Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-8 (of 8 Records) |
Query Trace: Mbala-Kingebeni P[original query] |
---|
Ebola outbreak control in the Democratic Republic of the Congo
Garfield R , Fonjungo P , Soke G , Baggett H , Montgomery J , Luce R , Klena J , Mbala-Kingebeni P , Ahuka S , Mwamba D , Muyembe-Tamfam JJ , Agolory S . Disaster Med Public Health Prep 2024 18 e287 Health Security is a major concern for the Democratic Republic of the Congo (DRC). It is the second largest country in Africa, borders nine other countries, has more than 80 million inhabitants, and has suffered from decades of neglect and conflicts together with multiple recurrent disease outbreaks, including Ebola. |
Fatal meningoencephalitis associated with Ebola virus persistence in two survivors of Ebola virus disease in the Democratic Republic of the Congo: a case report study
Mukadi-Bamuleka D , Edidi-Atani F , Morales-Betoulle ME , Legand A , Nkuba-Ndaye A , Bulabula-Penge J , Mbala-Kingebeni P , Crozier I , Mambu-Mbika F , Whitmer S , Tshiani Mbaya O , Hensley LE , Kitenge-Omasumbu R , Davey R , Mulangu S , Fonjungo PN , Wiley MR , Klena JD , Peeters M , Delaporte E , van Griensven J , Ariën KK , Pratt C , Montgomery JM , Formenty P , Muyembe-Tamfum JJ , Ahuka-Mundeke S . Lancet Microbe 2024 100905 ![]() ![]() BACKGROUND: During the 2018-20 Ebola virus disease outbreak in the Democratic Republic of the Congo, thousands of patients received unprecedented vaccination, monoclonal antibody (mAb) therapy, or both, leading to a large number of survivors. We aimed to report the clinical, virological, viral genomic, and immunological features of two previously vaccinated and mAb-treated survivors of Ebola virus disease in the Democratic Republic of the Congo who developed second episodes of disease months after initial discharge, ultimately complicated by fatal meningoencephalitis associated with viral persistence. METHODS: In this case report study, we describe the presentation, management, and subsequent investigations of two patients who developed recrudescent Ebola virus disease and subsequent fatal meningoencephalitis. We obtained data from epidemiological databases, Ebola treatment units, survivor programme databases, laboratory datasets, and hospital records. Following national protocols established during the 2018-20 outbreak in the Democratic Republic of the Congo, blood, plasma, and cerebrospinal fluid (CSF) samples were collected during the first and second episodes of Ebola virus disease from both individuals and were analysed by molecular (quantitative RT-PCR and next-generation sequencing) and serological (IgG and IgM ELISA and Luminex assays) techniques. FINDINGS: The total time between the end of the first Ebola virus episode and the onset of the second episode was 342 days for patient 1 and 137 days for patient 2. In both patients, Ebola virus RNA was detected in blood and CSF samples during the second episode of disease. Complete genomes from CSF samples from this relapse episode showed phylogenetic relatedness to the genome sequenced from blood samples collected from the initial infection, confirming in-host persistence of Ebola virus. Serological analysis showed an antigen-specific humoral response with typical IgM and IgG kinetics in patient 1, but an absence of an endogenous adaptive immune response in patient 2. INTERPRETATION: We report the first two cases of fatal meningoencephalitis associated with Ebola virus persistence in two survivors of Ebola virus disease who had received vaccination and mAb-based treatment in the Democratic Republic of the Congo. Our findings highlight the importance of long-term monitoring of survivors, including continued clinical, virological, and immunological profiling, as well as the urgent need for novel therapeutic strategies to prevent and mitigate the individual and public health consequences of Ebola virus persistence. FUNDING: Ministry of Health of the Democratic Republic of the Congo, Institut National de Recherche Biomédicale, Infectious Disease Rapid Response Reserve Fund, US Centers for Disease Control and Prevention, French National Research Institute for Development, and WHO. |
U.S. preparedness and response to increasing clade I mpox cases in the Democratic Republic of the Congo - United States, 2024
McQuiston JH , Luce R , Kazadi DM , Bwangandu CN , Mbala-Kingebeni P , Anderson M , Prasher JM , Williams IT , Phan A , Shelus V , Bratcher A , Soke GN , Fonjungo PN , Kabamba J , McCollum AM , Perry R , Rao AK , Doty J , Christensen B , Fuller JA , Baird N , Chaitram J , Brown CK , Kirby AE , Fitter D , Folster JM , Dualeh M , Hartman R , Bart SM , Hughes CM , Nakazawa Y , Sims E , Christie A , Hutson CL . MMWR Morb Mortal Wkly Rep 2024 73 (19) 435-440 ![]() ![]() Clade I monkeypox virus (MPXV), which can cause severe illness in more people than clade II MPXVs, is endemic in the Democratic Republic of the Congo (DRC), but the country has experienced an increase in suspected cases during 2023-2024. In light of the 2022 global outbreak of clade II mpox, the increase in suspected clade I cases in DRC raises concerns that the virus could spread to other countries and underscores the importance of coordinated, urgent global action to support DRC's efforts to contain the virus. To date, no cases of clade I mpox have been detected outside of countries in Central Africa where the virus is endemic. CDC and other partners are working to support DRC's response. In addition, CDC is enhancing U.S. preparedness by raising awareness, strengthening surveillance, expanding diagnostic testing capacity for clade I MPXV, ensuring appropriate specimen handling and waste management, emphasizing the importance of appropriate medical treatment, and communicating guidance on the recommended contact tracing, containment, behavior modification, and vaccination strategies. |
Co-circulating monkeypox and swinepox viruses, democratic republic of the congo, 2022
Kalonji T , Malembi E , Matela JP , Likafi T , Kinganda-Lusamaki E , Vakaniaki EH , Hoff NA , Aziza A , Muyembe F , Kabamba J , Cooreman T , Nguete B , Witte D , Ayouba A , Fernandez-Nuñez N , Roge S , Peeters M , Merritt S , Ahuka-Mundeke S , Delaporte E , Pukuta E , Mariën J , Bangwen E , Lakin S , Lewis C , Doty JB , Liesenborghs L , Hensley LE , McCollum A , Rimoin AW , Muyembe-Tamfum JJ , Shongo R , Kaba D , Mbala-Kingebeni P . Emerg Infect Dis 2024 30 (4) 761-765 ![]() ![]() In September 2022, deaths of pigs manifesting pox-like lesions caused by swinepox virus were reported in Tshuapa Province, Democratic Republic of the Congo. Two human mpox cases were found concurrently in the surrounding community. Specific diagnostics and robust sequencing are needed to characterize multiple poxviruses and prevent potential poxvirus transmission. |
2020 Ebola virus disease outbreak in Équateur Province, Democratic Republic of the Congo: a retrospective genomic characterisation
Kinganda-Lusamaki E , Whitmer S , Lokilo-Lofiko E , Amuri-Aziza A , Muyembe-Mawete F , Makangara-Cigolo JC , Makaya G , Mbuyi F , Whitesell A , Kallay R , Choi M , Pratt C , Mukadi-Bamuleka D , Kavunga-Membo H , Matondo-Kuamfumu M , Mambu-Mbika F , Ekila-Ifinji R , Shoemaker T , Stewart M , Eng J , Rajan A , Soke GN , Fonjungo PN , Otshudiema JO , Folefack GLT , Pukuta-Simbu E , Talundzic E , Shedroff E , Bokete JL , Legand A , Formenty P , Mores CN , Porzucek AJ , Tritsch SR , Kombe J , Tshapenda G , Mulangu F , Ayouba A , Delaporte E , Peeters M , Wiley MR , Montgomery JM , Klena JD , Muyembe-Tamfum JJ , Ahuka-Mundeke S , Mbala-Kingebeni P . Lancet Microbe 2024 ![]() ![]() ![]() BACKGROUND: The Democratic Republic of the Congo has had 15 Ebola virus disease (EVD) outbreaks, from 1976 to 2023. On June 1, 2020, the Democratic Republic of the Congo declared an outbreak of EVD in the western Équateur Province (11th outbreak), proximal to the 2018 Tumba and Bikoro outbreak and concurrent with an outbreak in the eastern Nord Kivu Province. In this Article, we assessed whether the 11th outbreak was genetically related to previous or concurrent EVD outbreaks and connected available epidemiological and genetic data to identify sources of possible zoonotic spillover, uncover additional unreported cases of nosocomial transmission, and provide a deeper investigation into the 11th outbreak. METHODS: We analysed epidemiological factors from the 11th EVD outbreak to identify patient characteristics, epidemiological links, and transmission modes to explore virus spread through space, time, and age groups in the Équateur Province, Democratic Republic of the Congo. Trained field investigators and health professionals recorded data on suspected, probable, and confirmed cases, including demographic characteristics, possible exposures, symptom onset and signs and symptoms, and potentially exposed contacts. We used blood samples from individuals who were live suspected cases and oral swabs from individuals who were deceased to diagnose EVD. We applied whole-genome sequencing of 87 available Ebola virus genomes (from 130 individuals with EVD between May 19 and Sept 16, 2020), phylogenetic divergence versus time, and Bayesian reconstruction of phylogenetic trees to calculate viral substitution rates and study viral evolution. We linked the available epidemiological and genetic datasets to conduct a genomic and epidemiological study of the 11th EVD outbreak. FINDINGS: Between May 19 and Sept 16, 2020, 130 EVD (119 confirmed and 11 probable) cases were reported across 13 Équateur Province health zones. The individual identified as the index case reported frequent consumption of bat meat, suggesting the outbreak started due to zoonotic spillover. Sequencing revealed two circulating Ebola virus variants associated with this outbreak-a Mbandaka variant associated with the majority (97%) of cases and a Tumba-like variant with similarity to the ninth EVD outbreak in 2018. The Tumba-like variant exhibited a reduced substitution rate, suggesting transmission from a previous survivor of EVD. INTERPRETATION: Integrating genetic and epidemiological data allowed for investigative fact-checking and verified patient-reported sources of possible zoonotic spillover. These results demonstrate that rapid genetic sequencing combined with epidemiological data can inform responders of the mechanisms of viral spread, uncover novel transmission modes, and provide a deeper understanding of the outbreak, which is ultimately needed for infection prevention and control during outbreaks. FUNDING: WHO and US Centers for Disease Control and Prevention. |
Head-to-head comparison of diagnostic accuracy of four Ebola virus disease rapid diagnostic tests versus GeneXpert in eastern Democratic Republic of the Congo outbreaks: a prospective observational study
Mukadi-Bamuleka D , Bulabula-Penge J , Jacobs BKM , De Weggheleire A , Edidi-Atani F , Mambu-Mbika F , Legand A , Klena JD , Fonjungo PN , Mbala-Kingebeni P , Makiala-Mandanda S , Kajihara M , Takada A , Montgomery JM , Formenty P , Muyembe-Tamfum JJ , Ariën KK , van Griensven J , Ahuka-Mundeke S . EBioMedicine 2023 91 104568 BACKGROUND: Ebola virus disease (EVD) outbreaks have emerged in Central and West Africa. EVD diagnosis relies principally on RT-PCR testing with GeneXpert®, which has logistical and cost restrictions at the peripheral level of the health system. Rapid diagnostic tests (RDTs) would offer a valuable alternative at the point-of-care to reduce the turn-around time, if they show good performance characteristics. We evaluated the performance of four EVD RDTs against the reference standard GeneXpert® on stored EVD positive and negative blood samples collected between 2018 and 2021 from outbreaks in eastern Democratic Republic of the Congo (DRC). METHODS: We conducted a prospective and observational study in the laboratory on QuickNavi-Ebola™, OraQuick® Ebola Rapid Antigen, Coris® EBOLA Ag K-SeT, and Standard® Q Ebola Zaïre Ag RDTs using left-over archived frozen EDTA whole blood samples. We randomly selected 450 positive and 450 negative samples from the EVD biorepositories in DRC, across a range of GeneXpert® cycle threshold values (Ct-values). RDT results were read by three persons and we considered an RDT result as "positive", when it was flagged as positive by at least two out of the three readers. We estimated the sensitivity and specificity through two independent generalized (logistic) linear mixed models (GLMM). FINDINGS: 476 (53%) of 900 samples had a positive GeneXpert Ebola result when retested. The QuickNavi-Ebola™ showed a sensitivity of 56.8% (95% CI 53.6-60.0) and a specificity of 97.5% (95% CI 96.2-98.4), the OraQuick® Ebola Rapid Antigen test displayed 61.6% (95% CI 57.0-65.9) sensitivity and 98.1% (95% CI 96.2-99.1) specificity, the Coris® EBOLA Ag K-SeT showed 25.0% (95% CI 22.3-27.9) sensitivity and 95.9% (95% CI 94.2-97.1) specificity, and the Standard® Q Ebola Zaïre Ag displayed 21.6% (95% CI 18.1-25.7) sensitivity and 99.1% (95% CI 97.4-99.7) specificity. INTERPRETATION: None of the RDTs evaluated approached the "desired or acceptable levels" for sensitivity set out in the WHO target product profile, while all of the tests met the "desired level" for specificity. Nevertheless, the QuickNavi-Ebola™ and OraQuick® Ebola Rapid Antigen Test demonstrated the most favorable profiles, and may be used as frontline tests for triage of suspected-cases while waiting for RT-qPCR confirmatory testing. FUNDING: Institute of Tropical Medicine Antwerp/EDCTP PEAU-EBOV-RDC project. |
Design and optimization of a monkeypox virus specific serological assay
Taha TY , Townsend MB , Pohl J , Karem KL , Damon IK , Mbala Kingebeni P , Muyembe Tamfum JJ , Martin JW , Pittman PR , Huggins JW , Satheshkumar PS , Bagarozzi DA Jr , Reynolds MG , Hughes LJ . Pathogens 2023 12 (3) Monkeypox virus (MPXV), a member of the Orthopoxvirus (OPXV) genus, is a zoonotic virus, endemic to central and western Africa that can cause smallpox-like symptoms in humans with fatal outcomes in up to 15% of patients. The incidence of MPXV infections in the Democratic Republic of the Congo, where the majority of cases have occurred historically, has been estimated to have increased as much as 20-fold since the end of smallpox vaccination in 1980. Considering the risk global travel carries for future disease outbreaks, accurate epidemiological surveillance of MPXV is warranted as demonstrated by the recent Mpox outbreak, where the majority of cases were occurring in non-endemic areas. Serological differentiation between childhood vaccination and recent infection with MPXV or other OPXVs is difficult due to the high level of conservation within OPXV proteins. Here, a peptide-based serological assay was developed to specifically detect exposure to MPXV. A comparative analysis of immunogenic proteins across human OPXVs identified a large subset of proteins that could potentially be specifically recognized in response to a MPXV infection. Peptides were chosen based upon MPXV sequence specificity and predicted immunogenicity. Peptides individually and combined were screened in an ELISA against serum from well-characterized Mpox outbreaks, vaccinee sera, and smallpox sera collected prior to eradication. One peptide combination was successful with ~86% sensitivity and ~90% specificity. The performance of the assay was assessed against the OPXV IgG ELISA in the context of a serosurvey by retrospectively screening a set of serum specimens from the region in Ghana believed to have harbored the MPXV-infected rodents involved in the 2003 United States outbreak. |
Efficiency of field laboratories for ebola virus disease outbreak during chronic insecurity, Eastern Democratic Republic of the Congo, 2018-2020
Mukadi-Bamuleka D , Mambu-Mbika F , De Weggheleire A , Edidi-Atani F , Bulabula-Penge J , Mfumu MMK , Legand A , Nkuba-Ndaye A , N'Kasar Y TT , Mbala-Kingebeni P , Klena JD , Montgomery JM , Muyembe-Tamfum JJ , Formenty P , van Griensven J , Ariën KK , Ahuka-Mundeke S . Emerg Infect Dis 2023 29 (1) 1-9 During the 10th outbreak of Ebola virus disease in the Democratic Republic of the Congo, the Institut National de Recherche Biomédicale strategically positioned 13 decentralized field laboratories with dedicated equipment to quickly detect cases as the outbreak evolved. The laboratories were operated by national staff, who quickly handed over competencies and skills to local persons to successfully manage future outbreaks. Laboratories analyzed ≈230,000 Ebola diagnostic samples under stringent biosafety measures, documentation, and database management. Field laboratories diversified their activities (diagnosis, chemistry and hematology, survivor follow-up, and genomic sequencing) and shipped 127,993 samples from the field to a biorepository in Kinshasa under good conditions. Deploying decentralized and well-equipped laboratories run by local personnel in at-risk countries for Ebola virus disease outbreaks is an efficient response; all activities are quickly conducted in the field. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure