Last data update: Jan 13, 2025. (Total: 48570 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: McKenzie BA[original query] |
---|
Assessing and managing the risk of Aedes mosquito introductions via the global maritime trade network
Willoughby JR , McKenzie BA , Ahn J , Steury TD , Lepzcyk CA , Zohdy S . PLoS Negl Trop Dis 2024 18 (4) e0012110 The global shipping network (GSN) has been suggested as a pathway for the establishment and reintroduction of Aedes aegypti and Aedes albopictus primarily via the tire trade. We used historical maritime movement data in combination with an agent-based model to understand invasion risk in the United States Gulf Coast and how the risk of these invasions could be reduced. We found a strong correlation between the total number of cargo ship arrivals at each port and likelihood of arrival by both Ae. aegypti and Ae. albopictus. Additionally, in 2012, 99.2% of the arrivals into target ports had most recently visited ports likely occupied by both Ae. aegypti and Ae. albopictus, increasing risk of Aedes invasion. Our model results indicated that detection and removal of mosquitoes from containers when they are unloaded effectively reduced the probability of mosquito populations establishment even when the connectivity of ports increased. To reduce the risk of invasion and reintroduction of Ae. aegypti and Ae. albopictus, surveillance and control efforts should be employed when containers leave high risk locations and when they arrive in ports at high risk of establishment. |
Mosquito invasion via the global shipping network is slowed in high-risk areas by on-shore and ship-board monitoring (preprint)
Willoughby JR , McKenzie BA , Ahn J , Steury TD , Lepzcyk CA , Zohdy S . bioRxiv 2022 01 The global shipping network (GSN) has been suggested as a pathway for the establishment and reintroduction of Aedes aegypti and Aedes albopictus primarily via the tire trade. We used historical maritime movement data in combination with an agent-based model to understand invasion risk in the United States Gulf Coast and how the risk of these invasions could be reduced. We found a strong correlation between the total number of cargo ship arrivals at each port and likelihood of arrival by both Ae. aegypti and Ae. albopictus. Additionally, in 2012, 99.2% of the arrivals into target ports had most recently visited ports occupied by both Ae. aegypti and Ae. albopictus, increasing risk of Aedes invasion. Model results indicated that detection and removal of mosquitoes from containers when they are unloaded at a port may be more effective in reducing the establishment of mosquito populations compared to eradication efforts that occur while onboard the vessel, suggesting detection efforts should be focused on unloaded containers. To reduce the risk of invasion and reintroduction of Ae. aegypti and Ae. albopictus, surveillance and control efforts should be employed when containers leave high risk locations and when they arrive in ports at high risk of establishment. Copyright The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. |
Which trap is best Alternatives to outdoor human landing catches for malaria vector surveillance: a meta-analysis
Eckert J , Oladipupo S , Wang Y , Jiang S , Patil V , McKenzie BA , Lobo NF , Zohdy S . Malar J 2022 21 (1) 378 BACKGROUND: Human landing catches (HLC) are an entomological collection technique in which humans are used as attractants to capture medically relevant host-seeking mosquitoes. The use of this method has been a topic of extensive debate for decades mainly due to ethical concerns. Many alternatives to HLC have been proposed; however, no quantitative review and meta-analysis comparing HLC to outdoor alternative trapping methods has been conducted. METHODS: A total of 58 comparisons across 12 countries were identified. We conducted a meta-analysis comparing the standardized mean difference of Anopheles captured by HLC and alternative traps. To explain heterogeneity, three moderators were chosen for analysis: trap type, location of study, and species captured. A meta-regression was fit to understand how the linear combination of moderators helped in explaining heterogeneity. The possibility of biased results due to publication bias was also explored. RESULTS: Random-effects meta-analysis showed no statistically significant difference in the mean difference of Anopheles collected. Moderator analysis was conducted to determine the effects of trap type, geographical location of study, and the species of Anopheles captured. On average, tent-based traps captured significantly more Anopheles than outdoor HLC (95% CI: [- .9065, - 0.0544]), alternative traps in Africa captured on average more mosquitoes than outdoor HLC (95% CI: [- 2.8750, - 0.0294]), and alternative traps overall captured significantly more Anopheles gambiae s.l. than outdoor HLC (95% CI: [- 4.4613, - 0.2473]) on average. Meta-regression showed that up to 55.77% of the total heterogeneity found can be explained by a linear combination of the three moderators and the interaction between trap type and species. Subset analysis on An. gambiae s.l. showed that light traps specifically captured on average more of this species than HLC (95% CI: [- 18.3751, - 1.0629]). Publication bias likely exists. With 59.65% of studies reporting p-values less than 0.025, we believe there is an over representation in the literature of results indicating that alternative traps are superior to outdoor HLC. CONCLUSIONS: Currently, there is no consensus on a single "magic bullet" alternative to outdoor HLC. The diversity of many alternative trap comparisons restricts potential metrics for comparisons to outdoor HLC. Further standardization and specific question-driven trap evaluations that consider target vector species and the vector control landscape are needed to allow for robust meta-analyses with less heterogeneity and to develop data-driven decision-making tools for malaria vector surveillance and control. |
Developing a granular scale environmental burden index (EBI) for diverse land cover types across the contiguous United States
Owusu C , Flanagan B , Lavery AM , Mertzlufft CE , McKenzie BA , Kolling J , Lewis B , Dunn I , Hallisey E , Lehnert EA , Fletcher K , Davis R , Conn M , Owen LR , Smith MM , Dent A . Sci Total Environ 2022 838 155908 Critical to identifying the risk of environmentally driven disease is an understanding of the cumulative impact of environmental conditions on human health. Here we describe the methodology used to develop an environmental burden index (EBI). The EBI is calculated at U.S. census tract level, a finer scale than many similar national-level tools. EBI scores are also stratified by tract land cover type as per the National Land Cover Database (NLCD), controlling for urbanicity. The EBI was developed over the course of four stages: 1) literature review to identify potential indicators, 2) data source acquisition and indicator variable construction, 3) index creation, and 4) stratification by land cover type. For each potential indicator, data sources were assessed for completeness, update frequency, and availability. These indicators were: (1) particulate matter (PM2.5), (2) ozone, (3) Superfund National Priority List (NPL) locations, (4) Toxics Release Inventory (TRI) facilities, (5) Treatment, Storage, and Disposal (TSD) facilities, (6) recreational parks, (7) railways, (8) highways, (9) airports, and (10) impaired water sources. Indicators were statistically normalized and checked for collinearity. For each indicator, we computed and summed percentile ranking scores to create an overall ranking for each tract. Tracts having the same plurality of land cover type form a 'peer' group. We re-ranked the tracts into percentiles within each peer group for each indicator. The percentile scores were combined for each tract to obtain a stratified EBI. A higher score reveals a tract with increased environmental burden relative to other tracts of the same peer group. We compared our results to those of related indices, finding good convergent validity between the overall EBI and CalEnviroScreen 4.0. The EBI has many potential applications for research and use as a tool to develop public health interventions at a granular scale. |
Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar.
Finney M , McKenzie BA , Rabaovola B , Sutcliffe A , Dotson E , Zohdy S . Malar J 2021 20 (1) 25 BACKGROUND: Malaria is a top cause of mortality on the island nation of Madagascar, where many rural communities rely on subsistence agriculture and livestock production. Understanding feeding behaviours of Anopheles in this landscape is crucial for optimizing malaria control and prevention strategies. Previous studies in southeastern Madagascar have shown that Anopheles mosquitoes are more frequently captured within 50 m of livestock. However, it remains unknown whether these mosquitoes preferentially feed on livestock. Here, mosquito blood meal sources and Plasmodium sporozoite rates were determined to evaluate patterns of feeding behaviour in Anopheles spp. and malaria transmission in southeastern Madagascar. METHODS: Across a habitat gradient in southeastern Madagascar 7762 female Anopheles spp. mosquitoes were collected. Of the captured mosquitoes, 492 were visibly blood fed and morphologically identifiable, and a direct enzyme-linked immunosorbent assay (ELISA) was used to test for swine, cattle, chicken, human, and dog blood among these specimens. Host species identification was confirmed for multiple blood meals using PCR along with Sanger sequencing. Additionally, 1,607 Anopheles spp. were screened for the presence of Plasmodium falciparum, P. vivax-210, and P. vivax 247 circumsporozoites (cs) by ELISA. RESULTS: Cattle and swine accounted, respectively, for 51% and 41% of all blood meals, with the remaining 8% split between domesticated animals and humans. Of the 1,607 Anopheles spp. screened for Plasmodium falciparum, Plasmodium vivax 210, and Plasmodium vivax 247 cs-protein, 45 tested positive, the most prevalent being P. vivax 247, followed by P. vivax 210 and P. falciparum. Both variants of P. vivax were observed in secondary vectors, including Anopheles squamosus/cydippis, Anopheles coustani, and unknown Anopheles spp. Furthermore, evidence of coinfection of P. falciparum and P. vivax 210 in Anopheles gambiae sensu lato (s.l.) was found. CONCLUSIONS: Here, feeding behaviour of Anopheles spp. mosquitoes in southeastern Madagascar was evaluated, in a livestock rich landscape. These findings suggest largely zoophagic feeding behaviors of Anopheles spp., including An. gambiae s.l. and presence of both P. vivax and P. falciparum sporozoites in Anopheles spp. A discordance between P. vivax reports in mosquitoes and humans exists, suggesting high prevalence of P. vivax circulating in vectors in the ecosystem despite low reports of clinical vivax malaria in humans in Madagascar. Vector surveillance of P. vivax may be relevant to malaria control and elimination efforts in Madagascar. At present, the high proportion of livestock blood meals in Madagascar may play a role in buffering (zooprophylaxis) or amplifying (zoopotentiation) the impacts of malaria. With malaria vector control efforts focused on indoor feeding behaviours, complementary approaches, such as endectocide-aided vector control in livestock may be an effective strategy for malaria reduction in Madagascar. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 13, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure