Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-9 (of 9 Records) |
Query Trace: Meaney-Delman Dana M[original query] |
---|
A primer on Monkeypox virus for obstetriciangynecologists: Diagnosis, prevention, and treatment
Meaney-Delman Dana M , Galang Romeo R , Petersen Brett W , Jamieson Denise J . Obstet Gynecol 2022 140 (3) 391-397 Since May 2022, more than 6,900 cases of monkeypox virus infection have been reported in 52 countries. The World Health Organization is planning to rename the virus and its clades to reduce stigma. As of July 5, 2022, 556 cases have been reported in 33 U.S. states and the District of Columbia. The initial cases were travel-associated; however, person-to-person transmission is now occurring domestically. Close, sustained skin-to-skin contact, including during sexual activity, appears to be the primary mode of transmission. The risk of widespread community transmission remains low; however, rapid identification of monkeypox virus infection and isolation of affected individuals is critical to prevent further transmission. Most but not all cases have occurred in males; some infections have started with anogenital lesions and can be mistaken for common sexually transmitted infections. To facilitate rapid, accurate diagnosis of monkeypox virus infection, obstetrician-gynecologists (ob-gyns) in the United States should ask about recent travel history and new ulcers or lesions and perform a thorough visual inspection of skin and mucosal sites (oral, genital, perianal area) in patients presenting with new rash. Obstetrician-gynecologists should become familiar with the appearance of monkeypox lesions and know whom to call to report a suspected case, how and when to test for monkeypox virus, and how to counsel patients. In the event of a suspected case, ob-gyns should follow infection-control guidelines to prevent transmission and make recommendations to prevent further community spread. This article outlines the diagnosis, prevention, and treatment of monkeypox virus infection, monkeypox virus infection during pregnancy, and implications for practicing ob-gyns in the United States. |
Preliminary Findings of mRNA Covid-19 Vaccine Safety in Pregnant Persons.
Shimabukuro TT , Kim SY , Myers TR , Moro PL , Oduyebo T , Panagiotakopoulos L , Marquez PL , Olson CK , Liu R , Chang KT , Ellington SR , Burkel VK , Smoots AN , Green CJ , Licata C , Zhang BC , Alimchandani M , Mba-Jonas A , Martin SW , Gee JM , Meaney-Delman DM . N Engl J Med 2021 384 (24) 2273-2282 BACKGROUND: Many pregnant persons in the United States are receiving messenger RNA (mRNA) coronavirus disease 2019 (Covid-19) vaccines, but data are limited on their safety in pregnancy. METHODS: From December 14, 2020, to February 28, 2021, we used data from the "v-safe after vaccination health checker" surveillance system, the v-safe pregnancy registry, and the Vaccine Adverse Event Reporting System (VAERS) to characterize the initial safety of mRNA Covid-19 vaccines in pregnant persons. RESULTS: A total of 35,691 v-safe participants 16 to 54 years of age identified as pregnant. Injection-site pain was reported more frequently among pregnant persons than among nonpregnant women, whereas headache, myalgia, chills, and fever were reported less frequently. Among 3958 participants enrolled in the v-safe pregnancy registry, 827 had a completed pregnancy, of which 115 (13.9%) resulted in a pregnancy loss and 712 (86.1%) resulted in a live birth (mostly among participants with vaccination in the third trimester). Adverse neonatal outcomes included preterm birth (in 9.4%) and small size for gestational age (in 3.2%); no neonatal deaths were reported. Although not directly comparable, calculated proportions of adverse pregnancy and neonatal outcomes in persons vaccinated against Covid-19 who had a completed pregnancy were similar to incidences reported in studies involving pregnant women that were conducted before the Covid-19 pandemic. Among 221 pregnancy-related adverse events reported to the VAERS, the most frequently reported event was spontaneous abortion (46 cases). CONCLUSIONS: Preliminary findings did not show obvious safety signals among pregnant persons who received mRNA Covid-19 vaccines. However, more longitudinal follow-up, including follow-up of large numbers of women vaccinated earlier in pregnancy, is necessary to inform maternal, pregnancy, and infant outcomes. |
A Preparedness Model for Mother-Baby Linked Longitudinal Surveillance for Emerging Threats.
Woodworth KR , Reynolds MR , Burkel V , Gates C , Eckert V , McDermott C , Barton J , Wilburn A , Halai UA , Brown CM , Bocour A , Longcore N , Orkis L , Lopez CD , Sizemore L , Ellis EM , Schillie S , Gupta N , Bowen VB , Torrone E , Ellington SR , Delaney A , Olson SM , Roth NM , Whitehill F , Zambrano LD , Meaney-Delman D , Fehrenbach SN , Honein MA , Tong VT , Gilboa SM . Matern Child Health J 2021 25 (2) 1-9 INTRODUCTION: Public health responses often lack the infrastructure to capture the impact of public health emergencies on pregnant women and infants, with limited mechanisms for linking pregnant women with their infants nationally to monitor long-term effects. In 2019, the Centers for Disease Control and Prevention (CDC), in close collaboration with state, local, and territorial health departments, began a 5-year initiative to establish population-based mother-baby linked longitudinal surveillance, the Surveillance for Emerging Threats to Mothers and Babies Network (SET-NET). OBJECTIVES: The objective of this report is to describe an expanded surveillance approach that leverages and modernizes existing surveillance systems to address the impact of emerging health threats during pregnancy on pregnant women and their infants. METHODS: Mother-baby pairs are identified through prospective identification during pregnancy and/or identification of an infant with retrospective linking to maternal information. All data are obtained from existing data sources (e.g., electronic medical records, vital statistics, laboratory reports, and health department investigations and case reporting). RESULTS: Variables were selected for inclusion to address key surveillance questions proposed by CDC and health department subject matter experts. General variables include maternal demographics and health history, pregnancy and infant outcomes, maternal and infant laboratory results, and child health outcomes up to the second birthday. Exposure-specific modular variables are included for hepatitis C, syphilis, and Coronavirus Disease 2019 (COVID-19). The system is structured into four relational datasets (maternal, pregnancy outcomes and birth, infant/child follow-up, and laboratory testing). DISCUSSION: SET-NET provides a population-based mother-baby linked longitudinal surveillance approach and has already demonstrated rapid adaptation to COVID-19. This innovative approach leverages existing data sources and rapidly collects data and informs clinical guidance and practice. These data can help to reduce exposure risk and adverse outcomes among pregnant women and their infants, direct public health action, and strengthen public health systems. |
Summary of Guidance for Public Health Strategies to Address High Levels of Community Transmission of SARS-CoV-2 and Related Deaths, December 2020.
Honein MA , Christie A , Rose DA , Brooks JT , Meaney-Delman D , Cohn A , Sauber-Schatz EK , Walker A , McDonald LC , Liburd LC , Hall JE , Fry AM , Hall AJ , Gupta N , Kuhnert WL , Yoon PW , Gundlapalli AV , Beach MJ , Walke HT . MMWR Morb Mortal Wkly Rep 2020 69 (49) 1860-1867 In the 10 months since the first confirmed case of coronavirus disease 2019 (COVID-19) was reported in the United States on January 20, 2020 (1), approximately 13.8 million cases and 272,525 deaths have been reported in the United States. On October 30, the number of new cases reported in the United States in a single day exceeded 100,000 for the first time, and by December 2 had reached a daily high of 196,227.* With colder weather, more time spent indoors, the ongoing U.S. holiday season, and silent spread of disease, with approximately 50% of transmission from asymptomatic persons (2), the United States has entered a phase of high-level transmission where a multipronged approach to implementing all evidence-based public health strategies at both the individual and community levels is essential. This summary guidance highlights critical evidence-based CDC recommendations and sustainable strategies to reduce COVID-19 transmission. These strategies include 1) universal face mask use, 2) maintaining physical distance from other persons and limiting in-person contacts, 3) avoiding nonessential indoor spaces and crowded outdoor spaces, 4) increasing testing to rapidly identify and isolate infected persons, 5) promptly identifying, quarantining, and testing close contacts of persons with known COVID-19, 6) safeguarding persons most at risk for severe illness or death from infection with SARS-CoV-2, the virus that causes COVID-19, 7) protecting essential workers with provision of adequate personal protective equipment and safe work practices, 8) postponing travel, 9) increasing room air ventilation and enhancing hand hygiene and environmental disinfection, and 10) achieving widespread availability and high community coverage with effective COVID-19 vaccines. In combination, these strategies can reduce SARS-CoV-2 transmission, long-term sequelae or disability, and death, and mitigate the pandemic's economic impact. Consistent implementation of these strategies improves health equity, preserves health care capacity, maintains the function of essential businesses, and supports the availability of in-person instruction for kindergarten through grade 12 schools and preschool. Individual persons, households, and communities should take these actions now to reduce SARS-CoV-2 transmission from its current high level. These actions will provide a bridge to a future with wide availability and high community coverage of effective vaccines, when safe return to more everyday activities in a range of settings will be possible. |
Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status - United States, January 22-October 3, 2020.
Zambrano LD , Ellington S , Strid P , Galang RR , Oduyebo T , Tong VT , Woodworth KR , Nahabedian JF 3rd , Azziz-Baumgartner E , Gilboa SM , Meaney-Delman D . MMWR Morb Mortal Wkly Rep 2020 69 (44) 1641-1647 Studies suggest that pregnant women might be at increased risk for severe illness associated with coronavirus disease 2019 (COVID-19) (1,2). This report provides updated information about symptomatic women of reproductive age (15-44 years) with laboratory-confirmed infection with SARS-CoV-2, the virus that causes COVID-19. During January 22-October 3, CDC received reports through national COVID-19 case surveillance or through the National Notifiable Diseases Surveillance System (NNDSS) of 1,300,938 women aged 15-44 years with laboratory results indicative of acute infection with SARS-CoV-2. Data on pregnancy status were available for 461,825 (35.5%) women with laboratory-confirmed infection, 409,462 (88.7%) of whom were symptomatic. Among symptomatic women, 23,434 (5.7%) were reported to be pregnant. After adjusting for age, race/ethnicity, and underlying medical conditions, pregnant women were significantly more likely than were nonpregnant women to be admitted to an intensive care unit (ICU) (10.5 versus 3.9 per 1,000 cases; adjusted risk ratio [aRR] = 3.0; 95% confidence interval [CI] = 2.6-3.4), receive invasive ventilation (2.9 versus 1.1 per 1,000 cases; aRR = 2.9; 95% CI = 2.2-3.8), receive extracorporeal membrane oxygenation (ECMO) (0.7 versus 0.3 per 1,000 cases; aRR = 2.4; 95% CI = 1.5-4.0), and die (1.5 versus 1.2 per 1,000 cases; aRR = 1.7; 95% CI = 1.2-2.4). Stratifying these analyses by age and race/ethnicity highlighted disparities in risk by subgroup. Although the absolute risks for severe outcomes for women were low, pregnant women were at increased risk for severe COVID-19-associated illness. To reduce the risk for severe illness and death from COVID-19, pregnant women should be counseled about the importance of seeking prompt medical care if they have symptoms and measures to prevent SARS-CoV-2 infection should be strongly emphasized for pregnant women and their families during all medical encounters, including prenatal care visits. Understanding COVID-19-associated risks among pregnant women is important for prevention counseling and clinical care and treatment. |
Birth and Infant Outcomes Following Laboratory-Confirmed SARS-CoV-2 Infection in Pregnancy - SET-NET, 16 Jurisdictions, March 29-October 14, 2020.
Woodworth KR , Olsen EO , Neelam V , Lewis EL , Galang RR , Oduyebo T , Aveni K , Yazdy MM , Harvey E , Longcore ND , Barton J , Fussman C , Siebman S , Lush M , Patrick PH , Halai UA , Valencia-Prado M , Orkis L , Sowunmi S , Schlosser L , Khuwaja S , Read JS , Hall AJ , Meaney-Delman D , Ellington SR , Gilboa SM , Tong VT . MMWR Morb Mortal Wkly Rep 2020 69 (44) 1635-1640 Pregnant women with coronavirus disease 2019 (COVID-19) are at increased risk for severe illness and might be at risk for preterm birth (1-3). The full impact of infection with SARS-CoV-2, the virus that causes COVID-19, in pregnancy is unknown. Public health jurisdictions report information, including pregnancy status, on confirmed and probable COVID-19 cases to CDC through the National Notifiable Diseases Surveillance System.* Through the Surveillance for Emerging Threats to Mothers and Babies Network (SET-NET), 16 jurisdictions collected supplementary information on pregnancy and infant outcomes among 5,252 women with laboratory-confirmed SARS-CoV-2 infection reported during March 29-October 14, 2020. Among 3,912 live births with known gestational age, 12.9% were preterm (<37 weeks), higher than the reported 10.2% among the general U.S. population in 2019 (4). Among 610 infants (21.3%) with reported SARS-CoV-2 test results, perinatal infection was infrequent (2.6%) and occurred primarily among infants whose mother had SARS-CoV-2 infection identified within 1 week of delivery. Because the majority of pregnant women with COVID-19 reported thus far experienced infection in the third trimester, ongoing surveillance is needed to assess effects of infections in early pregnancy, as well the longer-term outcomes of exposed infants. These findings can inform neonatal testing recommendations, clinical practice, and public health action and can be used by health care providers to counsel pregnant women on the risks of SARS-CoV-2 infection, including preterm births. Pregnant women and their household members should follow recommended infection prevention measures, including wearing a mask, social distancing, and frequent handwashing when going out or interacting with others or if there is a person within the household who has had exposure to COVID-19.(†). |
Disparities in Incidence of COVID-19 Among Underrepresented Racial/Ethnic Groups in Counties Identified as Hotspots During June 5-18, 2020 - 22 States, February-June 2020.
Moore JT , Ricaldi JN , Rose CE , Fuld J , Parise M , Kang GJ , Driscoll AK , Norris T , Wilson N , Rainisch G , Valverde E , Beresovsky V , Agnew Brune C , Oussayef NL , Rose DA , Adams LE , Awel S , Villanueva J , Meaney-Delman D , Honein MA . MMWR Morb Mortal Wkly Rep 2020 69 (33) 1122-1126 During January 1, 2020-August 10, 2020, an estimated 5 million cases of coronavirus disease 2019 (COVID-19) were reported in the United States.* Published state and national data indicate that persons of color might be more likely to become infected with SARS-CoV-2, the virus that causes COVID-19, experience more severe COVID-19-associated illness, including that requiring hospitalization, and have higher risk for death from COVID-19 (1-5). CDC examined county-level disparities in COVID-19 cases among underrepresented racial/ethnic groups in counties identified as hotspots, which are defined using algorithmic thresholds related to the number of new cases and the changes in incidence.(†) Disparities were defined as difference of ≥5% between the proportion of cases and the proportion of the population or a ratio ≥1.5 for the proportion of cases to the proportion of the population for underrepresented racial/ethnic groups in each county. During June 5-18, 205 counties in 33 states were identified as hotspots; among these counties, race was reported for ≥50% of cumulative cases in 79 (38.5%) counties in 22 states; 96.2% of these counties had disparities in COVID-19 cases in one or more underrepresented racial/ethnic groups. Hispanic/Latino (Hispanic) persons were the largest group by population size (3.5 million persons) living in hotspot counties where a disproportionate number of cases among that group was identified, followed by black/African American (black) persons (2 million), American Indian/Alaska Native (AI/AN) persons (61,000), Asian persons (36,000), and Native Hawaiian/other Pacific Islander (NHPI) persons (31,000). Examining county-level data disaggregated by race/ethnicity can help identify health disparities in COVID-19 cases and inform strategies for preventing and slowing SARS-CoV-2 transmission. More complete race/ethnicity data are needed to fully inform public health decision-making. Addressing the pandemic's disproportionate incidence of COVID-19 in communities of color can reduce the community-wide impact of COVID-19 and improve health outcomes. |
Severe Coronavirus Infections in Pregnancy: A Systematic Review.
Galang RR , Chang K , Strid P , Snead MC , Woodworth KR , House LD , Perez M , Barfield WD , Meaney-Delman D , Jamieson DJ , Shapiro-Mendoza CK , Ellington SR . Obstet Gynecol 2020 136 (2) 262-272 OBJECTIVE: To inform the current coronavirus disease 2019 (COVID-19) outbreak, we conducted a systematic literature review of case reports of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, during pregnancy and summarized clinical presentation, course of illness, and pregnancy and neonatal outcomes. DATA SOURCES: We searched MEDLINE and ClinicalTrials.gov from inception to April 23, 2020. METHODS OF STUDY SELECTION: We included articles reporting case-level data on MERS-CoV, SARS-CoV, and SARS-CoV-2 infection in pregnant women. Course of illness, indicators of severe illness, maternal health outcomes, and pregnancy outcomes were abstracted from included articles. TABULATION, INTEGRATION, AND RESULTS: We identified 1,328 unique articles, and 1,253 articles were excluded by title and abstract review. We completed full-text review on 75, and 29 articles were excluded by full-text review. Among 46 publications reporting case-level data, eight described 12 cases of MERS-CoV infection, seven described 17 cases of SARS-CoV infection, and 31 described 98 cases of SARS-CoV-2 infection. Clinical presentation and course of illness ranged from asymptomatic to severe fatal disease, similar to the general population of patients. Severe morbidity and mortality among women with MERS-CoV, SARS-CoV, or SARS-CoV-2 infection in pregnancy and adverse pregnancy outcomes, including pregnancy loss, preterm delivery, and laboratory evidence of vertical transmission, were reported. CONCLUSION: Understanding whether pregnant women may be at risk for adverse maternal and neonatal outcomes from severe coronavirus infections is imperative. Data from case reports of SARS-CoV, MERS-CoV, and SAR-CoV-2 infections during pregnancy are limited, but they may guide early public health actions and clinical decision-making for COVID-19 until more rigorous and systematically collected data are available. The capture of critical data is needed to better define how this infection affects pregnant women and neonates. This review was not registered with PROSPERO. |
Zika Virus RNA Replication and Persistence in Brain and Placental Tissue.
Bhatnagar J , Rabeneck DB , Martines RB , Reagan-Steiner S , Ermias Y , Estetter LB , Suzuki T , Ritter J , Keating MK , Hale G , Gary J , Muehlenbachs A , Lambert A , Lanciotti R , Oduyebo T , Meaney-Delman D , Bolanos F , Saad EA , Shieh WJ , Zaki SR . Emerg Infect Dis 2017 23 (3) 405-414 Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure