Last data update: Jan 13, 2025. (Total: 48570 publications since 2009)
Records 1-30 (of 35 Records) |
Query Trace: Milucky J[original query] |
---|
Epidemiology of pneumococcal meningitis in sentinel hospital surveillance of Viet Nam, 2015-2018
Nguyen DT , Nguyen TL , Olmsted A , Duong TH , Hoang HM , Nguyen LH , Ouattara M , Milucky J , Lessa FC , Vo TTD , Phan VT , Nguyen THA , Pham NMN , Truong HK , Phan TQT , Bui THH , Pham VK , Iijima M , Le B , Kim L , Farrar JL . BMC Infect Dis 2024 24 (1) 1179 BACKGROUND: Streptococcus pneumoniae (S. pneumoniae), Haemophilus influenzae (H. influenzae), and Neisseria meningitidis (N. meningitidis) are leading causes of childhood bacterial meningitis and preventable by vaccines. The aim of this hospital-based sentinel surveillance is to describe the epidemiological characteristics of pneumococcal meningitis, including disease burden, and to provide baseline data on pneumococcal serotype distribution to support decision making for pneumococcal conjugate vaccine (PCV) introduction in Vietnam. METHODS: Surveillance for probable bacterial meningitis in children 1-59 months of age is conducted in three tertiary level pediatric hospitals: one in Hanoi and two in Ho Chi Minh City. Cerebrospinal fluid (CSF) specimens were collected via lumbar puncture from children with suspected meningitis. Specimens were transferred immediately to the laboratory department of the respective hospital for cytology, biochemistry, and microbiology testing, including culture. PCR testing was conducted on CSF specimens for bacterial detection (S. pneumoniae, H. influenzae, and N. meningitidis) and pneumococcal serotyping. RESULTS: During 2015-2018, a total of 1,803 children with probable bacterial meningitis were detected; 1,780 had CSF specimens available for testing. Of 245 laboratory-confirmed positive cases, the majority were caused by S. pneumoniae (229,93.5%). Of those with S. pneumoniae detected, over 70% were caused by serotypes included in currently available PCV products; serotypes 6 A/6B (27.1%), 14 (19.7%), and 23 F (16.2%) were the most common serotypes. Children with laboratory-confirmed pneumococcal meningitis were more likely to live in Hanoi (p < 0.0001) and children 12-23 months of age were at greater odds (OR = 1.65, 95% CI: 1.11, 2.43; p = 0.006) of having confirmed pneumococcal meningitis compared to children < 12 months of age when compared to those without laboratory-confirmed bacterial meningitis. Additionally, children with confirmed pneumococcal meningitis were more likely to exhibit signs and symptoms consistent with clinical meningitis compared to negative laboratory-confirmed meningitis cases (p < 0.0001) and had a greater odds of death (OR = 6.18, 95% CI: 2.98, 12.86; p < 0.0001). CONCLUSIONS: Pneumococcal meningitis contributes to a large burden of bacterial meningitis in Vietnamese children. A large proportion are caused by serotypes covered by PCVs currently available. Introduction of PCV into the routine immunization program could reduce the burden of pneumococcal meningitis in Viet Nam. |
Predictors of severity and prolonged hospital stay of viral acute respiratory infections (ARI) among children under five years in Burkina Faso, 2016-2019
Ilboudo AK , Cissé A , Milucky J , Tialla D , Mirza SA , Diallo AO , Bicaba BW , Charlemagne KJ , Diagbouga PS , Owusu D , Waller JL , Talla-Nzussouo N , Charles MD , Whitney CG , Tarnagda Z . BMC Infect Dis 2024 24 (1) 331 BACKGROUND: Viruses are the leading etiology of acute respiratory infections (ARI) in children. However, there is limited knowledge on drivers of severe acute respiratory infection (SARI) cases involving viruses. We aimed to identify factors associated with severity and prolonged hospitalization of viral SARI among children < 5 years in Burkina Faso. METHODS: Data were collected from four SARI sentinel surveillance sites during October 2016 through April 2019. A SARI case was a child < 5 years with an acute respiratory infection with history of fever or measured fever ≥ 38 °C and cough with onset within the last ten days, requiring hospitalization. Very severe ARI cases required intensive care or had at least one danger sign. Oropharyngeal/nasopharyngeal specimens were collected and analyzed by multiplex real-time reverse-transcription polymerase chain reaction (rRT-PCR) using FTD-33 Kit. For this analysis, we included only SARI cases with rRT-PCR positive test results for at least one respiratory virus. We used simple and multilevel logistic regression models to assess factors associated with very severe viral ARI and viral SARI with prolonged hospitalization. RESULTS: Overall, 1159 viral SARI cases were included in the analysis after excluding exclusively bacterial SARI cases (n = 273)very severe viral ARI cases were common among children living in urban areas (AdjOR = 1.3; 95% CI: 1.1-1.6), those < 3 months old (AdjOR = 1.5; 95% CI: 1.1-2.3), and those coinfected with Klebsiella pneumoniae (AdjOR = 1.9; 95% CI: 1.2-2.2). Malnutrition (AdjOR = 2.2; 95% CI: 1.1-4.2), hospitalization during the rainy season (AdjOR = 1.71; 95% CI: 1.2-2.5), and infection with human CoronavirusOC43 (AdjOR = 3; 95% CI: 1.2-8) were significantly associated with prolonged length of hospital stay (> 7 days). CONCLUSION: Younger age, malnutrition, codetection of Klebsiella pneumoniae, and illness during the rainy season were associated with very severe cases and prolonged hospitalization of SARI involving viruses in children under five years. These findings emphasize the need for preventive actions targeting these factors in young children. |
Characteristics and outcomes of pregnant women hospitalized with laboratory-confirmed respiratory syncytial virus before and during the COVID-19 pandemic
Milucky J , Patel K , Patton ME , Kirley PD , Austin E , Meek J , Anderson EJ , Brooks A , Brown C , Mumm E , Salazar-Sanchez Y , Barney G , Popham K , Sutton M , Talbot HK , Crossland MT , Havers FP . Open Forum Infect Dis 2024 11 (3) ofae042 BACKGROUND: Respiratory syncytial virus (RSV) can cause severe disease among infants and older adults. Less is known about RSV among pregnant women. METHODS: To analyze hospitalizations with laboratory-confirmed RSV among women aged 18 to 49 years, we used data from the RSV Hospitalization Surveillance Network (RSV-NET), a multistate population-based surveillance system. Specifically, we compared characteristics and outcomes among (1) pregnant and nonpregnant women during the pre-COVID-19 pandemic period (2014-2018), (2) pregnant women with respiratory symptoms during the prepandemic and pandemic periods (2021-2023), and (3) pregnant women with and without respiratory symptoms in the pandemic period. Using multivariable logistic regression, we examined whether pregnancy was a risk factor for severe outcomes (intensive care unit admission or in-hospital death) among women aged 18 to 49 years who were hospitalized with RSV prepandemic. RESULTS: Prepandemic, 387 women aged 18 to 49 years were hospitalized with RSV. Of those, 350 (90.4%) had respiratory symptoms, among whom 33 (9.4%) were pregnant. Five (15.2%) pregnant women and 74 (23.3%) nonpregnant women were admitted to the intensive care unit; no pregnant women and 5 (1.6%) nonpregnant women died. Among 279 hospitalized pregnant women, 41 were identified prepandemic and 238 during the pandemic: 80.5% and 35.3% had respiratory symptoms, respectively (P < .001). Pregnant women were more likely to deliver during their RSV-associated hospitalization during the pandemic vs the prepandemic period (73.1% vs 43.9%, P < .001). CONCLUSIONS: Few pregnant women had severe RSV disease, and pregnancy was not a risk factor for a severe outcome. More asymptomatic pregnant women were identified during the pandemic, likely due to changes in testing practices for RSV. |
Nasopharyngeal carriage of Streptococcus pneumoniae among children <5 years of age in Indonesia prior to pneumococcal conjugate vaccine introduction
Safari D , Daningrat WOD , Milucky JL , Khoeri MM , Paramaiswari WT , Tafroji W , Salsabila K , Winarti Y , Soebandrio A , Hadinegoro SR , Prayitno A , Childs L , Pimenta FC , Carvalho MDG , Pilishvili T . PLoS One 2024 19 (1) e0297041 Pneumococcal conjugate vaccines (PCVs) prevent nasopharyngeal colonization with vaccine serotypes of Streptococcus pneumoniae, leading to reduced transmission of pneumococci and stronger population-level impact of PCVs. In 2017 we conducted a cross-sectional pneumococcal carriage study in Indonesia among children aged <5 years before 13-valent PCV (PCV13) introduction. Nasopharyngeal swabs were collected during visits to community integrated health service posts at one peri-urban and one rural study site. Specimens were analyzed by culture, and isolates were serotyped using sequential multiplex polymerase chain and Quellung reaction. Antibiotic susceptibility was performed by broth microdilution method. We enrolled 1,007 children in Gunungkidul District, Yogyakarta (peri-urban) and 815 in Southwest Sumba, East Nusa Tenggara (rural). Pneumococcal carriage prevalence was 30.9% in Gunungkidul and 87.6% in Southwest Sumba (combined: 56.3%). PCV13 serotypes (VT) carriage was 15.0% in Gunungkidul and 52.6% in Southwest Sumba (combined: 31.8%). Among pneumococcal isolates identified, the most common VT were 6B (16.4%), 19F (15.8%), and 3 (4.6%) in Gunungkidul (N = 323) and 6B (17.6%), 19F (11.0%), and 23F (9.3%) in Southwest Sumba (N = 784). Factors associated with pneumococcal carriage were age (1-2 years adjusted odds ratio (aOR) 1.9, 95% CI 1.4-2.5; 3-4 years aOR 1.5, 95% CI 1.1-2.1; reference <1 year), other children <5 years old in the household (aOR 1.5, 95% CI 1.1-2.0), and presence of ≥1 respiratory illness symptom (aOR 1.8, 95% CI 1.4-2.2). Overall, 61.5% of the pneumococcal isolates were non-susceptible to ≥1 antibiotic class and 13.2% were multi-drug non-susceptible (MDNS) (non-susceptible to ≥3 classes of antibiotics). Among 602 VT isolates, 73.9% were non-susceptible and 19.9% were MDNS. These findings are critical to establish a pre-PCV13 carriage prevalence and demonstrate the complexity in evaluating the impact of PCV13 introduction in Indonesia given the wide variability in the carriage prevalence as shown by the two study sites. |
Burden of respiratory syncytial virus-associated acute respiratory infections during pregnancy
Kenmoe S , Chu HY , Dawood FS , Milucky J , Kittikraisak W , Matthewson H , Kulkarni D , Suntarattiwong P , Frivold C , Mohanty S , Havers F , Li Y , Nair H . J Infect Dis 2023 INTRODUCTION: With the licensure of maternal RSV vaccines in Europe and USA, data are needed to better characterize the burden of respiratory syncytial virus (RSV)-associated acute respiratory infections (ARI) in pregnancy. This study aims to determine among pregnant individuals the proportion of ARI testing positive for RSV and RSV incidence rate, RSV-associated hospitalizations, deaths, and perinatal outcomes. METHODS: We conducted a systematic review following PRISMA 2020 guidelines using five databases (Medline, Embase, Global Health, Web of Science and Global Index Medicus) and included additional unpublished data. Pregnant individuals with respiratory infections who had respiratory samples tested for RSV were included. We used a random-effects meta-analysis to generate overall proportions and rate estimates across studies. RESULTS: Eleven studies with pregnant individuals recruited between 2010 and 2022 were identified, most of which recruited pregnant individuals in community, inpatient and outpatient settings. Among 8126 pregnant individuals, the proportion with respiratory infections that tested positive for RSV ranged from 0.9% to 10.7%, with a meta-estimate of 3.4% (95% CI: 1.9; 54). The pooled incidence rate of RSV infection episodes among pregnant individuals was 26.0 (15.8; 36.2) per 1000 person-years. RSV hospitalization rates reported in two studies were 2.4 and 3.0 per 1000 person-years. Of five studies that ascertained RSV-associated deaths among 4708 pregnant individuals, no deaths were reported. Three studies comparing RSV-positive and RSV-negative pregnant individuals found no difference in odds of miscarriage, stillbirth, low birth weight, and small for gestational age. RSV-positive pregnant individuals had higher odds of preterm delivery (odds ratio 3.6 [1.3; 10.3]). CONCLUSION: Data on RSV-associated hospitalization incidence rates are limited but available estimates are lower than those reported in older adults and young children. As countries debate whether to include RSV vaccines in maternal vaccination programs, which are primarily intended to protect infants, this information could be useful in shaping vaccine policy decisions. |
Clinical Trends Among U.S. Adults Hospitalized with COVID-19, March-December 2020 (preprint)
Garg S , Patel K , Pham H , Whitaker M , O'Halloran A , Milucky J , Anglin O , Kirley PD , Reingold A , Kawasaki B , Herlihy R , Yousey-Hindes K , Maslar A , Anderson EJ , Openo KP , Weigel A , Teno K , Ryan PA , Monroe ML , Reeg L , Kim S , Como-Sabetti K , Bye E , Shrum Davis S , Eisenberg N , Muse A , Barney G , Bennett NM , Felsen CB , Billing L , Shiltz J , Sutton M , Abdullah N , Talbot HK , Schaffner W , Hill M , Chatelain R , Wortham J , Taylor C , Hall A , Fry AM , Kim L , Havers FP . medRxiv 2021 2021.04.21.21255473 Background The COVID-19 pandemic has caused substantial morbidity and mortality.Objectives To describe monthly demographic and clinical trends among adults hospitalized with COVID-19.Design Pooled cross-sectional.Setting 99 counties within 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET).Patients U.S. adults (aged ≥18 years) hospitalized with laboratory-confirmed COVID-19 during March 1-December 31, 2020.Measurements Monthly trends in weighted percentages of interventions and outcomes including length of stay (LOS), intensive care unit admissions (ICU), invasive mechanical ventilation (IMV), vasopressor use and in-hospital death (death). Monthly hospitalization, ICU and death rates per 100,000 population.Results Among 116,743 hospitalized adults, median age was 62 years. Among 18,508 sampled adults, median LOS decreased from 6.4 (March) to 4.6 days (December). Remdesivir and systemic corticosteroid use increased from 1.7% and 18.9% (March) to 53.8% and 74.2% (December), respectively. Frequency of ICU decreased from 37.8% (March) to 20.5% (December). IMV (27.8% to 8.7%), vasopressors (22.7% to 8.8%) and deaths (13.9% to 8.7%) decreased from March to October; however, percentages of these interventions and outcomes remained stable or increased in November and December. Percentage of deaths significantly decreased over time for non-Hispanic White patients (p-value <0.01) but not non-Hispanic Black or Hispanic patients. Rates of hospitalization (105.3 per 100,000), ICU (20.2) and death (11.7) were highest during December.Limitations COVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country.Conclusions After initial improvement during April-October 2020, trends in interventions and outcomes worsened during November-December, corresponding with the 3rd peak of the U.S. pandemic. These data provide a longitudinal assessment of trends in COVID-19-associated outcomes prior to widespread COVID-19 vaccine implementation.Competing Interest StatementDr. Evan Anderson reports grants from Pfizer, grants from Merck, grants from PaxVax, grants from Micron, grants from Sanofi-Pasteur, grants from Janssen, grants from MedImmune, grants from GSK, personal fees from Sanofi-Pasteur, personal fees from Pfizer, personal fees from Medscape, personal fees from Kentucky Bioprocessing, Inc, personal fees from Sanofi-Pasteur, outside the submitted work. Dr. William Schaffner reports personal fees from VBI Vaccines, outside the submitted work. Funding StatementThis work was supported by the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement (grant CK17-1701) and through a Council of State and Territorial Epidemiologists cooperative agreement (grant NU38OT000297-02-00).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy. Sites participating in COVID-NET obtained approval from their respective state and local Institutional Review Boards, as applicable.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting check ist(s) and other pertinent material as supplementary files, if applicable.YesPublicly available data referred to in this analysis can be found at: https://gis.cdc.gov/grasp/covidnet/covid19_3.html https://gis.cdc.gov/grasp/covidnet/covid19_3.html |
COVID-19-associated hospitalizations among vaccinated and unvaccinated adults ≥18 years – COVID-NET, 13 states, January 1 – July 24, 2021 (preprint)
Havers FP , Pham H , Taylor CA , Whitaker M , Patel K , Anglin O , Kambhampati AK , Milucky J , Zell E , Chai SJ , Kirley PD , Alden NB , Armistead I , Yousey-Hindes K , Meek J , Openo KP , Anderson EJ , Reeg L , Kohrman A , Lynfield R , Como-Sabetti K , Davis EM , Cline C , Muse A , Barney G , Bushey S , Felsen CB , Billing LM , Shiltz E , Sutton M , Abdullah N , Talbot HK , Schaffner W , Hill M , George A , Murthy BP , McMorrow M . medRxiv 2021 2021.08.27.21262356 Background As of August 21, 2021, >60% of the U.S. population aged ≥18 years were fully vaccinated with vaccines highly effective in preventing hospitalization due to Coronavirus Disease-2019 (COVID-19). Infection despite full vaccination (vaccine breakthrough) has been reported, but characteristics of those with vaccine breakthrough resulting in hospitalization and relative rates of hospitalization in unvaccinated and vaccinated persons are not well described, including during late June and July 2021 when the highly transmissible Delta variant predominated.Methods From January 1–June 30, 2021, cases defined as adults aged ≥18 years with laboratory-confirmed Severe Acute Respiratory Coronavirus-2 (SARS-CoV-2) infection were identified from >250 acute care hospitals in the population-based COVID-19-Associated Hospitalization Surveillance Network (COVID-NET). Through chart review for sampled cases, we examine characteristics associated with vaccination breakthrough. From January 24–July 24, 2021, state immunization information system data linked to both >37,000 cases representative cases and the defined surveillance catchment area population were used to compare weekly hospitalization rates in vaccinated and unvaccinated individuals. Unweighted case counts and weighted percentages are presented.Results From January 1 – June 30, 2021, fully vaccinated cases increased from 1 (0.01%) to 321 (16.1%) per month. Among 4,732 sampled cases, fully vaccinated persons admitted with COVID-19 were older compared with unvaccinated persons (median age 73 years [Interquartile Range (IQR) 65-80] v. 59 years [IQR 48-70]; p<0.001), more likely to have 3 or more underlying medical conditions (201 (70.8%) v. 2,305 (56.1%), respectively; p<0.001) and be residents of long-term care facilities [37 (14.5%) v. 146 (5.5%), respectively; p<0.001]. From January 24 – July 24, 2021, cumulative hospitalization rates were 17 times higher in unvaccinated persons compared with vaccinated persons (423 cases per 100,000 population v. 26 per 100,000 population, respectively); rate ratios were 23, 22 and 13 for those aged 18-49, 50-64, and ≥65 years respectively. For June 27 – July 24, hospitalization rates were ≥10 times higher in unvaccinated persons compared with vaccinated persons for all age groups across all weeks.Conclusion Population-based hospitalization rates show that unvaccinated adults aged ≥18 years are 17 times more likely to be hospitalized compared with vaccinated adults. Rates are far higher in unvaccinated persons in all adult age groups, including during a period when the Delta variant was the predominant strain of the SARS-CoV-2 virus. Vaccines continue to play a critical role in preventing serious COVID-19 illness and remain highly effective in preventing COVID-19 hospitalizations.Competing Interest StatementAll authors have completed and submitted the International Committee of Medical Journal Editors form for disclosure of potential conflicts of interest. Evan J. Anderson reports grants from Pfizer, grants from Merck, grants from PaxVax, grants from Micron, grants from Sanofi-Pasteur, grants from Janssen, grants from MedImmune, grants from GSK, personal fees from Sanofi-Pasteur, personal fees from Pfizer, personal fees from Medscape, personal fees from Kentucky Bioprocessing, Inc, personal fees from Sanofi-Pasteur, personal fees from Janssen, outside the submitted work; and his institution has also received funding from NIH to conduct clinical trials of Moderna and Janssen COVID-19 vaccines. Ruth Lynfield reports Associate Editor for American Academy of Pediatrics Red Book (Committee on Infectious Diseases), donated fee to Minnesota Department of Health. Laurie M. Billing reports grants from Council of State and Territorial Epidemiologists (CSTE), during the conduct of the study; grants from Centers for Disease Control and Prevention (CDC) outside the submitted work. William Schaffner reports personal fees from VBI Vaccines, outside the submitted work. No other potential conflicts of interest were disclosed.Funding StatementThis work was supported by the Centers of Disease Control and Prevention through an Emerging Infections Program cooperative agreement (grant CK17-1701) and through a Council of State and Territorial Epidemiologists cooperative agreement (grant NU38OT000297-02-00).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy (see e.g., 45 C.F.R. part 46.102(l)(2), 21 C.F.R. part 56; 42 U.S.C. 241(d); 5 U.S.C.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesPublicly available data referred to in this analysis can be found at: https://gis.cdc.gov/grasp/covidnet/covid19_3.html https://gis.cdc.gov/grasp/COVIDNet/COVID19_5.html https://gis.cdc.gov/grasp/covidnet/covid19_3.html https://gis.cdc.gov/grasp/COVIDNet/COVID19_5.html |
Severity of Disease Among Adults Hospitalized with Laboratory-Confirmed COVID-19 Before and During the Period of SARS-CoV-2 B.1.617.2 (Delta) Predominance - COVID-NET, 14 States, January-August 2021.
Taylor CA , Patel K , Pham H , Whitaker M , Anglin O , Kambhampati AK , Milucky J , Chai SJ , Kirley PD , Alden NB , Armistead I , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Teno K , Weigel A , Monroe ML , Ryan PA , Henderson J , Nunez VT , Bye E , Lynfield R , Poblete M , Smelser C , Barney GR , Spina NL , Bennett NM , Popham K , Billing LM , Shiltz E , Abdullah N , Sutton M , Schaffner W , Talbot HK , Ortega J , Price A , Garg S , Havers FP , COVID-NET Surveillance Team . MMWR Morb Mortal Wkly Rep 2021 70 (43) 1513-1519 In mid-June 2021, B.1.671.2 (Delta) became the predominant variant of SARS-CoV-2, the virus that causes COVID-19, circulating in the United States. As of July 2021, the Delta variant was responsible for nearly all new SARS-CoV-2 infections in the United States.* The Delta variant is more transmissible than previously circulating SARS-CoV-2 variants (1); however, whether it causes more severe disease in adults has been uncertain. Data from the CDC COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), a population-based surveillance system for COVID-19-associated hospitalizations, were used to examine trends in severe outcomes in adults aged ≥18 years hospitalized with laboratory-confirmed COVID-19 during periods before (January-June 2021) and during (July-August 2021) Delta variant predominance. COVID-19-associated hospitalization rates among all adults declined during January-June 2021 (pre-Delta period), before increasing during July-August 2021 (Delta period). Among sampled nonpregnant hospitalized COVID-19 patients with completed medical record abstraction and a discharge disposition during the pre-Delta period, the proportion of patients who were admitted to an intensive care unit (ICU), received invasive mechanical ventilation (IMV), or died while hospitalized did not significantly change from the pre-Delta period to the Delta period. The proportion of hospitalized COVID-19 patients who were aged 18-49 years significantly increased, from 24.7% (95% confidence interval [CI] = 23.2%-26.3%) of all hospitalizations in the pre-Delta period, to 35.8% (95% CI = 32.1%-39.5%, p<0.01) during the Delta period. When examined by vaccination status, 71.8% of COVID-19-associated hospitalizations in the Delta period were in unvaccinated adults. Adults aged 18-49 years accounted for 43.6% (95% CI = 39.1%-48.2%) of all hospitalizations among unvaccinated adults during the Delta period. No difference was observed in ICU admission, receipt of IMV, or in-hospital death among nonpregnant hospitalized adults between the pre-Delta and Delta periods. However, the proportion of unvaccinated adults aged 18-49 years hospitalized with COVID-19 has increased as the Delta variant has become more predominant. Lower vaccination coverage in this age group likely contributed to the increase in hospitalized patients during the Delta period. COVID-19 vaccination is critical for all eligible adults, including those aged <50 years who have relatively low vaccination rates compared with older adults. |
Laboratory-Confirmed COVID-19-Associated Hospitalizations Among Adults During SARS-CoV-2 Omicron BA.2 Variant Predominance - COVID-19-Associated Hospitalization Surveillance Network, 14 States, June 20, 2021-May 31, 2022.
Havers FP , Patel K , Whitaker M , Milucky J , Reingold A , Armistead I , Meek J , Anderson EJ , Weigel A , Reeg L , Seys S , Ropp SL , Spina N , Felsen CB , Moran NE , Sutton M , Talbot HK , George A , Taylor CA , COVID-NET Surveillance Team . MMWR Morb Mortal Wkly Rep 2022 71 (34) 1085-1091 Beginning the week of March 20–26, 2022, the Omicron BA.2 variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating variant in the United States, accounting for >50% of sequenced isolates.* Data from the COVID-19–Associated Hospitalization Surveillance Network (COVID-NET) were analyzed to describe recent COVID-19–associated hospitalization rates among adults aged ≥18 years during the period coinciding with BA.2 predominance (BA.2 period [Omicron BA.2 and BA.2.12.1; March 20–May 31, 2022]). Weekly hospitalization rates (hospitalizations per 100,000 population) among adults aged ≥65 years increased threefold, from 6.9 (week ending April 2, 2022) to 27.6 (week ending May 28, 2022); hospitalization rates in adults aged 18–49 and 50–64 years both increased 1.7-fold during the same time interval. Hospitalization rates among unvaccinated adults were 3.4 times as high as those among vaccinated adults. Among hospitalized nonpregnant patients in this same period, 39.1% had received a primary vaccination series and 1 booster or additional dose; 5.0% had received a primary series and ≥2 boosters or additional doses. All adults should stay up to date† with COVID-19 vaccination, and multiple nonpharmaceutical and medical prevention measures should be used to protect those at high risk for severe COVID-19 illness, irrespective of vaccination status§ (1). Beginning the week of March 20–26, 2022, the Omicron BA.2 variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating variant in the United States, accounting for >50% of sequenced isolates.* Data from the COVID-19–Associated Hospitalization Surveillance Network (COVID-NET) were analyzed to describe recent COVID-19–associated hospitalization rates among adults aged ≥18 years during the period coinciding with BA.2 predominance (BA.2 period [Omicron BA.2 and BA.2.12.1; March 20–May 31, 2022]). Weekly hospitalization rates (hospitalizations per 100,000 population) among adults aged ≥65 years increased threefold, from 6.9 (week ending April 2, 2022) to 27.6 (week ending May 28, 2022); hospitalization rates in adults aged 18–49 and 50–64 years both increased 1.7-fold during the same time interval. Hospitalization rates among unvaccinated adults were 3.4 times as high as those among vaccinated adults. Among hospitalized nonpregnant patients in this same period, 39.1% had received a primary vaccination series and 1 booster or additional dose; 5.0% had received a primary series and ≥2 boosters or additional doses. All adults should stay up to date† with COVID-19 vaccination, and multiple nonpharmaceutical and medical prevention measures should be used to protect those at high risk for severe COVID-19 illness, irrespective of vaccination status§ (1). |
Codetections of other respiratory viruses among children hospitalized with COVID-19
Agathis NT , Patel K , Milucky J , Taylor CA , Whitaker M , Pham H , Anglin O , Chai SJ , Alden NB , Meek J , Anderson EJ , Weigel A , Kim S , Lynfield R , Smelser C , Muse A , Popham K , Billing LM , Sutton M , Talbot HK , George A , McMorrow M , Havers FP . Pediatrics 2023 151 (2) OBJECTIVES: To assess the clinical impact of respiratory virus codetections among children hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: During March 2020 to February 2022, the US coronavirus disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET) identified 4372 children hospitalized with SARS-CoV-2 infection admitted primarily for fever, respiratory illness, or presumed COVID-19. We compared demographics, clinical features, and outcomes between those with and without codetections who had any non-SARS-CoV-2 virus testing. Among a subgroup of 1670 children with complete additional viral testing, we described the association between presence of codetections and severe respiratory illness using age-stratified multivariable logistic regression models. RESULTS: Among 4372 children hospitalized, 62% had non-SARS-CoV-2 respiratory virus testing, of which 21% had a codetection. Children with codetections were more likely to be <5 years old (yo), receive increased oxygen support, or be admitted to the ICU (P < .001). Among children <5 yo, having any viral codetection (<2 yo: adjusted odds ratio [aOR] 2.1 [95% confidence interval [CI] 1.5-3.0]; 2-4 yo: aOR 1.9 [95% CI 1.2-3.1]) or rhinovirus/enterovirus codetection (<2 yo: aOR 2.4 [95% CI 1.6-3.7]; 2-4: aOR 2.4 [95% CI 1.2-4.6]) was significantly associated with severe illness. Among children <2 yo, respiratory syncytial virus (RSV) codetections were also significantly associated with severe illness (aOR 1.9 [95% CI 1.3-2.9]). No significant associations were seen among children ≥5 yo. CONCLUSIONS: Respiratory virus codetections, including RSV and rhinovirus/enterovirus, may increase illness severity among children <5 yo hospitalized with SARS-CoV-2 infection. |
Bacterial and viral infections among adults hospitalized with COVID-19, COVID-NET, 14 states, March 2020-April 2022
Shah MM , Patel K , Milucky J , Taylor CA , Reingold A , Armistead I , Meek J , Anderson EJ , Weigel A , Reeg L , Como-Sabetti K , Ropp SL , Muse A , Bushey S , Shiltz E , Sutton M , Talbot HK , Chatelain R , Havers FP . Influenza Other Respir Viruses 2023 17 (3) e13107 BACKGROUND: Bacterial and viral infections can occur with SARS-CoV-2 infection, but prevalence, risk factors, and associated clinical outcomes are not fully understood. METHODS: We used the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET), a population-based surveillance system, to investigate the occurrence of bacterial and viral infections among hospitalized adults with laboratory-confirmed SARS-CoV-2 infection between March 2020 and April 2022. Clinician-driven testing for bacterial pathogens from sputum, deep respiratory, and sterile sites were included. The demographic and clinical features of those with and without bacterial infections were compared. We also describe the prevalence of viral pathogens including respiratory syncytial virus, rhinovirus/enterovirus, influenza, adenovirus, human metapneumovirus, parainfluenza viruses, and non-SARS-CoV-2 endemic coronaviruses. RESULTS: Among 36 490 hospitalized adults with COVID-19, 53.3% had bacterial cultures taken within 7 days of admission and 6.0% of these had a clinically relevant bacterial pathogen. After adjustment for demographic factors and co-morbidities, bacterial infections in patients with COVID-19 within 7 days of admission were associated with an adjusted relative risk of death 2.3 times that of patients with negative bacterial testing. Staphylococcus aureus and Gram-negative rods were the most frequently isolated bacterial pathogens. Among hospitalized adults with COVID-19, 2766 (7.6%) were tested for seven virus groups. A non-SARS-CoV-2 virus was identified in 0.9% of tested patients. CONCLUSIONS: Among patients with clinician-driven testing, 6.0% of adults hospitalized with COVID-19 were identified to have bacterial coinfections and 0.9% were identified to have viral coinfections; identification of a bacterial coinfection within 7 days of admission was associated with increased mortality. |
COVID-19-Associated Hospitalizations Among U.S. Infants Aged <6 Months - COVID-NET, 13 States, June 2021-August 2022.
Hamid Sarah, Woodworth Kate, Pham Huong, Milucky Jennifer, Chai Shua J, Kawasaki Breanna, Yousey-Hindes Kimberly, Anderson Evan J, Henderson Justin, Lynfield Ruth, Pacheco Francesca, Barney Grant, Bennett Nancy M, Shiltz Eli, Sutton Melissa, Talbot H Keipp, Price Andrea, Havers Fiona P, Taylor Christopher A, . MMWR. Morbidity and mortality weekly report 2022 71(45) 1442-1448 . MMWR. Morbidity and mortality weekly report 2022 71(45) 1442-1448 Hamid Sarah, Woodworth Kate, Pham Huong, Milucky Jennifer, Chai Shua J, Kawasaki Breanna, Yousey-Hindes Kimberly, Anderson Evan J, Henderson Justin, Lynfield Ruth, Pacheco Francesca, Barney Grant, Bennett Nancy M, Shiltz Eli, Sutton Melissa, Talbot H Keipp, Price Andrea, Havers Fiona P, Taylor Christopher A, . MMWR. Morbidity and mortality weekly report 2022 71(45) 1442-1448 |
COVID-19-Associated Hospitalizations Among Vaccinated and Unvaccinated Adults 18 Years or Older in 13 US States, January 2021 to April 2022.
Havers FP , Pham H , Taylor CA , Whitaker M , Patel K , Anglin O , Kambhampati AK , Milucky J , Zell E , Moline HL , Chai SJ , Kirley PD , Alden NB , Armistead I , Yousey-Hindes K , Meek J , Openo KP , Anderson EJ , Reeg L , Kohrman A , Lynfield R , Como-Sabetti K , Davis EM , Cline C , Muse A , Barney G , Bushey S , Felsen CB , Billing LM , Shiltz E , Sutton M , Abdullah N , Talbot HK , Schaffner W , Hill M , George A , Hall AJ , Bialek SR , Murthy NC , Murthy BP , McMorrow M . JAMA Intern Med 2022 182 (10) 1071-1081 IMPORTANCE: Understanding risk factors for hospitalization in vaccinated persons and the association of COVID-19 vaccines with hospitalization rates is critical for public health efforts to control COVID-19. OBJECTIVE: To determine characteristics of COVID-19-associated hospitalizations among vaccinated persons and comparative hospitalization rates in unvaccinated and vaccinated persons. DESIGN, SETTING, AND PARTICIPANTS: From January 1, 2021, to April 30, 2022, patients 18 years or older with laboratory-confirmed SARS-CoV-2 infection were identified from more than 250 hospitals in the population-based COVID-19-Associated Hospitalization Surveillance Network. State immunization information system data were linked to cases, and the vaccination coverage data of the defined catchment population were used to compare hospitalization rates in unvaccinated and vaccinated individuals. Vaccinated and unvaccinated patient characteristics were compared in a representative sample with detailed medical record review; unweighted case counts and weighted percentages were calculated. EXPOSURES: Laboratory-confirmed COVID-19-associated hospitalization, defined as a positive SARS-CoV-2 test result within 14 days before or during hospitalization. MAIN OUTCOMES AND MEASURES: COVID-19-associated hospitalization rates among vaccinated vs unvaccinated persons and factors associated with COVID-19-associated hospitalization in vaccinated persons were assessed. RESULTS: Using representative data from 19509 hospitalizations (see Table 1 for demographic information), monthly COVID-19-associated hospitalization rates ranged from 3.5 times to 17.7 times higher in unvaccinated persons than vaccinated persons regardless of booster dose status. From January to April 2022, when the Omicron variant was predominant, hospitalization rates were 10.5 times higher in unvaccinated persons and 2.5 times higher in vaccinated persons with no booster dose, respectively, compared with those who had received a booster dose. Among sampled cases, vaccinated hospitalized patients with COVID-19 were older than those who were unvaccinated (median [IQR] age, 70 [58-80] years vs 58 [46-70] years, respectively; P<.001) and more likely to have 3 or more underlying medical conditions (1926 [77.8%] vs 4124 [51.6%], respectively; P<.001). CONCLUSIONS AND RELEVANCE: In this cross-sectional study of US adults hospitalized with COVID-19, unvaccinated adults were more likely to be hospitalized compared with vaccinated adults; hospitalization rates were lowest in those who had received a booster dose. Hospitalized vaccinated persons were older and more likely to have 3 or more underlying medical conditions and be long-term care facility residents compared with hospitalized unvaccinated persons. The study results suggest that clinicians and public health practitioners should continue to promote vaccination with all recommended doses for eligible persons. |
Comparison of influenza and COVID-19-associated hospitalizations among children < 18 years old in the United States-FluSurv-NET (October-April 2017-2021) and COVID-NET (October 2020-September 2021).
Delahoy MJ , Ujamaa D , Taylor CA , Cummings C , Anglin O , Holstein R , Milucky J , O'Halloran A , Patel K , Pham H , Whitaker M , Reingold A , Chai SJ , Alden NB , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Weigel A , Teno K , Reeg L , Leegwater L , Lynfield R , McMahon M , Ropp S , Rudin D , Muse A , Spina N , Bennett NM , Popham K , Billing LM , Shiltz E , Sutton M , Thomas A , Schaffner W , Talbot HK , Crossland MT , McCaffrey K , Hall AJ , Burns E , McMorrow M , Reed C , Havers FP , Garg S . Clin Infect Dis 2022 76 (3) e450-e459 BACKGROUND: Influenza virus and SARS-CoV-2 are significant causes of respiratory illness in children. METHODS: Influenza and COVID-19-associated hospitalizations among children <18 years old were analyzed from FluSurv-NET and COVID-NET, two population-based surveillance systems with similar catchment areas and methodology. The annual COVID-19-associated hospitalization rate per 100 000 during the ongoing COVID-19 pandemic (October 1, 2020-September 30, 2021) was compared to influenza-associated hospitalization rates during the 2017-18 through 2019-20 influenza seasons. In-hospital outcomes, including intensive care unit (ICU) admission and death, were compared. RESULTS: Among children <18 years old, the COVID-19-associated hospitalization rate (48.2) was higher than influenza-associated hospitalization rates: 2017-18 (33.5), 2018-19 (33.8), and 2019-20 (41.7). The COVID-19-associated hospitalization rate was higher among adolescents 12-17 years old (COVID-19: 59.9; influenza range: 12.2-14.1), but similar or lower among children 5-11 (COVID-19: 25.0; influenza range: 24.3-31.7) and 0-4 (COVID-19: 66.8; influenza range: 70.9-91.5) years old. Among children <18 years old, a higher proportion with COVID-19 required ICU admission compared with influenza (26.4% vs 21.6%; p<0.01). Pediatric deaths were uncommon during both COVID-19- and influenza-associated hospitalizations (0.7% vs 0.5%; p=0.28). CONCLUSIONS: In the setting of extensive mitigation measures during the COVID-19 pandemic, the annual COVID-19-associated hospitalization rate during 2020-2021 was higher among adolescents and similar or lower among children <12 years old compared with influenza during the three seasons before the COVID-19 pandemic. COVID-19 adds substantially to the existing burden of pediatric hospitalizations and severe outcomes caused by influenza and other respiratory viruses. |
Hospitalizations of Children Aged 5-11 Years with Laboratory-Confirmed COVID-19 - COVID-NET, 14 States, March 2020-February 2022.
Shi DS , Whitaker M , Marks KJ , Anglin O , Milucky J , Patel K , Pham H , Chai SJ , Kawasaki B , Meek J , Anderson EJ , Weigel A , Henderson J , Lynfield R , Ropp SL , Muse A , Bushey S , Billing LM , Sutton M , Talbot HK , Price A , Taylor CA , Havers FP . MMWR Morb Mortal Wkly Rep 2022 71 (16) 574-581 On October 29, 2021, the Food and Drug Administration expanded the Emergency Use Authorization for Pfizer-BioNTech COVID-19 vaccine to children aged 5-11 years; CDC's Advisory Committee on Immunization Practices' recommendation followed on November 2, 2021.* In late December 2021, the B.1.1.529 (Omicron) variant of SARS-CoV-2 (the virus that causes COVID-19) became the predominant strain in the United States,(†) coinciding with a rapid increase in COVID-19-associated hospitalizations among all age groups, including children aged 5-11 years (1). COVID-19-Associated Hospitalization Surveillance Network (COVID-NET)(§) data were analyzed to describe characteristics of COVID-19-associated hospitalizations among 1,475 U.S. children aged 5-11 years throughout the pandemic, focusing on the period of early Omicron predominance (December 19, 2021-February 28, 2022). Among 397 children hospitalized during the Omicron-predominant period, 87% were unvaccinated, 30% had no underlying medical conditions, and 19% were admitted to an intensive care unit (ICU). The cumulative hospitalization rate during the Omicron-predominant period was 2.1 times as high among unvaccinated children (19.1 per 100,000 population) as among vaccinated(¶) children (9.2).** Non-Hispanic Black (Black) children accounted for the largest proportion of unvaccinated children (34%) and represented approximately one third of COVID-19-associated hospitalizations in this age group. Children with diabetes and obesity were more likely to experience severe COVID-19. The potential for serious illness among children aged 5-11 years, including those with no underlying health conditions, highlights the importance of vaccination among this age group. Increasing vaccination coverage among children, particularly among racial and ethnic minority groups disproportionately affected by COVID-19, is critical to preventing COVID-19-associated hospitalization and severe outcomes. |
COVID-19-Associated Hospitalizations Among Adults During SARS-CoV-2 Delta and Omicron Variant Predominance, by Race/Ethnicity and Vaccination Status - COVID-NET, 14 States, July 2021-January 2022.
Taylor CA , Whitaker M , Anglin O , Milucky J , Patel K , Pham H , Chai SJ , Alden NB , Yousey-Hindes K , Anderson EJ , Teno K , Reeg L , Como-Sabetti K , Bleecker M , Barney G , Bennett NM , Billing LM , Sutton M , Talbot HK , McCaffrey K , Havers FP . MMWR Morb Mortal Wkly Rep 2022 71 (12) 466-473 Beginning the week of December 19-25, 2021, the B.1.1.529 (Omicron) variant of SARS-CoV-2 (the virus that causes COVID-19) became the predominant circulating variant in the United States (i.e., accounted for >50% of sequenced isolates).* Information on the impact that booster or additional doses of COVID-19 vaccines have on preventing hospitalizations during Omicron predominance is limited. Data from the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET)() were analyzed to compare COVID-19-associated hospitalization rates among adults aged 18 years during B.1.617.2 (Delta; July 1-December 18, 2021) and Omicron (December 19, 2021-January 31, 2022) variant predominance, overall and by race/ethnicity and vaccination status. During the Omicron-predominant period, weekly COVID-19-associated hospitalization rates (hospitalizations per 100,000 adults) peaked at 38.4, compared with 15.5 during Delta predominance. Hospitalizations rates increased among all adults irrespective of vaccination status (unvaccinated, primary series only, or primary series plus a booster or additional dose). Hospitalization rates during peak Omicron circulation (January 2022) among unvaccinated adults remained 12 times the rates among vaccinated adults who received booster or additional doses and four times the rates among adults who received a primary series, but no booster or additional dose. The rate among adults who received a primary series, but no booster or additional dose, was three times the rate among adults who received a booster or additional dose. During the Omicron-predominant period, peak hospitalization rates among non-Hispanic Black (Black) adults were nearly four times the rate of non-Hispanic White (White) adults and was the highest rate observed among any racial and ethnic group during the pandemic. Compared with the Delta-predominant period, the proportion of unvaccinated hospitalized Black adults increased during the Omicron-predominant period. All adults should stay up to date (1) with COVID-19 vaccination to reduce their risk for COVID-19-associated hospitalization. Implementing strategies that result in the equitable receipt of COVID-19 vaccinations, through building vaccine confidence, raising awareness of the benefits of vaccination, and removing barriers to vaccination access among persons with disproportionately higher hospitalizations rates from COVID-19, including Black adults, is an urgent public health priority. |
Hospitalization of Infants and Children Aged 0-4 Years with Laboratory-Confirmed COVID-19 - COVID-NET, 14 States, March 2020-February 2022.
Marks KJ , Whitaker M , Agathis NT , Anglin O , Milucky J , Patel K , Pham H , Kirley PD , Kawasaki B , Meek J , Anderson EJ , Weigel A , Kim S , Lynfield R , Ropp SL , Spina NL , Bennett NM , Shiltz E , Sutton M , Talbot HK , Price A , Taylor CA , Havers FP . MMWR Morb Mortal Wkly Rep 2022 71 (11) 429-436 The B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19, has been the predominant circulating variant in the United States since late December 2021.* Coinciding with increased Omicron circulation, COVID-19-associated hospitalization rates increased rapidly among infants and children aged 0-4 years, a group not yet eligible for vaccination (1). Coronavirus Disease 19-Associated Hospitalization Surveillance Network (COVID-NET)(†) data were analyzed to describe COVID-19-associated hospitalizations among U.S. infants and children aged 0-4 years since March 2020. During the period of Omicron predominance (December 19, 2021-February 19, 2022), weekly COVID-19-associated hospitalization rates per 100,000 infants and children aged 0-4 years peaked at 14.5 (week ending January 8, 2022); this Omicron-predominant period peak was approximately five times that during the period of SARS-CoV-2 B.1.617.2 (Delta) predominance (June 27-December 18, 2021, which peaked the week ending September 11, 2021).(§) During Omicron predominance, 63% of hospitalized infants and children had no underlying medical conditions; infants aged <6 months accounted for 44% of hospitalizations, although no differences were observed in indicators of severity by age. Strategies to prevent COVID-19 among infants and young children are important and include vaccination among currently eligible populations (2) such as pregnant women (3), family members, and caregivers of infants and young children (4). |
Hospitalizations of Children and Adolescents with Laboratory-Confirmed COVID-19 - COVID-NET, 14 States, July 2021-January 2022.
Marks KJ , Whitaker M , Anglin O , Milucky J , Patel K , Pham H , Chai SJ , Kirley PD , Armistead I , McLafferty S , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Weigel A , Henderson J , Nunez VT , Como-Sabetti K , Lynfield R , Ropp SL , Smelser C , Barney GR , Muse A , Bennett NM , Bushey S , Billing LM , Shiltz E , Abdullah N , Sutton M , Schaffner W , Talbot HK , Chatelain R , George A , Taylor CA , McMorrow ML , Perrine CG , Havers FP . MMWR Morb Mortal Wkly Rep 2022 71 (7) 271-278 The first U.S. case of COVID-19 attributed to the Omicron variant of SARS-CoV-2 (the virus that causes COVID-19) was reported on December 1, 2021 (1), and by the week ending December 25, 2021, Omicron was the predominant circulating variant in the United States.* Although COVID-19-associated hospitalizations are more frequent among adults,(†) COVID-19 can lead to severe outcomes in children and adolescents (2). This report analyzes data from the Coronavirus Disease 19-Associated Hospitalization Surveillance Network (COVID-NET)(§) to describe COVID-19-associated hospitalizations among U.S. children (aged 0-11 years) and adolescents (aged 12-17 years) during periods of Delta (July 1-December 18, 2021) and Omicron (December 19, 2021-January 22, 2022) predominance. During the Delta- and Omicron-predominant periods, rates of weekly COVID-19-associated hospitalizations per 100,000 children and adolescents peaked during the weeks ending September 11, 2021, and January 8, 2022, respectively. The Omicron variant peak (7.1 per 100,000) was four times that of the Delta variant peak (1.8), with the largest increase observed among children aged 0-4 years.(¶) During December 2021, the monthly hospitalization rate among unvaccinated adolescents aged 12-17 years (23.5) was six times that among fully vaccinated adolescents (3.8). Strategies to prevent COVID-19 among children and adolescents, including vaccination of eligible persons, are critical.*. |
Racial and Ethnic Disparities in Rates of COVID-19-Associated Hospitalization, Intensive Care Unit Admission, and In-Hospital Death in the United States From March 2020 to February 2021.
Acosta AM , Garg S , Pham H , Whitaker M , Anglin O , O'Halloran A , Milucky J , Patel K , Taylor C , Wortham J , Chai SJ , Fry AM , Hall A , Kim L , Havers FP . JAMA Netw Open 2021 4 (10) e2130479 IMPORTANCE: Racial and ethnic minority groups are disproportionately affected by COVID-19. OBJECTIVES: To evaluate whether rates of severe COVID-19, defined as hospitalization, intensive care unit (ICU) admission, or in-hospital death, are higher among racial and ethnic minority groups compared with non-Hispanic White persons. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study included 99 counties within 14 US states participating in the COVID-19-Associated Hospitalization Surveillance Network. Participants were persons of all ages hospitalized with COVID-19 from March 1, 2020, to February 28, 2021. EXPOSURES: Laboratory-confirmed COVID-19-associated hospitalization, defined as a positive SARS-CoV-2 test within 14 days prior to or during hospitalization. MAIN OUTCOMES AND MEASURES: Cumulative age-adjusted rates (per 100 000 population) of hospitalization, ICU admission, and death by race and ethnicity. Rate ratios (RR) were calculated for each racial and ethnic group compared with White persons. RESULTS: Among 153 692 patients with COVID-19-associated hospitalizations, 143 342 (93.3%) with information on race and ethnicity were included in the analysis. Of these, 105 421 (73.5%) were 50 years or older, 72 159 (50.3%) were male, 28 762 (20.1%) were Hispanic or Latino, 2056 (1.4%) were non-Hispanic American Indian or Alaska Native, 7737 (5.4%) were non-Hispanic Asian or Pacific Islander, 40 806 (28.5%) were non-Hispanic Black, and 63 981 (44.6%) were White. Compared with White persons, American Indian or Alaska Native, Latino, Black, and Asian or Pacific Islander persons were more likely to have higher cumulative age-adjusted rates of hospitalization, ICU admission, and death as follows: American Indian or Alaska Native (hospitalization: RR, 3.70; 95% CI, 3.54-3.87; ICU admission: RR, 6.49; 95% CI, 6.01-7.01; death: RR, 7.19; 95% CI, 6.47-7.99); Latino (hospitalization: RR, 3.06; 95% CI, 3.01-3.10; ICU admission: RR, 4.20; 95% CI, 4.08-4.33; death: RR, 3.85; 95% CI, 3.68-4.01); Black (hospitalization: RR, 2.85; 95% CI, 2.81-2.89; ICU admission: RR, 3.17; 95% CI, 3.09-3.26; death: RR, 2.58; 95% CI, 2.48-2.69); and Asian or Pacific Islander (hospitalization: RR, 1.03; 95% CI, 1.01-1.06; ICU admission: RR, 1.91; 95% CI, 1.83-1.98; death: RR, 1.64; 95% CI, 1.55-1.74). CONCLUSIONS AND RELEVANCE: In this cross-sectional analysis, American Indian or Alaska Native, Latino, Black, and Asian or Pacific Islander persons were more likely than White persons to have a COVID-19-associated hospitalization, ICU admission, or in-hospital death during the first year of the US COVID-19 pandemic. Equitable access to COVID-19 preventive measures, including vaccination, is needed to minimize the gap in racial and ethnic disparities of severe COVID-19. |
Census tract socioeconomic indicators and COVID-19-associated hospitalization rates-COVID-NET surveillance areas in 14 states, March 1-April 30, 2020.
Wortham JM , Meador SA , Hadler JL , Yousey-Hindes K , See I , Whitaker M , O'Halloran A , Milucky J , Chai SJ , Reingold A , Alden NB , Kawasaki B , Anderson EJ , Openo KP , Weigel A , Monroe ML , Ryan PA , Kim S , Reeg L , Lynfield R , McMahon M , Sosin DM , Eisenberg N , Rowe A , Barney G , Bennett NM , Bushey S , Billing LM , Shiltz J , Sutton M , West N , Talbot HK , Schaffner W , McCaffrey K , Spencer M , Kambhampati AK , Anglin O , Piasecki AM , Holstein R , Hall AJ , Fry AM , Garg S , Kim L . PLoS One 2021 16 (9) e0257622 OBJECTIVES: Some studies suggested more COVID-19-associated hospitalizations among racial and ethnic minorities. To inform public health practice, the COVID-19-associated Hospitalization Surveillance Network (COVID-NET) quantified associations between race/ethnicity, census tract socioeconomic indicators, and COVID-19-associated hospitalization rates. METHODS: Using data from COVID-NET population-based surveillance reported during March 1-April 30, 2020 along with socioeconomic and denominator data from the US Census Bureau, we calculated COVID-19-associated hospitalization rates by racial/ethnic and census tract-level socioeconomic strata. RESULTS: Among 16,000 COVID-19-associated hospitalizations, 34.8% occurred among non-Hispanic White (White) persons, 36.3% among non-Hispanic Black (Black) persons, and 18.2% among Hispanic or Latino (Hispanic) persons. Age-adjusted COVID-19-associated hospitalization rate were 151.6 (95% Confidence Interval (CI): 147.1-156.1) in census tracts with >15.2%-83.2% of persons living below the federal poverty level (high-poverty census tracts) and 75.5 (95% CI: 72.9-78.1) in census tracts with 0%-4.9% of persons living below the federal poverty level (low-poverty census tracts). Among White, Black, and Hispanic persons living in high-poverty census tracts, age-adjusted hospitalization rates were 120.3 (95% CI: 112.3-128.2), 252.2 (95% CI: 241.4-263.0), and 341.1 (95% CI: 317.3-365.0), respectively, compared with 58.2 (95% CI: 55.4-61.1), 304.0 (95%: 282.4-325.6), and 540.3 (95% CI: 477.0-603.6), respectively, in low-poverty census tracts. CONCLUSIONS: Overall, COVID-19-associated hospitalization rates were highest in high-poverty census tracts, but rates among Black and Hispanic persons were high regardless of poverty level. Public health practitioners must ensure mitigation measures and vaccination campaigns address needs of racial/ethnic minority groups and people living in high-poverty census tracts. |
Hospitalizations Associated with COVID-19 Among Children and Adolescents - COVID-NET, 14 States, March 1, 2020-August 14, 2021.
Delahoy MJ , Ujamaa D , Whitaker M , O'Halloran A , Anglin O , Burns E , Cummings C , Holstein R , Kambhampati AK , Milucky J , Patel K , Pham H , Taylor CA , Chai SJ , Reingold A , Alden NB , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Teno K , Weigel A , Kim S , Leegwater L , Bye E , Como-Sabetti K , Ropp S , Rudin D , Muse A , Spina N , Bennett NM , Popham K , Billing LM , Shiltz E , Sutton M , Thomas A , Schaffner W , Talbot HK , Crossland MT , McCaffrey K , Hall AJ , Fry AM , McMorrow M , Reed C , Garg S , Havers FP . MMWR Morb Mortal Wkly Rep 2021 70 (36) 1255-1260 Although COVID-19-associated hospitalizations and deaths have occurred more frequently in adults,(†) COVID-19 can also lead to severe outcomes in children and adolescents (1,2). Schools are opening for in-person learning, and many prekindergarten children are returning to early care and education programs during a time when the number of COVID-19 cases caused by the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, is increasing.(§) Therefore, it is important to monitor indicators of severe COVID-19 among children and adolescents. This analysis uses Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET)(¶) data to describe COVID-19-associated hospitalizations among U.S. children and adolescents aged 0-17 years. During March 1, 2020-August 14, 2021, the cumulative incidence of COVID-19-associated hospitalizations was 49.7 per 100,000 children and adolescents. The weekly COVID-19-associated hospitalization rate per 100,000 children and adolescents during the week ending August 14, 2021 (1.4) was nearly five times the rate during the week ending June 26, 2021 (0.3); among children aged 0-4 years, the weekly hospitalization rate during the week ending August 14, 2021, was nearly 10 times that during the week ending June 26, 2021.** During June 20-July 31, 2021, the hospitalization rate among unvaccinated adolescents (aged 12-17 years) was 10.1 times higher than that among fully vaccinated adolescents. Among all hospitalized children and adolescents with COVID-19, the proportions with indicators of severe disease (such as intensive care unit [ICU] admission) after the Delta variant became predominant (June 20-July 31, 2021) were similar to those earlier in the pandemic (March 1, 2020-June 19, 2021). Implementation of preventive measures to reduce transmission and severe outcomes in children is critical, including vaccination of eligible persons, universal mask wearing in schools, recommended mask wearing by persons aged ≥2 years in other indoor public spaces and child care centers,(††) and quarantining as recommended after exposure to persons with COVID-19.(§§). |
Nasopharyngeal carriage of Streptococcus pneumoniae among young children in Haiti before pneumococcal conjugate vaccine introduction
Francois Watkins LK , Milucky JL , McGee L , Siné St-Surin F , Liu P , Tran T , Chochua S , Joseph G , Shang N , Juin S , Dely P , Patel R , Van Beneden CA . J Infect Dis 2021 224 S248-s257 BACKGROUND: Streptococcus pneumoniae, or pneumococcus, is a leading cause of morbidity and mortality in children worldwide. Pneumococcal conjugate vaccines (PCV) reduce carriage in the nasopharynx, preventing disease. We conducted a pneumococcal carriage study to estimate the prevalence of pneumococcal colonization, identify risk factors for colonization, and describe antimicrobial susceptibility patterns among pneumococci colonizing young children in Port-au-Prince, Haiti, before introduction of 13-valent PCV (PCV13). METHODS: We conducted a cross-sectional study of children aged 6-24 months at an immunization clinic in Port-au-Prince between September 2015 and January 2016. Consenting parents were interviewed about factors associated with pneumococcal carriage; nasopharyngeal swabs were collected from each child and cultured for pneumococcus after broth enrichment. Pneumococcal isolates were serotyped and underwent antimicrobial susceptibility testing. We compared frequency of demographic, clinical, and environmental factors among pneumococcus-colonized children (carriers) to those who were not colonized (noncarriers) using unadjusted bivariate analysis and multivariate logistic regression. RESULTS: Pneumococcus was isolated from 308 of the 685 (45.0%) children enrolled. Overall, 157 isolates (50.8%) were PCV13 vaccine-type serotypes; most common were 6A (13.3%), 19F (12.6%), 6B (9.7%), and 23F (6.1%). Vaccine-type isolates were significantly more likely to be nonsusceptible to ≥1 antimicrobial (63.1% vs 45.4%, P = .002). On bivariate analysis, carriers were significantly more likely than noncarriers to live in a household without electricity or running water, to share a bedroom with ≥3 people, to have a mother or father who did not complete secondary education, and to have respiratory symptoms in the 24 hours before enrollment (P < .05 for all comparisons). On multivariable analysis, completion of the pentavalent vaccination series (targeting diphtheria, pertussis, tetanus, hepatitis B, and Haemophilus influenzae type b) remained significantly more common among noncarriers. CONCLUSIONS: Nearly a quarter of healthy children surveyed in Haiti were colonized with vaccine-type pneumococcal serotypes. This baseline carriage study will enable estimation of vaccine impact following nationwide introduction of PCV13. |
Clinical Trends Among U.S. Adults Hospitalized With COVID-19, March to December 2020 : A Cross-Sectional Study.
Garg S , Patel K , Pham H , Whitaker M , O'Halloran A , Milucky J , Anglin O , Kirley PD , Reingold A , Kawasaki B , Herlihy R , Yousey-Hindes K , Maslar A , Anderson EJ , Openo KP , Weigel A , Teno K , Ryan PA , Monroe ML , Reeg L , Kim S , Como-Sabetti K , Bye E , Shrum Davis S , Eisenberg N , Muse A , Barney G , Bennett NM , Felsen CB , Billing L , Shiltz J , Sutton M , Abdullah N , Talbot HK , Schaffner W , Hill M , Chatelain R , Wortham J , Taylor C , Hall A , Fry AM , Kim L , Havers FP . Ann Intern Med 2021 174 (10) 1409-1419 BACKGROUND: The COVID-19 pandemic has caused substantial morbidity and mortality. OBJECTIVE: To describe monthly clinical trends among adults hospitalized with COVID-19. DESIGN: Pooled cross-sectional study. SETTING: 99 counties in 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET). PATIENTS: U.S. adults (aged ≥18 years) hospitalized with laboratory-confirmed COVID-19 during 1 March to 31 December 2020. MEASUREMENTS: Monthly hospitalizations, intensive care unit (ICU) admissions, and in-hospital death rates per 100 000 persons in the population; monthly trends in weighted percentages of interventions, including ICU admission, mechanical ventilation, and vasopressor use, among an age- and site-stratified random sample of hospitalized case patients. RESULTS: Among 116 743 hospitalized adults with COVID-19, the median age was 62 years, 50.7% were male, and 40.8% were non-Hispanic White. Monthly rates of hospitalization (105.3 per 100 000 persons), ICU admission (20.2 per 100 000 persons), and death (11.7 per 100 000 persons) peaked during December 2020. Rates of all 3 outcomes were highest among adults aged 65 years or older, males, and Hispanic or non-Hispanic Black persons. Among 18 508 sampled hospitalized adults, use of remdesivir and systemic corticosteroids increased from 1.7% and 18.9%, respectively, in March to 53.8% and 74.2%, respectively, in December. Frequency of ICU admission, mechanical ventilation, and vasopressor use decreased from March (37.8%, 27.8%, and 22.7%, respectively) to December (20.5%, 12.3%, and 12.8%, respectively); use of noninvasive respiratory support increased from March to December. LIMITATION: COVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country. CONCLUSION: Rates of COVID-19-associated hospitalization, ICU admission, and death were highest in December 2020, corresponding with the third peak of the U.S. pandemic. The frequency of intensive interventions for management of hospitalized patients decreased over time. These data provide a longitudinal assessment of clinical trends among adults hospitalized with COVID-19 before widespread implementation of COVID-19 vaccines. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention. |
Effectiveness of COVID-19 Vaccines in Preventing Hospitalization Among Adults Aged ≥65 Years - COVID-NET, 13 States, February-April 2021.
Moline HL , Whitaker M , Deng L , Rhodes JC , Milucky J , Pham H , Patel K , Anglin O , Reingold A , Chai SJ , Alden NB , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Farley MM , Ryan PA , Kim S , Nunez VT , Como-Sabetti K , Lynfield R , Sosin DM , McMullen C , Muse A , Barney G , Bennett NM , Bushey S , Shiltz J , Sutton M , Abdullah N , Talbot HK , Schaffner W , Chatelain R , Ortega J , Murthy BP , Zell E , Schrag SJ , Taylor C , Shang N , Verani JR , Havers FP . MMWR Morb Mortal Wkly Rep 2021 70 (32) 1088-1093 Clinical trials of COVID-19 vaccines currently authorized for emergency use in the United States (Pfizer-BioNTech, Moderna, and Janssen [Johnson & Johnson]) indicate that these vaccines have high efficacy against symptomatic disease, including moderate to severe illness (1-3). In addition to clinical trials, real-world assessments of COVID-19 vaccine effectiveness are critical in guiding vaccine policy and building vaccine confidence, particularly among populations at higher risk for more severe illness from COVID-19, including older adults. To determine the real-world effectiveness of the three currently authorized COVID-19 vaccines among persons aged ≥65 years during February 1-April 30, 2021, data on 7,280 patients from the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) were analyzed with vaccination coverage data from state immunization information systems (IISs) for the COVID-NET catchment area (approximately 4.8 million persons). Among adults aged 65-74 years, effectiveness of full vaccination in preventing COVID-19-associated hospitalization was 96% (95% confidence interval [CI] = 94%-98%) for Pfizer-BioNTech, 96% (95% CI = 95%-98%) for Moderna, and 84% (95% CI = 64%-93%) for Janssen vaccine products. Effectiveness of full vaccination in preventing COVID-19-associated hospitalization among adults aged ≥75 years was 91% (95% CI = 87%-94%) for Pfizer-BioNTech, 96% (95% CI = 93%-98%) for Moderna, and 85% (95% CI = 72%-92%) for Janssen vaccine products. COVID-19 vaccines currently authorized in the United States are highly effective in preventing COVID-19-associated hospitalizations in older adults. In light of real-world data demonstrating high effectiveness of COVID-19 vaccines among older adults, efforts to increase vaccination coverage in this age group are critical to reducing the risk for COVID-19-related hospitalization. |
Estimating the economic burden of pneumococcal meningitis and pneumonia in northern Ghana in the African meningitis belt post-PCV13 introduction
Kobayashi M , Abdul-Karim A , Milucky JL , Zakariah A , Leidner AJ , Asiedu-Bekoe F , Opare D , Eleeza JB , Ofosu W , Walker C , Whitney CG , Lessa FC . Vaccine 2021 39 (33) 4685-4699 BACKGROUND: Ghana introduced 13-valent pneumococcal conjugate vaccine (PCV13) into the routine infant immunization program in 2012, using a three-dose primary series without a booster. Despite ≥ 88% reported three-dose vaccination coverage since 2013, PCV13-type pneumococcal meningitis outbreaks have occurred. We estimated the ongoing economic burden of PCV13-type pneumococcal meningitis and pneumonia in northern Ghana, an area within the African meningitis belt with seasonal increases of pneumococcal meningitis post-PCV13 introduction, to inform PCV13 vaccination policy. METHODS: We performed a cross-sectional survey among patients with pneumonia or meningitis at three hospitals in northern Ghana to determine patient-level costs (direct medical and nonmedical, indirect patient and caregiver costs) incurred in household, outpatient, and inpatient settings. Pneumonia burden was estimated using 2017-2018 administrative records. Pneumococcal meningitis burden was estimated using 2017-2018 case-based surveillance data. Economic burden was reported in 2019 U.S. dollars ($) from the societal perspective. RESULTS: For an area with a total population of 5,068,521, our model estimated 6,441 PCV13-type pneumonia cases and 286 PCV13-type meningitis cases occurred in a typical year post-PCV13. In the base case scenario, the total economic burden was $5,230,035 per year ($777 per case). By age group, cost per PCV13-type pneumonia case was $423 (<5 years), $911 (5-14 years), and $784 (≥15 years); cost per PCV13-type meningitis case was $2,128 (<5 years), $3,247 (5-14 years), and $2,883 (≥15 years). Most (78.0-93.4%) of the total societal cost was due to indirect costs related to deaths from PCV13-type diseases. CONCLUSIONS: The estimated economic burden of PCV13-type disease in northern Ghana remains substantial, especially in older children and adults who were expected to have benefited from indirect effects from infant immunization. Additional interventions such as changes in the infant immunization schedule, reactive vaccination, or catch-up PCV13 vaccination may be needed to control remaining vaccine-type disease. |
Hospitalization of Adolescents Aged 12-17 Years with Laboratory-Confirmed COVID-19 - COVID-NET, 14 States, March 1, 2020-April 24, 2021.
Havers FP , Whitaker M , Self JL , Chai SJ , Kirley PD , Alden NB , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Weigel A , Teno K , Monroe ML , Ryan PA , Reeg L , Kohrman A , Lynfield R , Como-Sabetti K , Poblete M , McMullen C , Muse A , Spina N , Bennett NM , Gaitán M , Billing LM , Shiltz J , Sutton M , Abdullah N , Schaffner W , Talbot HK , Crossland M , George A , Patel K , Pham H , Milucky J , Anglin O , Ujamaa D , Hall AJ , Garg S , Taylor CA . MMWR Morb Mortal Wkly Rep 2021 70 (23) 851-857 Most COVID-19-associated hospitalizations occur in older adults, but severe disease that requires hospitalization occurs in all age groups, including adolescents aged 12-17 years (1). On May 10, 2021, the Food and Drug Administration expanded the Emergency Use Authorization for Pfizer-BioNTech COVID-19 vaccine to include persons aged 12-15 years, and CDC's Advisory Committee on Immunization Practices recommended it for this age group on May 12, 2021.* Before that time, COVID-19 vaccines had been available only to persons aged ≥16 years. Understanding and describing the epidemiology of COVID-19-associated hospitalizations in adolescents and comparing it with adolescent hospitalizations associated with other vaccine-preventable respiratory viruses, such as influenza, offers evidence of the benefits of expanding the recommended age range for vaccination and provides a baseline and context from which to assess vaccination impact. Using the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET), CDC examined COVID-19-associated hospitalizations among adolescents aged 12-17 years, including demographic and clinical characteristics of adolescents admitted during January 1-March 31, 2021, and hospitalization rates (hospitalizations per 100,000 persons) among adolescents during March 1, 2020-April 24, 2021. Among 204 adolescents who were likely hospitalized primarily for COVID-19 during January 1-March 31, 2021, 31.4% were admitted to an intensive care unit (ICU), and 4.9% required invasive mechanical ventilation; there were no associated deaths. During March 1, 2020-April 24, 2021, weekly adolescent hospitalization rates peaked at 2.1 per 100,000 in early January 2021, declined to 0.6 in mid-March, and then rose to 1.3 in April. Cumulative COVID-19-associated hospitalization rates during October 1, 2020-April 24, 2021, were 2.5-3.0 times higher than were influenza-associated hospitalization rates from three recent influenza seasons (2017-18, 2018-19, and 2019-20) obtained from the Influenza Hospitalization Surveillance Network (FluSurv-NET). Recent increased COVID-19-associated hospitalization rates in March and April 2021 and the potential for severe disease in adolescents reinforce the importance of continued COVID-19 prevention measures, including vaccination and correct and consistent wearing of masks by persons not yet fully vaccinated or when required by laws, rules, or regulations.(†). |
Nonpneumococcal Strains Recently Recovered from Carriage Specimens and Expressing Capsular Serotypes Highly Related or Identical to Pneumococcal Serotypes 2, 4, 9A, 13, and 23A
Gertz RE Jr , Pimenta FC , Chochua S , Larson S , Venero AK , Bigogo G , Milucky J , Carvalho MDG , Beall B . mBio 2021 12 (3) The polysaccharide capsule is a key virulence factor of Streptococcus pneumoniae There are numerous epidemiologically important pneumococcal capsular serotypes, and recent findings have demonstrated that several of them are commonly found among nonpathogenic commensal species. Here, we describe 9 nonpneumococcal strains carrying close homologs of pneumococcal capsular biosynthetic (cps) loci that were discovered during recent pneumococcal carriage studies of adults in the United States and Kenya. Two distinct Streptococcus infantis strains cross-reactive with pneumococcal serotype 4 and carrying cps4-like capsular biosynthetic (cps) loci were recovered. Opsonophagocytic killing assays employing rabbit antisera raised against S. infantis US67cps4 revealed serotype 4-specific killing of both pneumococcal and nonpneumococcal strains. An S. infantis strain and two Streptococcus oralis strains, all carrying cps9A-like loci, were cross-reactive with pneumococcal serogroup 9 strains in immunodiffusion assays. Antiserum raised against S. infantis US64cps9A specifically promoted killing of serotype 9A and 9V pneumococcal strains as well as S. oralis serotype 9A strains. Serotype-specific PCR of oropharyngeal specimens from a recent adult carriage study in the United States indicated that such nonpneumococcal strains were much more common in this population than serotype 4 and serogroup 9 pneumococci. We also describe S. oralis and S. infantis strains expressing serotypes identical or highly related to serotypes 2, 13, and 23A. This study has expanded the known overlap of pneumococcal capsular serotypes with related commensal species. The frequent occurrence of nonpneumococcal strains in the upper respiratory tract that share vaccine and nonvaccine capsular serotypes with pneumococci could affect population immunity to circulating pneumococcal strains.IMPORTANCE The distributions and frequencies of individual pneumococcal capsular serotypes among nonpneumococcal strains in the upper respiratory tract are unknown and potentially affect pneumococcal serotype distributions among the population and immunity to circulating pneumococcal strains. Repeated demonstration that these nonpneumococcal strains expressing so-called pneumococcal serotypes are readily recovered from current carriage specimens is likely to be relevant to pneumococcal epidemiology, niche biology, and even to potential strategies of employing commensal live vaccines. Here, we describe multiple distinct nonpneumococcal counterparts for each of the pneumococcal conjugate vaccine (PCV) serotypes 4 and 9V. Additional data from contemporary commensal isolates expressing serotypes 2, 13, and 23A further demonstrate the ubiquity of such strains. Increased focus upon this serological overlap between S. pneumoniae and its close relatives may eventually prove that most, or possibly all, pneumococcal serotypes have counterparts expressed by the common upper respiratory tract commensal species Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis. |
Use of Real-Time PCR for Chlamydia psittaci Detection in Human Specimens During an Outbreak of Psittacosis - Georgia and Virginia, 2018.
McGovern OL , Kobayashi M , Shaw KA , Szablewski C , Gabel J , Holsinger C , Drenzek C , Brennan S , Milucky J , Farrar JL , Wolff BJ , Benitez AJ , Thurman KA , Diaz MH , Winchell JM , Schrag S . MMWR Morb Mortal Wkly Rep 2021 70 (14) 505-509 Psittacosis is typically a mild febrile respiratory illness caused by infection with the bacterium Chlamydia psittaci and usually transmitted to humans by infected birds (1). On average, 11 psittacosis cases per year were reported in the United States during 2000-2017. During August-October 2018, the largest U.S. psittacosis outbreak in 30 years (82 cases identified*) occurred in two poultry slaughter plants, one each in Virginia and Georgia, that shared source farms (2). CDC used C. psittaci real-time polymerase chain reaction (PCR) to test 54 human specimens from this outbreak. This was the largest number of human specimens from a single outbreak ever tested for C. psittaci using real-time PCR, which is faster and more sensitive than commercially available serologic tests. This represented a rare opportunity to assess the utility of multiple specimen types for real-time PCR detection of C. psittaci. C. psittaci was detected more frequently in lower respiratory specimens (59% [10 of 17]) and stool (four of five) than in upper respiratory specimens (7% [two of 28]). Among six patients with sputum and nasopharyngeal swabs tested, C. psittaci was detected only in sputum in five patients. Cycle threshold (Ct) values suggested bacterial load was higher in lower respiratory specimens than in nasopharyngeal swabs. These findings support prioritizing lower respiratory specimens for real-time PCR detection of C. psittaci. Stool specimens might also have utility for diagnosis of psittacosis. |
Comparison of performance between Fast Track Diagnostics Respiratory Kit and the CDC global reference laboratory for influenza rRT-PCR panel for detection of influenza A and influenza B
Cissé A , Milucky J , Ilboudo AK , Waller JL , Bicaba B , Medah I , Mirza S , Whitney CG , Tarnagda Z . Influenza Other Respir Viruses 2021 15 (3) 381-388 BACKGROUND: Reliable diagnostics are a key to identifying influenza infections. OBJECTIVES: Our objectives were to describe the detection of influenza among severe acute respiratory infection (SARI) cases, to compare test results from the Fast Track Diagnostics (FTD) Kit for influenza detection to the Centers for Disease Control (CDC) human influenza virus detection and characterization panel, and to assess seasonality of influenza in Burkina Faso. METHODS: Nasopharyngeal and oropharyngeal specimens from SARI cases (hospitalized patients with fever, cough, and onset in the previous 10 days) were tested using the FTD-33 Kit and the CDC rRT-PCR influenza assays. We assessed sensitivity and specificity of the FTD-33 Kit for detecting influenza A, influenza B, and the influenza A(H1N1)pdm09 strain using the CDC human influenza rRT-PCR panel as the gold standard. RESULTS: From December 2016 to February 2019, 1706 SARI cases were identified, 1511 specimens were tested, and 211 were positive for influenza A (14.0%) and 100 for influenza B (6.6%) by either assay. Higher influenza circulation occurred between November and April with varying peaks of influenza A and influenza B. Sensitivity of the FTD-33 assay was 91.9% for influenza A, 95.7% for influenza B, and 93.8% for A(H1N1)pdm09 subtype. Specificity was over 99% for all three tests. CONCLUSIONS: Our study indicates that Burkina Faso has one peak of influenza each year which is similar to the Northern Hemisphere and differs from other countries in West Africa. We found high concordance of influenza results between the two assays indicating FTD-33 can be used to reliably detect influenza among SARI cases. |
The epidemiology and estimated etiology of pathogens detected from the upper respiratory tract of adults with severe acute respiratory infections in multiple countries, 2014-2015.
Milucky J , Pondo T , Gregory CJ , Iuliano D , Chaves SS , McCracken J , Mansour A , Zhang Y , Aleem MA , Wolff B , Whitaker B , Whistler T , Onyango C , Lopez MR , Liu N , Rahman MZ , Shang N , Winchell J , Chittaganpitch M , Fields B , Maldonado H , Xie Z , Lindstrom S , Sturm-Ramirez K , Montgomery J , Wu KH , Van Beneden CA . PLoS One 2020 15 (10) e0240309 INTRODUCTION: Etiology studies of severe acute respiratory infections (SARI) in adults are limited. We studied potential etiologies of SARI among adults in six countries using multi-pathogen diagnostics. METHODS: We enrolled both adults with SARI (acute respiratory illness onset with fever and cough requiring hospitalization) and asymptomatic adults (adults hospitalized with non-infectious illnesses, non-household members accompanying SARI patients, adults enrolled from outpatient departments, and community members) in each country. Demographics, clinical data, and nasopharyngeal and oropharyngeal specimens were collected from both SARI patients and asymptomatic adults. Specimens were tested for presence of 29 pathogens utilizing the Taqman® Array Card platform. We applied a non-parametric Bayesian regression extension of a partially latent class model approach to estimate proportions of SARI caused by specific pathogens. RESULTS: We enrolled 2,388 SARI patients and 1,135 asymptomatic adults from October 2013 through October 2015. We detected ≥1 pathogen in 76% of SARI patients and 67% of asymptomatic adults. Haemophilus influenzae and Streptococcus pneumoniae were most commonly detected (≥23% of SARI patients and asymptomatic adults). Through modeling, etiology was attributed to a pathogen in most SARI patients (range among countries: 57.3-93.2%); pathogens commonly attributed to SARI etiology included influenza A (14.4-54.4%), influenza B (1.9-19.1%), rhino/enterovirus (1.8-42.6%), and RSV (3.6-14.6%). CONCLUSIONS: Use of multi-pathogen diagnostics and modeling enabled attribution of etiology in most adult SARI patients, despite frequent detection of multiple pathogens in the upper respiratory tract. Seasonal flu vaccination and development of RSV vaccine would likely reduce the burden of SARI in these populations. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 13, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure