Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-19 (of 19 Records) |
Query Trace: Mitchell PK[original query] |
---|
Methods to adjust for confounding in test-negative design COVID-19 effectiveness studies: Simulation study
Rowley EA , Mitchell PK , Yang DH , Lewis N , Dixon BE , Vazquez-Benitez G , Fadel WF , Essien IJ , Naleway AL , Stenehjem E , Ong TC , Gaglani M , Natarajan K , Embi P , Wiegand RE , Link-Gelles R , Tenforde MW , Fireman B . JMIR Form Res 2025 9 e58981 ![]() ![]() BACKGROUND: Real-world COVID-19 vaccine effectiveness (VE) studies are investigating exposures of increasing complexity accounting for time since vaccination. These studies require methods that adjust for the confounding that arises when morbidities and demographics are associated with vaccination and the risk of outcome events. Methods based on propensity scores (PS) are well-suited to this when the exposure is dichotomous, but present challenges when the exposure is multinomial. OBJECTIVE: This simulation study aimed to investigate alternative methods to adjust for confounding in VE studies that have a test-negative design. METHODS: Adjustment for a disease risk score (DRS) is compared with multivariable logistic regression. Both stratification on the DRS and direct covariate adjustment of the DRS are examined. Multivariable logistic regression with all the covariates and with a limited subset of key covariates is considered. The performance of VE estimators is evaluated across a multinomial vaccination exposure in simulated datasets. RESULTS: Bias in VE estimates from multivariable models ranged from -5.3% to 6.1% across 4 levels of vaccination. Standard errors of VE estimates were unbiased, and 95% coverage probabilities were attained in most scenarios. The lowest coverage in the multivariable scenarios was 93.7% (95% CI 92.2%-95.2%) and occurred in the multivariable model with key covariates, while the highest coverage in the multivariable scenarios was 95.3% (95% CI 94.0%-96.6%) and occurred in the multivariable model with all covariates. Bias in VE estimates from DRS-adjusted models was low, ranging from -2.2% to 4.2%. However, the DRS-adjusted models underestimated the standard errors of VE estimates, with coverage sometimes below the 95% level. The lowest coverage in the DRS scenarios was 87.8% (95% CI 85.8%-89.8%) and occurred in the direct adjustment for the DRS model. The highest coverage in the DRS scenarios was 94.8% (95% CI 93.4%-96.2%) and occurred in the model that stratified on DRS. Although variation in the performance of VE estimates occurred across modeling strategies, variation in performance was also present across exposure groups. CONCLUSIONS: Overall, models using a DRS to adjust for confounding performed adequately but not as well as the multivariable models that adjusted for covariates individually. |
Respiratory syncytial virus (RSV) vaccine effectiveness against RSV-associated hospitalisations and emergency department encounters among adults aged 60 years and older in the USA, October, 2023, to March, 2024: a test-negative design analysis
Payne AB , Watts JA , Mitchell PK , Dascomb K , Irving SA , Klein NP , Grannis SJ , Ong TC , Ball SW , DeSilva MB , Natarajan K , Sheffield T , Bride D , Arndorfer J , Naleway AL , Koppolu P , Fireman B , Zerbo O , Timbol J , Goddard K , Dixon BE , Fadel WF , Rogerson C , Allen KS , Rao S , Mayer D , Barron M , Reese SE , Rowley EAK , Najdowski M , Ciesla AA , Mak J , Reeves EL , Akinsete OO , McEvoy CE , Essien IJ , Tenforde MW , Fleming-Dutra KE , Link-Gelles R . Lancet 2024 404 (10462) 1547-1559 BACKGROUND: Respiratory syncytial virus vaccines first recommended for use during 2023 were efficacious against lower respiratory tract disease in clinical trials. Limited real-world data regarding respiratory syncytial virus vaccine effectiveness are available. To inform vaccine policy and address gaps in evidence from the clinical trials, we aimed to assess the effectiveness against respiratory syncytial virus-associated hospitalisations and emergency department encounters among adults aged at least 60 years. METHODS: We conducted a test-negative design analysis in an electronic health records-based network in eight states in the USA, including hospitalisations and emergency department encounters with respiratory syncytial virus-like illness among adults aged at least 60 years who underwent respiratory syncytial virus testing from Oct 1, 2023, to March 31, 2024. Respiratory syncytial virus vaccination status at the time of the encounter was derived from electronic health record documentation, state and city immunisation registries, and, for some sites, medical claims. Vaccine effectiveness was estimated by immunocompromise status, comparing the odds of vaccination among respiratory syncytial virus-positive case patients and respiratory syncytial virus-negative control patients, and adjusting for age, race and ethnicity, sex, calendar day, social vulnerability index, number of underlying non-respiratory medical conditions, presence of respiratory underlying medical conditions, and geographical region. FINDINGS: Among 28 271 hospitalisations for respiratory syncytial virus-like illness among adults aged at least 60 years without immunocompromising conditions, vaccine effectiveness was 80% (95% CI 71-85) against respiratory syncytial virus-associated hospitalisations, and vaccine effectiveness was 81% (52-92) against respiratory syncytial virus-associated critical illness (ICU admission or death, or both). Among 8435 hospitalisations for respiratory syncytial virus-like illness among adults with immunocompromising conditions, vaccine effectiveness was 73% (48-85) against associated hospitalisation. Among 36 521 emergency department encounters for respiratory syncytial virus-like illness among adults aged at least 60 years without an immunocompromising condition, vaccine effectiveness was 77% (70-83) against respiratory syncytial virus-associated emergency department encounters. Vaccine effectiveness estimates were similar by age group and product type. INTERPRETATION: Respiratory syncytial virus vaccination was effective in preventing respiratory syncytial virus-associated hospitalisations and emergency department encounters among adults aged at least 60 years in the USA during the 2023-24 respiratory syncytial virus season, which was the first season after respiratory syncytial virus vaccine was approved. FUNDING: The Centers for Disease Control and Prevention. |
Clinical epidemiology and risk factors for critical outcomes among vaccinated and unvaccinated adults hospitalized with COVID-19-VISION Network, 10 States, June 2021-March 2023
Griggs EP , Mitchell PK , Lazariu V , Gaglani M , McEvoy C , Klein NP , Valvi NR , Irving SA , Kojima N , Stenehjem E , Crane B , Rao S , Grannis SJ , Embi PJ , Kharbanda AB , Ong TC , Natarajan K , Dascomb K , Naleway AL , Bassett E , DeSilva MB , Dickerson M , Konatham D , Fireman B , Allen KS , Barron MA , Beaton M , Arndorfer J , Vazquez-Benitez G , Garg S , Murthy K , Goddard K , Dixon BE , Han J , Grisel N , Raiyani C , Lewis N , Fadel WF , Stockwell MS , Mamawala M , Hansen J , Zerbo O , Patel P , Link-Gelles R , Adams K , Tenforde MW . Clin Infect Dis 2023 ![]() BACKGROUND: The epidemiology of COVID-19 continues to develop with emerging variants, expanding population-level immunity, and advances in clinical care. We describe changes in the clinical epidemiology of hospitalized COVID-19 and risk factors for critical outcomes over time. METHODS: We included adults aged ≥18 years from 10 states hospitalized with COVID-19 June 2021-March 2023 when multiple SARS-CoV-2 variants or sub-lineages predominated. We evaluated changes in baseline demographic and clinical characteristics and critical outcomes (intensive care unit admission and/or death) and used regression models to evaluate critical outcomes risk factors (risk ratios) stratified by COVID-19 vaccination status. RESULTS: 60,488 COVID-19-associated hospitalizations were included in the analysis. Among those hospitalized, from Delta period (June-December 2021) to the Omicron post-BA.4/BA.5 period (September 2022-March 2023), median age increased from 60 to 75 years, proportion vaccinated increased from 18.2% to 70.1%, while critical outcomes declined from 24.8% to 19.4% (all p < 0.001). Compared to all hospitalization events, those with critical outcomes had a higher proportion of four or more categories of medical conditions categories assessed (32.8% critical versus 23.0% all hospitalized). Critical outcome risk factors were similar for unvaccinated and vaccinated populations; presence of ≥4 medical condition categories was most strongly associated with risk of critical outcomes regardless of vaccine status (unvaccinated aRR 2.27 [95% CI: 2.14-2.41]; vaccinated aRR 1.73 [95% CI: 1.56-1.92]) across periods. CONCLUSION: The proportion of adults hospitalized with COVID-19 who experienced critical outcomes decreased with time and median patient age increased with time. Multimorbidity was mostly strongly associated with critical outcomes. |
From people to Panthera: Natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo (preprint)
McAloose D , Laverack M , Wang L , Killian ML , Caserta LC , Yuan F , Mitchell PK , Queen K , Mauldin MR , Cronk BD , Bartlett SL , Sykes JM , Zec S , Stokol T , Ingerman K , Delaney MA , Fredrickson R , Ivančić M , Jenkins-Moore M , Mozingo K , Franzen K , Bergeson NH , Goodman L , Wang H , Fang Y , Olmstead C , McCann C , Thomas P , Goodrich E , Elvinger F , Smith DC , Tong S , Slavinski S , Calle PP , Terio K , Torchetti MK , Diel DG . bioRxiv 2020 2020.07.22.213959 We describe the first cases of natural SARS-CoV-2 infection detected in animals in the United States. In March 2020, four tigers and three lions at the Bronx Zoo developed mild respiratory signs. SARS-CoV-2 RNA was detected by rRT-PCR in respiratory secretions and/or feces from all seven affected animals; viral RNA and/or antibodies were detected in their keepers. SARS-CoV-2 was isolated from respiratory secretions or feces from three affected animals; in situ hybridization co-localized viral RNA with cellular damage. Whole genome sequence and haplotype network analyses showed tigers and lions were infected with two different SARS-CoV-2 strains, suggesting independent viral introductions. The source of SARS-CoV-2 infection in the lions is unknown. Epidemiological data and genetic similarities between keeper and tiger viruses indicate human to animal transmission.Competing Interest StatementThe authors have declared no competing interest. |
Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci (preprint)
Azarian T , Mitchell PK , Georgieva M , Thompson CM , Ghouila A , Pollard AJ , von Gottberg A , du Plessis M , Antonio M , Kwambana-Adams BA , Clarke SC , Everett D , Cornick J , Sadowy E , Hryniewicz W , Skoczynska A , Moisi JC , McGee L , Beall B , Metcalf BJ , Breiman RF , Ho PL , Reid R , O'Brien KL , Gladstone RA , Bentley SD , Hanage WP . bioRxiv 2018 314880 ![]() Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the United States, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3–31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identify a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939–1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development.Author Summary Streptococcus pneumoniae is a leading cause of bacterial pneumoniae, meningitis, and otitis media. Despite inclusion in the most recent pneumococcal conjugate vaccine, PCV13, serotype 3 remains epidemiologically important globally. We investigated the persistence of serotype 3 using whole-genome sequencing data form 301 isolates collected among 24 countries from 1993–2014. Through phylogenetic analysis, we identified three distinct lineages within a single clonal complex, CC180, and found one has recently emerged and grown in prevalence. We then compared genomic difference among lineages as well as variations in pneumococcal vaccine use among sampled countries. We found that the recently emerged lineage, termed Clade II, has a higher prevalence of antibiotic resistance compared to other lineages, diverse surface protein antigens, and a higher rate of recombination, a process by which bacteria can uptake and incorporate genetic material from its surroundings. Differences in vaccine use among sampled countries did not appear to be associated with the emergence of Clade II. We highlight the need to routine, representative sampling of bacterial isolates from diverse geographic areas and show the utility of genomic data in resolving epidemiological differences within a pathogen population. |
Protection of 2 and 3 mRNA Vaccine Doses Against Severe Outcomes Among Adults Hospitalized with COVID-19 - VISION Network, August 2021 - March 2022.
DeSilva MB , Mitchell PK , Klein NP , Dixon BE , Tenforde MW , Thompson MG , Naleway AL , Grannis SJ , Ong TC , Natarajan K , Reese SE , Zerbo O , Kharbanda AB , Patel P , Stenehjem E , Raiyani C , Irving SA , Fadel WF , Rao S , Han J , Reynolds S , Davis JM , Lewis N , McEvoy C , Dickerson M , Dascomb K , Valvi NR , Barron MA , Goddard K , Vazquez-Benitez G , Grisel N , Mamawala M , Embi PJ , Fireman B , Essien IJ , Griggs EP , Arndorfer J , Gaglani M . J Infect Dis 2022 227 (8) 961-969 BACKGROUND: We assessed COVID-19 vaccination impact on illness severity among adults hospitalized with COVID-19 August 2021-March 2022. METHODS: We evaluated differences in intensive care unit (ICU) admission, in-hospital death, and length of stay among vaccinated (2 or 3 mRNA vaccine doses) versus unvaccinated patients aged ≥18 years hospitalized for ≥24 hours with COVID-19-like illness (CLI) and positive SARS-CoV-2 molecular testing. We calculated odds ratios for ICU admission and death and subdistribution hazard ratios (SHR) for time to hospital discharge adjusted for age, geographic region, calendar time, and local virus circulation. RESULTS: We included 27,149 SARS-CoV-2 positive hospitalizations. During both Delta and Omicron-predominant periods, protection against ICU admission was strongest among 3-dose vaccinees compared with unvaccinated patients (Delta OR [CI]: 0.52 [0.28-0.96]); Omicron OR [CI]: 0.69 [0.54-0.87]). During both periods, risk of in-hospital of death was lower among vaccinated compared with unvaccinated but ORs were overlapping; during Omicron, lowest among 3-dose vaccinees (OR [CI] 0.39 [0.28-0.54]). We observed SHR >1 across all vaccination strata in both periods indicating faster discharge for vaccinated patients. CONCLUSIONS: COVID-19 vaccination was associated with lower rates of ICU admission and in-hospital death in both Delta and Omicron periods compared with being unvaccinated. |
Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: test negative, case-control study.
Ferdinands JM , Rao S , Dixon BE , Mitchell PK , DeSilva MB , Irving SA , Lewis N , Natarajan K , Stenehjem E , Grannis SJ , Han J , McEvoy C , Ong TC , Naleway AL , Reese SE , Embi PJ , Dascomb K , Klein NP , Griggs EP , Liao IC , Yang DH , Fadel WF , Grisel N , Goddard K , Patel P , Murthy K , Birch R , Valvi NR , Arndorfer J , Zerbo O , Dickerson M , Raiyani C , Williams J , Bozio CH , Blanton L , Link-Gelles R , Barron MA , Gaglani M , Thompson MG , Fireman B . BMJ 2022 379 e072141 ![]() OBJECTIVE: To estimate the effectiveness of mRNA vaccines against moderate and severe covid-19 in adults by time since second, third, or fourth doses, and by age and immunocompromised status. DESIGN: Test negative case-control study. SETTING: Hospitals, emergency departments, and urgent care clinics in 10 US states, 17 January 2021 to 12 July 2022. PARTICIPANTS: 893 461 adults (≥18 years) admitted to one of 261 hospitals or to one of 272 emergency department or 119 urgent care centers for covid-like illness tested for SARS-CoV-2. MAIN OUTCOME MEASURES: The main outcome was waning of vaccine effectiveness with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine during the omicron and delta periods, and the period before delta was dominant using logistic regression conditioned on calendar week and geographic area while adjusting for age, race, ethnicity, local virus circulation, immunocompromised status, and likelihood of being vaccinated. RESULTS: 45 903 people admitted to hospital with covid-19 (cases) were compared with 213 103 people with covid-like illness who tested negative for SARS-CoV-2 (controls), and 103 287 people admitted to emergency department or urgent care with covid-19 (cases) were compared with 531 168 people with covid-like illness who tested negative for SARS-CoV-2. In the omicron period, vaccine effectiveness against covid-19 requiring admission to hospital was 89% (95% confidence interval 88% to 90%) within two months after dose 3 but waned to 66% (63% to 68%) by four to five months. Vaccine effectiveness of three doses against emergency department or urgent care visits was 83% (82% to 84%) initially but waned to 46% (44% to 49%) by four to five months. Waning was evident in all subgroups, including young adults and individuals who were not immunocompromised; although waning was morein people who were immunocompromised. Vaccine effectiveness increased among most groups after a fourth dose in whom this booster was recommended. CONCLUSIONS: Effectiveness of mRNA vaccines against moderate and severe covid-19 waned with time after vaccination. The findings support recommendations for a booster dose after a primary series and consideration of additional booster doses. |
Effectiveness of Homologous and Heterologous COVID-19 Booster Doses Following 1 Ad.26.COV2.S (Janssen [Johnson & Johnson]) Vaccine Dose Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults - VISION Network, 10 States, December 2021-March 2022.
Natarajan K , Prasad N , Dascomb K , Irving SA , Yang DH , Gaglani M , Klein NP , DeSilva MB , Ong TC , Grannis SJ , Stenehjem E , Link-Gelles R , Rowley EA , Naleway AL , Han J , Raiyani C , Benitez GV , Rao S , Lewis N , Fadel WF , Grisel N , Griggs EP , Dunne MM , Stockwell MS , Mamawala M , McEvoy C , Barron MA , Goddard K , Valvi NR , Arndorfer J , Patel P , Mitchell PK , Smith M , Kharbanda AB , Fireman B , Embi PJ , Dickerson M , Davis JM , Zerbo O , Dalton AF , Wondimu MH , Azziz-Baumgartner E , Bozio CH , Reynolds S , Ferdinands J , Williams J , Schrag SJ , Verani JR , Ball S , Thompson MG , Dixon BE . MMWR Morb Mortal Wkly Rep 2022 71 (13) 495-502 CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome(†) (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network(§) determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits(¶) and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted. |
Waning 2-Dose and 3-Dose Effectiveness of mRNA Vaccines Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance - VISION Network, 10 States, August 2021-January 2022.
Ferdinands JM , Rao S , Dixon BE , Mitchell PK , DeSilva MB , Irving SA , Lewis N , Natarajan K , Stenehjem E , Grannis SJ , Han J , McEvoy C , Ong TC , Naleway AL , Reese SE , Embi PJ , Dascomb K , Klein NP , Griggs EP , Konatham D , Kharbanda AB , Yang DH , Fadel WF , Grisel N , Goddard K , Patel P , Liao IC , Birch R , Valvi NR , Reynolds S , Arndorfer J , Zerbo O , Dickerson M , Murthy K , Williams J , Bozio CH , Blanton L , Verani JR , Schrag SJ , Dalton AF , Wondimu MH , Link-Gelles R , Azziz-Baumgartner E , Barron MA , Gaglani M , Thompson MG , Fireman B . MMWR Morb Mortal Wkly Rep 2022 71 (7) 255-263 CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance(†) (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites(§) examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).(¶) Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits. |
Effectiveness of two-dose vaccination with mRNA COVID-19 vaccines against COVID-19-associated hospitalizations among immunocompromised adults-Nine States, January-September 2021.
Embi PJ , Levy ME , Naleway AL , Patel P , Gaglani M , Natarajan K , Dascomb K , Ong TC , Klein NP , Liao IC , Grannis SJ , Han J , Stenehjem E , Dunne MM , Lewis N , Irving SA , Rao S , McEvoy C , Bozio CH , Murthy K , Dixon BE , Grisel N , Yang DH , Goddard K , Kharbanda AB , Reynolds S , Raiyani C , Fadel WF , Arndorfer J , Rowley EA , Fireman B , Ferdinands J , Valvi NR , Ball SW , Zerbo O , Griggs EP , Mitchell PK , Porter RM , Kiduko SA , Blanton L , Zhuang Y , Steffens A , Reese SE , Olson N , Williams J , Dickerson M , McMorrow M , Schrag SJ , Verani JR , Fry AM , Azziz-Baumgartner E , Barron MA , Thompson MG , DeSilva MB . Am J Transplant 2022 22 (1) 306-314 Immunocompromised persons, defined as those with suppressed humoral or cellular immunity resulting from health conditions or medications, account for approximately 3% of the US adult population.1 Immunocompromised adults are at increased risk for severe COVID-19 outcomes2 and might not acquire the same level of protection from COVID-19 mRNA vaccines as do immunocompetent adults.3 , 4 To evaluate vaccine effectiveness (VE) among immunocompromised adults, data from the VISION Network1 on hospitalizations among persons aged ≥18 years with COVID-19–like illness from 187 hospitals in nine states during January 17–September 5, 2021 were analyzed. Using selected discharge diagnoses,2 VE against COVID-19–associated hospitalization conferred by completing a two-dose series of an mRNA COVID-19 vaccine ≥14 days before the index hospitalization date3 (i.e., being fully vaccinated) was evaluated using a test-negative design comparing 20,101 immunocompromised adults (10,564 [53%] of whom were fully vaccinated) and 69,116 immunocompetent adults (29,456 [43%] of whom were fully vaccinated). VE of two doses of mRNA COVID-19 vaccine against COVID-19–associated hospitalization was lower among immunocompromised patients (77%; 95% confidence interval [CI] = 74%–80%) than among immunocompetent patients (90%; 95% CI = 89%–91%). This difference persisted irrespective of mRNA vaccine product, age group, and timing of hospitalization relative to SARS-CoV-2 (the virus that causes COVID-19) B.1.617.2 (Delta) variant predominance in the state of hospitalization. VE varied across immunocompromising condition subgroups, ranging from 59% (organ or stem cell transplant recipients) to 81% (persons with a rheumatologic or inflammatory disorder). Immunocompromised persons benefit from mRNA COVID-19 vaccination but are less protected from severe COVID-19 outcomes than are immunocompetent persons, and VE varies among immunocompromised subgroups. Immunocompromised persons receiving mRNA COVID-19 vaccines should receive three doses and a booster, consistent with CDC recommendations,5 practice nonpharmaceutical interventions, and, if infected, be monitored closely and considered early for proven therapies that can prevent severe outcomes. |
Laboratory-Confirmed COVID-19 Among Adults Hospitalized with COVID-19-Like Illness with Infection-Induced or mRNA Vaccine-Induced SARS-CoV-2 Immunity - Nine States, January-September 2021.
Bozio CH , Grannis SJ , Naleway AL , Ong TC , Butterfield KA , DeSilva MB , Natarajan K , Yang DH , Rao S , Klein NP , Irving SA , Dixon BE , Dascomb K , Liao IC , Reynolds S , McEvoy C , Han J , Reese SE , Lewis N , Fadel WF , Grisel N , Murthy K , Ferdinands J , Kharbanda AB , Mitchell PK , Goddard K , Embi PJ , Arndorfer J , Raiyani C , Patel P , Rowley EA , Fireman B , Valvi NR , Griggs EP , Levy ME , Zerbo O , Porter RM , Birch RJ , Blanton L , Ball SW , Steffens A , Olson N , Williams J , Dickerson M , McMorrow M , Schrag SJ , Verani JR , Fry AM , Azziz-Baumgartner E , Barron M , Gaglani M , Thompson MG , Stenehjem E . MMWR Morb Mortal Wkly Rep 2021 70 (44) 1539-1544 Previous infection with SARS-CoV-2 (the virus that causes COVID-19) or COVID-19 vaccination can provide immunity and protection from subsequent SARS-CoV-2 infection and illness. CDC used data from the VISION Network* to examine hospitalizations in adults with COVID-19-like illness and compared the odds of receiving a positive SARS-CoV-2 test result, and thus having laboratory-confirmed COVID-19, between unvaccinated patients with a previous SARS-CoV-2 infection occurring 90-179 days before COVID-19-like illness hospitalization, and patients who were fully vaccinated with an mRNA COVID-19 vaccine 90-179 days before hospitalization with no previous documented SARS-CoV-2 infection. Hospitalized adults aged ≥18 years with COVID-19-like illness were included if they had received testing at least twice: once associated with a COVID-19-like illness hospitalization during January-September 2021 and at least once earlier (since February 1, 2020, and ≥14 days before that hospitalization). Among COVID-19-like illness hospitalizations in persons whose previous infection or vaccination occurred 90-179 days earlier, the odds of laboratory-confirmed COVID-19 (adjusted for sociodemographic and health characteristics) among unvaccinated, previously infected adults were higher than the odds among fully vaccinated recipients of an mRNA COVID-19 vaccine with no previous documented infection (adjusted odds ratio [aOR] = 5.49; 95% confidence interval [CI] = 2.75-10.99). These findings suggest that among hospitalized adults with COVID-19-like illness whose previous infection or vaccination occurred 90-179 days earlier, vaccine-induced immunity was more protective than infection-induced immunity against laboratory-confirmed COVID-19. All eligible persons should be vaccinated against COVID-19 as soon as possible, including unvaccinated persons previously infected with SARS-CoV-2. |
Effectiveness of 2-Dose Vaccination with mRNA COVID-19 Vaccines Against COVID-19-Associated Hospitalizations Among Immunocompromised Adults - Nine States, January-September 2021.
Embi PJ , Levy ME , Naleway AL , Patel P , Gaglani M , Natarajan K , Dascomb K , Ong TC , Klein NP , Liao IC , Grannis SJ , Han J , Stenehjem E , Dunne MM , Lewis N , Irving SA , Rao S , McEvoy C , Bozio CH , Murthy K , Dixon BE , Grisel N , Yang DH , Goddard K , Kharbanda AB , Reynolds S , Raiyani C , Fadel WF , Arndorfer J , Rowley EA , Fireman B , Ferdinands J , Valvi NR , Ball SW , Zerbo O , Griggs EP , Mitchell PK , Porter RM , Kiduko SA , Blanton L , Zhuang Y , Steffens A , Reese SE , Olson N , Williams J , Dickerson M , McMorrow M , Schrag SJ , Verani JR , Fry AM , Azziz-Baumgartner E , Barron MA , Thompson MG , DeSilva MB . MMWR Morb Mortal Wkly Rep 2021 70 (44) 1553-1559 Immunocompromised persons, defined as those with suppressed humoral or cellular immunity resulting from health conditions or medications, account for approximately 3% of the U.S. adult population (1). Immunocompromised adults are at increased risk for severe COVID-19 outcomes (2) and might not acquire the same level of protection from COVID-19 mRNA vaccines as do immunocompetent adults (3,4). To evaluate vaccine effectiveness (VE) among immunocompromised adults, data from the VISION Network* on hospitalizations among persons aged ≥18 years with COVID-19-like illness from 187 hospitals in nine states during January 17-September 5, 2021 were analyzed. Using selected discharge diagnoses,(†) VE against COVID-19-associated hospitalization conferred by completing a 2-dose series of an mRNA COVID-19 vaccine ≥14 days before the index hospitalization date(§) (i.e., being fully vaccinated) was evaluated using a test-negative design comparing 20,101 immunocompromised adults (10,564 [53%] of whom were fully vaccinated) and 69,116 immunocompetent adults (29,456 [43%] of whom were fully vaccinated). VE of 2 doses of mRNA COVID-19 vaccine against COVID-19-associated hospitalization was lower among immunocompromised patients (77%; 95% confidence interval [CI] = 74%-80%) than among immunocompetent patients (90%; 95% CI = 89%-91%). This difference persisted irrespective of mRNA vaccine product, age group, and timing of hospitalization relative to SARS-CoV-2 (the virus that causes COVID-19) B.1.617.2 (Delta) variant predominance in the state of hospitalization. VE varied across immunocompromising condition subgroups, ranging from 59% (organ or stem cell transplant recipients) to 81% (persons with a rheumatologic or inflammatory disorder). Immunocompromised persons benefit from mRNA COVID-19 vaccination but are less protected from severe COVID-19 outcomes than are immunocompetent persons, and VE varies among immunocompromised subgroups. Immunocompromised persons receiving mRNA COVID-19 vaccines should receive 3 doses and a booster, consistent with CDC recommendations (5), practice nonpharmaceutical interventions, and, if infected, be monitored closely and considered early for proven therapies that can prevent severe outcomes. |
Identifying septic pollution exposure routes during a waterborne norovirus outbreak - A new application for human-associated microbial source tracking qPCR.
Mattioli MC , Benedict KM , Murphy J , Kahler A , Kline KE , Longenberger A , Mitchell PK , Watkins S , Berger P , Shanks OC , Barrett CE , Barclay L , Hall AJ , Hill V , Weltman A . J Microbiol Methods 2020 180 106091 ![]() ![]() In June 2017, the Pennsylvania Department of Health (PADOH) was notified of multiple norovirus outbreaks associated with 179 ill individuals who attended separate events held at an outdoor venue and campground over a month period. Epidemiologic investigations were unable to identify a single exposure route and therefore unable to determine whether there was a persistent contamination source to target for exposure mitigation. Norovirus was detected in a fresh recreational water designated swimming area and a drinking water well. A hydrogeological site evaluation suggested a nearby septic leach field as a potential contamination source via ground water infiltration. Geological characterization revealed a steep dip of the bedrock beneath the septic leach field toward the well, providing a viral transport pathway in a geologic medium not previously documented as high risk for viral ground water contamination. The human-associated microbial source tracking (MST) genetic marker, HF183, was used as a microbial tracer to demonstrate the hydrogeological connection between the malfunctioning septic system, drinking water well, and recreational water area. Based on environmental investigation findings, venue management and local public health officials implemented a series of outbreak prevention strategies including discontinuing the use of the contaminated well, issuing a permit for a new drinking water well, increasing portable toilet and handwashing station availability, and promoting proper hand hygiene. Despite the outbreaks at the venue and evidence of ground water contamination impacting nearby recreational water and the drinking water well, no new norovirus cases were reported during a large event one week after implementing prevention practices. This investigation highlights a new application for human-associated MST methods to trace hydrological connections between multiple fecal pollutant exposure routes in an outbreak scenario. In turn, pollutant source information can be used to develop effective intervention practices to mitigate exposure and prevent future outbreaks associated with human fecal contaminated waters. |
From People to Panthera : Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo.
McAloose D , Laverack M , Wang L , Killian ML , Caserta LC , Yuan F , Mitchell PK , Queen K , Mauldin MR , Cronk BD , Bartlett SL , Sykes JM , Zec S , Stokol T , Ingerman K , Delaney MA , Fredrickson R , Ivančić M , Jenkins-Moore M , Mozingo K , Franzen K , Bergeson NH , Goodman L , Wang H , Fang Y , Olmstead C , McCann C , Thomas P , Goodrich E , Elvinger F , Smith DC , Tong S , Slavinski S , Calle PP , Terio K , Torchetti MK , Diel DG . mBio 2020 11 (5) ![]() ![]() Despite numerous barriers to transmission, zoonoses are the major cause of emerging infectious diseases in humans. Among these, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and ebolaviruses have killed thousands; the human immunodeficiency virus (HIV) has killed millions. Zoonoses and human-to-animal cross-species transmission are driven by human actions and have important management, conservation, and public health implications. The current SARS-CoV-2 pandemic, which presumably originated from an animal reservoir, has killed more than half a million people around the world and cases continue to rise. In March 2020, New York City was a global epicenter for SARS-CoV-2 infections. During this time, four tigers and three lions at the Bronx Zoo, NY, developed mild, abnormal respiratory signs. We detected SARS-CoV-2 RNA in respiratory secretions and/or feces from all seven animals, live virus in three, and colocalized viral RNA with cellular damage in one. We produced nine whole SARS-CoV-2 genomes from the animals and keepers and identified different SARS-CoV-2 genotypes in the tigers and lions. Epidemiologic and genomic data indicated human-to-tiger transmission. These were the first confirmed cases of natural SARS-CoV-2 animal infections in the United States and the first in nondomestic species in the world. We highlight disease transmission at a nontraditional interface and provide information that contributes to understanding SARS-CoV-2 transmission across species.IMPORTANCE The human-animal-environment interface of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important aspect of the coronavirus disease 2019 (COVID-19) pandemic that requires robust One Health-based investigations. Despite this, few reports describe natural infections in animals or directly link them to human infections using genomic data. In the present study, we describe the first cases of natural SARS-CoV-2 infection in tigers and lions in the United States and provide epidemiological and genetic evidence for human-to-animal transmission of the virus. Our data show that tigers and lions were infected with different genotypes of SARS-CoV-2, indicating two independent transmission events to the animals. Importantly, infected animals shed infectious virus in respiratory secretions and feces. A better understanding of the susceptibility of animal species to SARS-CoV-2 may help to elucidate transmission mechanisms and identify potential reservoirs and sources of infection that are important in both animal and human health. |
Multistate outbreak of Burkholderia cepacia complex bloodstream infections after exposure to contaminated saline flush syringes: United States, 2016-2017
Brooks RB , Mitchell PK , Miller JR , Vasquez AM , Havlicek J , Lee H , Quinn M , Adams E , Baker D , Greeley R , Ross K , Daskalaki I , Walrath J , Moulton-Meissner H , Crist MB . Clin Infect Dis 2019 69 (3) 445-449 BACKGROUND: Burkholderia cepacia complex (Bcc) has caused healthcare-associated outbreaks, often in association with contaminated products. The identification of 4 Bcc bloodstream infections in patients residing at a single skilled nursing facility (SNF) within 1 week led to an epidemiological investigation to identify additional cases and the outbreak source. METHODS: A case was initially defined via a blood culture yielding Bcc in a SNF resident receiving intravenous therapy after 1 August 2016. Multistate notifications were issued to identify additional cases. Public health authorities performed site visits at facilities with cases to conduct chart reviews and identify possible sources. Pulsed-field gel electrophoresis (PFGE) was performed on isolates from cases and suspect products. Facilities involved in manufacturing suspect products were inspected to assess possible root causes. RESULTS: An outbreak of 162 Bcc bloodstream infections across 59 nursing facilities in 5 states occurred during September 2016-January 2017. Isolates from patients and pre-filled saline flush syringes were closely related by PFGE, identifying contaminated flushes as the outbreak source and prompting a nationwide recall. Inspections of facilities at the saline flush manufacturer identified deficiencies that might have led to the failure to sterilize a specific case containing a partial lot of the product. CONCLUSIONS: Communication and coordination among key stakeholders, including healthcare facilities, public health authorities, and state and federal agencies, led to the rapid identification of an outbreak source and likely prevented many additional infections. Effective processes to ensure the sterilization of injectable products are essential to prevent similar outbreaks in the future. |
Reassessing serosurvey-based estimates of the symptomatic proportion of Zika virus infections
Mitchell PK , Mier-Y-Teran-Romero L , Biggerstaff BJ , Delorey MJ , Aubry M , Cao-Lormeau VM , Lozier MJ , Cauchemez S , Johansson MA . Am J Epidemiol 2019 188 (1) 206-213 ![]() Since the 2007 Zika epidemic in the Micronesian state of Yap, it has been apparent that not all people infected with Zika virus (ZIKV) experience symptoms. However, the proportion of infections that result in symptoms remains unclear. Existing estimates have varied in their interpretation of symptoms due to other causes and the case definition used, and they have assumed perfect test sensitivity and specificity. Using a Bayesian model and data from ZIKV serosurveys in Yap (2007), French Polynesia (2013-2014), and Puerto Rico (2016), we found that assuming perfect sensitivity and specificity generally led to lower estimates of the symptomatic proportion. Incorporating reasonable assumptions for assay sensitivity and specificity, we estimated that 27% (95% credible interval (CrI): 15, 37) (Yap), 44% (95% CrI: 26, 66) (French Polynesia), and 50% (95% CrI: 34, 92) (Puerto Rico) of infections were symptomatic, with variation due to differences in study populations, study designs, and case definitions. The proportion of ZIKV infections causing symptoms is critical for surveillance system design and impact assessment. Here, we accounted for key uncertainties in existing seroprevalence data and found that estimates for the symptomatic proportion ranged from 27% to 50%, suggesting that while the majority of infections are asymptomatic or mildly symptomatic, symptomatic infections might be more common than previously estimated. |
Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci.
Azarian T , Mitchell PK , Georgieva M , Thompson CM , Ghouila A , Pollard AJ , von Gottberg A , du Plessis M , Antonio M , Kwambana-Adams BA , Clarke SC , Everett D , Cornick J , Sadowy E , Hryniewicz W , Skoczynska A , Moisi JC , McGee L , Beall B , Metcalf BJ , Breiman RF , Ho PL , Reid R , O'Brien KL , Gladstone RA , Bentley SD , Hanage WP . PLoS Pathog 2018 14 (11) e1007438 ![]() ![]() ![]() Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3-31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939-1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development. |
Notes from the field: Travel-associated melioidosis and resulting laboratory exposures - United States, 2016
Mitchell PK , Campbell C , Montgomery MP , Paoline J , Wilbur C , Posivak-Khouly L , Garafalo K , Elrod M , Liu L , Weltman A . MMWR Morb Mortal Wkly Rep 2017 66 (37) 1001-1002 In mid-July 2016, a Pennsylvania resident aged 15 years who had recently returned from Thailand was treated by a pediatrician for sore throat, fever, and bilateral thigh abscesses at the sites of mosquito bites (Figure). She had traveled to northeast Thailand with nine other teens as part of an 18-day service-oriented trip run by an Ohio-based youth tour company that arranges travel to Thailand for approximately 500 persons annually. This trip included construction and agricultural activities and recreational mud exposures. The patient subsequently developed right inguinal lymphadenopathy and worsening abscesses, which prompted specimen collection for culture on August 25. This specimen was sent to a commercial laboratory in New Jersey, which identified Burkholderia pseudomallei, the causative organism of melioidosis, on August 30. The patient did not experience pneumonia or bacteremia, and recovered fully after 2 weeks of intensive therapy with parenteral ceftazidime and a 6-month outpatient course of eradication therapy with doxycycline. |
Genomic epidemiology of penicillin non-susceptible pneumococci with non-vaccine serotypes causing invasive disease in the USA.
Andam CP , Mitchell PK , Callendrello A , Chang Q , Corander J , Chaguza C , McGee L , Beall BW , Hanage WP . J Clin Microbiol 2017 55 (4) 1104-1115 ![]() Conjugate vaccination against seven pneumococcal serotypes (PCV7) reduced disease prevalence due to antibiotic resistant strains throughout the 2000s; however, disease caused by resistant non-vaccine type (NVT) strains increased. Some of these emerging strains were derived from vaccine types (VT) that had changed their capsule by recombination. The introduction of vaccine targeting 13 serotypes (PCV13) in 2010 has led to concern that this scenario will repeat itself. We generated high quality draft genomes from 265 isolates of NVT pneumococci not susceptible to penicillin (PNSP) in 2009 and compared them with 581 isolates from 2012-2013, collected by the Active Bacterial Core surveillance (ABCs) of the Centers for Disease Control and Prevention (CDC). Of the seven sequence clusters (SCs) identified, three SCs fell into a single lineage associated with serogroup 23, which had an origin in 1908 as dated by coalescent analysis and included isolates with a divergent 23B capsule locus. Three other SCs represented relatively deep-branching lineages associated with serotypes 35B, 15A and 15BC. In all cases, resistant clones originated prior to 2010, indicating that PNSP are at present dominated by descendants of NVT clones present before vaccination. With one exception (15BC/ST3280), these SCs were related to clones identified by the Pneumococcal Molecular Epidemiology Network (PMEN). We conclude that post-vaccine diversity in NVT PNSP between 2009 and 2013 was driven mainly by the persistence of pre-existing strains rather than through de novo adaptation, with few cases of serotype switching. Future surveillance is essential to document long-term dynamics and resistance of NVT PNSP. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure