL , Muse A , Gaitán MA , Felsen CB , Lung K , Shiltz E , Sutton M , Thomas A , Talbot HK , Schaffner W , Price A , Chatelain R , Reed C , Garg S . Open Forum Infect Dis 2023 10 (1) ofac681 From surveillance data of patients hospitalized with laboratory-confirmed influenza in the United States during the 2015-2016 through 2018-2019 seasons, initiation of antiviral treatment increased from 86% to 94%, with increases seen across all age groups. However, 62% started therapy ≥3 days after illness onset, driven by late presentation to care. |
Spatial repellents: The current roadmap to global recommendation of spatial repellents for public health use
Achee NL , Perkins TA , Moore SM , Liu F , Sagara I , Van Hulle S , Ochomo EO , Gimnig JE , Tissera HA , Harvey SA , Monroe A , Morrison AC , Scott TW , Reiner RC Jr , Grieco JP . Curr Res Parasitol Vector Borne Dis 2023 3 100107 Spatial repellent (SR) products are envisioned to complement existing vector control methods through the continual release of volatile active ingredients (AI) providing: (i) protection against day-time and early-evening biting; (ii) protection in enclosed/semi-enclosed and peri-domestic spaces; (iii) various formulations to fit context-specific applications; and (iv) increased coverage over traditional control methods. SR product AIs also have demonstrated effect against insecticide-resistant vectors linked to malaria and Aedes-borne virus (ABV) transmission. Over the past two decades, key stakeholders, including World Health Organization (WHO) representatives, have met to discuss the role of SRs in reducing arthropod-borne diseases based on existing evidence. A key focus has been to establish a critical development path for SRs, including scientific, regulatory and social parameters that would constitute an outline for a SR target product profile, i.e. optimum product characteristics. The principal gap is the lack of epidemiological data demonstrating SR public health impact across a range of different ecological and epidemiological settings, to inform a WHO policy recommendation. Here we describe in brief trials that are designed to fulfill evidence needs for WHO assessment and initial projections of SR cost-effectiveness against malaria and dengue. |
Serological responses to the MVA-based JYNNEOS monkeypox vaccine in a cohort of participants from the Democratic Republic of Congo
Priyamvada L , Carson WC , Ortega E , Navarra T , Tran S , Smith TG , Pukuta E , Muyamuna E , Kabamba J , Nguete BU , Likafi T , Kokola G , Lushima RS , Tamfum JM , Okitolonda EW , Kaba DK , Monroe BP , McCollum AM , Petersen BW , Satheshkumar PS , Townsend MB . Vaccine 2022 40 (50) 7321-7327 The current worldwide monkepox outbreak has reaffirmed the continued threat monkeypox virus (MPXV) poses to public health. JYNNEOS, a Modified Vaccinia Ankara (MVA)-based live, non-replicating vaccine, was recently approved for monkeypox prevention for adults at high risk of MPXV infection in the United States. Although the safety and immunogenicity of JYNNEOS have been examined previously, the clinical cohorts studied largely derive from regions where MPXV does not typically circulate. In this study, we assess the quality and longevity of serological responses to two doses of JYNNEOS vaccine in a large cohort of healthcare workers from the Democratic Republic of Congo (DRC). We show that JYNNEOS elicits a strong orthopoxvirus (OPXV)-specific antibody response in participants that peaks around day 42, or 2 weeks after the second vaccine dose. Participants with no prior history of smallpox vaccination or exposure have lower baseline antibody levels, but experience a similar fold-rise in antibody titers by day 42 as those with a prior history of vaccination. Both previously naïve and vaccinated participants generate vaccinia virus and MPXV-neutralizing antibody in response to JYNNEOS vaccination. Finally, even though total OPXV-specific IgG titers and neutralizing antibody titers declined from their peak and returned close to baseline levels by the 2-year mark, most participants remain IgG seropositive at the 2-year timepoint. Taken together, our data demonstrates that JYNNEOS vaccination triggers potent OPXV neutralizing antibody responses in a cohort of healthcare workers in DRC, a monkeypox-endemic region. MPXV vaccination with JYNNEOS may help ameliorate the disease and economic burden associated with monkeypox and combat potential outbreaks in areas with active virus circulation. |
Rates of severe influenza-associated outcomes among older adults living with diabetes-influenza hospitalization surveillance network (FluSurv-NET), 2012-2017
Owusu D , Rolfes MA , Arriola CS , Daily Kirley P , Alden NB , Meek J , Anderson EJ , Monroe ML , Kim S , Lynfield R , Angeles K , Spina N , Felsen CB , Billing L , Thomas A , Keipp Talbot H , Schaffner W , Chatelain R , Reed C , Garg S . Open Forum Infect Dis 2022 9 (5) ofac131 BACKGROUND: Diabetes mellitus (DM) is common among older adults hospitalized with influenza, yet data are limited on the impact of DM on risk of severe influenza-associated outcomes. METHODS: We included adults aged ≥65 years hospitalized with influenza during 2012-2013 through 2016-2017 from the Influenza Hospitalization Surveillance Network (FluSurv-NET), a population-based surveillance system for laboratory-confirmed influenza-associated hospitalizations conducted in defined counties within 13 states. We calculated population denominators using the Centers for Medicare and Medicaid Services county-specific DM prevalence estimates and National Center for Health Statistics population data. We present pooled rates and rate ratios (RRs) of intensive care unit (ICU) admission, pneumonia diagnosis, mechanical ventilation, and in-hospital death for persons with and without DM. We estimated RRs and 95% confidence intervals (CIs) using meta-analysis with site as a random effect in order to control for site differences in the estimates. RESULTS: Of 31 934 hospitalized adults included in the analysis, 34% had DM. Compared to those without DM, adults with DM had higher rates of influenza-associated hospitalization (RR, 1.57 [95% CI, 1.43-1.72]), ICU admission (RR, 1.84 [95% CI, 1.67-2.04]), pneumonia (RR, 1.57 [95% CI, 1.42-1.73]), mechanical ventilation (RR, 1.95 [95% CI, 1.74-2.20]), and in-hospital death (RR, 1.48 [95% CI, 1.23-1.80]). CONCLUSIONS: Older adults with DM have higher rates of severe influenza-associated outcomes compared to those without DM. These findings reinforce the importance of preventing influenza virus infections through annual vaccination, and early treatment of influenza illness with antivirals in older adults with DM. |
Epidemiology, clinical characteristics, and outcomes of influenza-associated hospitalizations in U.S. children over 9 seasons following the 2009 H1N1 pandemic
Kamidani S , Garg S , Rolfes MA , Campbell AP , Cummings CN , Haston JC , Openo KP , Fawcett E , Chai SJ , Herlihy R , Yousey-Hindes K , Monroe ML , Kim S , Lynfield R , Smelser C , Muse A , Felsen CB , Billing L , Thomas A , Talbot HK , Schaffner W , Risk I , Anderson EJ . Clin Infect Dis 2022 75 (11) 1930-1939 BACKGROUND: Recent population-based data are limited regarding influenza-associated hospitalizations in U.S. children. METHODS: We identified children <18 years hospitalized with laboratory-confirmed influenza during 2010-2019 seasons through CDC's Influenza Hospitalization Surveillance Network. Adjusted hospitalization and in-hospital mortality rates were calculated, and multivariable logistic regression was conducted to evaluate risk factors for pneumonia, intensive care unit (ICU) admission, mechanical ventilation, and death. RESULTS: Over 9 seasons, adjusted influenza-associated hospitalization incidence rates ranged from 10-375 per 100,000 persons each season and were highest among infants <6 months. Rates decreased with increasing age. The highest in-hospital mortality rates were observed in children <6 months (0.73 per 100,000 persons). Over time, antiviral treatment significantly increased from 56% to 85% (P < .001) and influenza vaccination rates increased from 33% to 44% (P = .003). Among the 13,235 hospitalized children, 2,676 (20%) of hospitalized children were admitted to the ICU, 2,262 (17%) had pneumonia, 690 (5%) required mechanical ventilation, and 72 (0.5%) died during hospitalization. As compared with those <6 months of age, hospitalized children ≥13 years had higher odds of pneumonia (adjusted odds ratios [aOR], 2.7; 95% confidence interval [CI], 2.1-3.4), ICU admission (aOR, 1.6; 95% CI, 1.3-1.9), mechanical ventilation (aOR, 1.6; 95% CI, 1.1-2.2), and death (aOR, 3.3; 95% CI, 1.2-9.3). CONCLUSIONS: Hospitalization and death rates were greatest in younger children at the population level. Among hospitalized children, however, older children had a higher risk of severe outcomes. Continued efforts to prevent and attenuate influenza in children are needed. |
Monkeypox in a Traveler Returning from Nigeria - Dallas, Texas, July 2021.
Rao AK , Schulte J , Chen TH , Hughes CM , Davidson W , Neff JM , Markarian M , Delea KC , Wada S , Liddell A , Alexander S , Sunshine B , Huang P , Honza HT , Rey A , Monroe B , Doty J , Christensen B , Delaney L , Massey J , Waltenburg M , Schrodt CA , Kuhar D , Satheshkumar PS , Kondas A , Li Y , Wilkins K , Sage KM , Yu Y , Yu P , Feldpausch A , McQuiston J , Damon IK , McCollum AM . MMWR Morb Mortal Wkly Rep 2022 71 (14) 509-516 ![]() ![]() Monkeypox is a rare, sometimes life-threatening zoonotic infection that occurs in west and central Africa. It is caused by Monkeypox virus, an orthopoxvirus similar to Variola virus (the causative agent of smallpox) and Vaccinia virus (the live virus component of orthopoxvirus vaccines) and can spread to humans. After 39 years without detection of human disease in Nigeria, an outbreak involving 118 confirmed cases was identified during 2017-2018 (1); sporadic cases continue to occur. During September 2018-May 2021, six unrelated persons traveling from Nigeria received diagnoses of monkeypox in non-African countries: four in the United Kingdom and one each in Israel and Singapore. In July 2021, a man who traveled from Lagos, Nigeria, to Dallas, Texas, became the seventh traveler to a non-African country with diagnosed monkeypox. Among 194 monitored contacts, 144 (74%) were flight contacts. The patient received tecovirimat, an antiviral for treatment of orthopoxvirus infections, and his home required large-scale decontamination. Whole genome sequencing showed that the virus was consistent with a strain of Monkeypox virus known to circulate in Nigeria, but the specific source of the patient's infection was not identified. No epidemiologically linked cases were reported in Nigeria; no contact received postexposure prophylaxis (PEP) with the orthopoxvirus vaccine ACAM2000. |
Evaluation of an accelerometer-based monitor for detecting bed net use and human entry/exit using a machine learning algorithm.
Koudou GB , Monroe A , Irish SR , Humes M , Krezanoski JD , Koenker H , Malone D , Hemingway J , Krezanoski PJ . Malar J 2022 21 (1) 85 ![]() ![]() BACKGROUND: Distribution of long-lasting insecticidal bed nets (LLINs) is one of the main control strategies for malaria. Improving malaria prevention programmes requires understanding usage patterns in households receiving LLINs, but there are limits to what standard cross-sectional surveys of self-reported LLIN use can provide. This study was designed to assess the performance of an accelerometer-based approach for measuring a range of LLIN use behaviours as a proof of concept for more granular LLIN-use monitoring over longer time periods. METHODS: This study was carried out under controlled conditions from May to July 2018 in Liverpool, UK. A single accelerometer was affixed to the side panel of an LLIN and participants carried out five LLIN use behaviours: (1) unfurling a net; (2) entering an unfurled net; (3) lying still as if sleeping; (4) exiting from under a net; and, (5) folding up a net. The randomForest package in R, a supervised non-linear classification algorithm, was used to train models on 20-s epochs of tagged accelerometer data. Models were compared in a validation dataset using overall accuracy, sensitivity and specificity, receiver operating curves and the area under the curve (AUC). RESULTS: The five-category model had overall accuracy of 82.9% in the validation dataset, a sensitivity of 0.681 for entering a net, 0.632 for exiting, 0.733 for net down, and 0.800 for net up. A simplified four-category model, combining entering/exiting a net into one category had accuracy of 94.8%, and increased sensitivity for net down (0.756) and net up (0.829). A further simplified three-category model, identifying sleeping, net up, and a combined net down/enter/exit category had accuracy of 96.2% (483/502), with an AUC of 0.997 for net down and 0.987 for net up. Models for detecting entering/exiting by adults were significantly more accurate than for children (87.8% vs 70.0%; p < 0.001) and had a higher AUC (p = 0.03). CONCLUSIONS: Understanding how LLINs are used is crucial for planning malaria prevention programmes. Accelerometer-based systems provide a promising new methodology for studying LLIN use. Further work exploring accelerometer placement, frequency of measurements and other machine learning approaches could make these methods even more accurate in the future. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure