Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-8 (of 8 Records) |
Query Trace: Matzinger SR[original query] |
---|
Cluster of influenza A(H5) cases associated with poultry exposure at two facilities - Colorado, July 2024
Drehoff CC , White EB , Frutos AM , Stringer G , Burakoff A , Comstock N , Cronquist A , Alden N , Armistead I , Kohnen A , Ratnabalasuriar R , Travanty EA , Matzinger SR , Rossheim A , Wellbrock A , Pagano HP , Wang D , Singleton J , Sutter RA , Davis CT , Kniss K , Ellington S , Kirby MK , Reed C , Herlihy R . MMWR Morb Mortal Wkly Rep 2024 73 (34) 734-739 Persons who work in close contact with dairy cattle and poultry that are infected with highly pathogenic avian influenza (HPAI) A(H5N1) virus are at increased risk for infection. In July 2024, the Colorado Department of Public Health & Environment responded to two poultry facilities with HPAI A(H5N1) virus detections in poultry. Across the two facilities, 663 workers assisting with poultry depopulation (i.e., euthanasia) received screening for illness; 109 (16.4%) reported symptoms and consented to testing. Among those who received testing, nine (8.3%) received a positive influenza A(H5) virus test result, and 19 (17.4%) received a positive SARS-CoV-2 test result. All nine workers who received positive influenza A(H5) test results had conjunctivitis, experienced mild illness, and received oseltamivir. This poultry exposure-associated cluster of human cases of influenza A(H5) is the first reported in the United States. The identification of these cases highlights the ongoing risk to persons who work in close contact with infected animals. Early response to each facility using multidisciplinary, multilingual teams facilitated case-finding, worker screening, and treatment. As the prevalence of HPAI A(H5N1) virus clade 2.3.4.4b genotype B3.13 increases, U.S. public health agencies should prepare to rapidly investigate and respond to illness in agricultural workers, including workers with limited access to health care. |
Notes from the field: Toxigenic corynebacterium ulcerans in humans and household pets - Utah and Colorado, 2022-2023
Metz AR , White A , Ripplinger J , Spence Davizon E , Barnes M , Bauer M , Butler L , Marzec NS , Matzinger SR , Bampoe V , Ju H , McCall IC , Fraire M , Peng Y , Lanier W . MMWR Morb Mortal Wkly Rep 2024 73 (23) 534-535 |
Multistate outbreak of salmonella thompson infections linked to seafood exposure - United States, 2021
Shen AQ , Dalen A , Bankers L , Matzinger SR , Schwensohn C , Patel K , Hise KB , Pereira E , Cripe J , Jervis RH . MMWR Morb Mortal Wkly Rep 2023 72 (19) 513-516 In July 2021, the Colorado Department of Public Health and Environment (CDPHE) laboratory identified a cluster of five Salmonella enterica serotype Thompson isolates related to one another within one allele difference, using whole genome multilocus sequence typing (wgMLST). These five isolates, submitted to the public health laboratory as is routine process for confirmatory testing of Salmonella, were highly related to those identified in a 2020 multistate investigation, during which traceback was conducted for sushi-grade tuna and salmon; a common supplier was not identified. The 2021 investigation commenced on August 5, 2021, with five patients living in Colorado, and one each in Missouri, Washington, and Wisconsin. During August-December 2021, CDC, CDPHE, public health and regulatory officials in several states, and the Food and Drug Administration (FDA) conducted epidemiologic, environmental, and laboratory investigations of this multistate outbreak of Salmonella Thompson. Isolates were genetically related to one another and to 2020 isolates within zero to one allele difference. Implicated seafood products were traced to a single seafood distributor, in which the outbreak strain was identified through environmental sampling, and in which inspection identified inadequate sanitization and opportunities for cross-contamination of raw fish. The distributor issued a voluntary recall of 16 seafood items with high potential for contamination and completed remediation actions. This outbreak illustrated the importance of effective cleaning and sanitizing procedures and implementation of controls. When multiple products are recalled during an outbreak investigation, collaboration between public health agencies and implicated facilities can help provide food safety information to restaurants, retailers, and consumers, and to ensure disposal of all recalled products. |
Evaluation of Correctional Facility COVID-19 Outbreaks With Layered Mitigation Strategies Including Vaccination: Colorado, 2020-2021.
Martinez HE , Marshall KE , Showell VW , Tate JE , Kirking HL , Broudy M , Matzinger SR , Burakoff A , Deng L , Payne DC , Fleming-Dutra K , Jervis RH . J Correct Health Care 2023 29 (3) 198-205 In 2020-2021, a Colorado corrections facility experienced four COVID-19 outbreaks. Case counts, attack rates (ARs) in people who are detained or incarcerated (PDI), and mitigation measures used in each outbreak were compared to evaluate effects of combined strategies. Serial PCR testing, isolation/quarantine, and masking were implemented in outbreak 1. Daily staff antigen testing began in outbreak 2. Facility-wide COVID-19 vaccination started in outbreak 3 and coverage increased by the end of outbreak 4 (PDI: <1% to 59%, staff: 27% to 40%). Despite detection of variants of concern, outbreaks 3 and 4 had 97% lower PDI ARs (both 1%) than outbreak 2 (29%). Daily staff testing and increasing vaccination coverage, with other outbreak mitigation strategies, are important to reduce COVID-19 transmission in congregate settings. |
Investigation of COVID-19 Outbreak among Wildland Firefighters during Wildfire Response, Colorado, USA, 2020.
Metz AR , Bauer M , Epperly C , Stringer G , Marshall KE , Webb LM , Hetherington-Rauth M , Matzinger SR , Totten SE , Travanty EA , Good KM , Burakoff A . Emerg Infect Dis 2022 28 (8) 1551-1558 A COVID-19 outbreak occurred among Cameron Peak Fire responders in Colorado, USA, during August 2020-January 2021. The Cameron Peak Fire was the largest recorded wildfire in Colorado history, lasting August-December 2020. At least 6,123 responders were involved, including 1,260 firefighters in 63 crews who mobilized to the fire camps. A total of 79 COVID-19 cases were identified among responders, and 273 close contacts were quarantined. State and local public health investigated the outbreak and coordinated with wildfire management teams to prevent disease spread. We performed whole-genome sequencing and applied social network analysis to visualize clusters and transmission dynamics. Phylogenetic analysis identified 8 lineages among sequenced specimens, implying multiple introductions. Social network analysis identified spread between and within crews. Strategies such as implementing symptom screening and testing of arriving responders, educating responders about overlapping symptoms of smoke inhalation and COVID-19, improving physical distancing of crews, and encouraging vaccinations are recommended. |
Comparison of Home Antigen Testing With RT-PCR and Viral Culture During the Course of SARS-CoV-2 Infection.
Chu VT , Schwartz NG , Donnelly MAP , Chuey MR , Soto R , Yousaf AR , Schmitt-Matzen EN , Sleweon S , Ruffin J , Thornburg N , Harcourt JL , Tamin A , Kim G , Folster JM , Hughes LJ , Tong S , Stringer G , Albanese BA , Totten SE , Hudziec MM , Matzinger SR , Dietrich EA , Sheldon SW , Stous S , McDonald EC , Austin B , Beatty ME , Staples JE , Killerby ME , Hsu CH , Tate JE , Kirking HL , Matanock A . JAMA Intern Med 2022 182 (7) 701-709 IMPORTANCE: As self-collected home antigen tests become widely available, a better understanding of their performance during the course of SARS-CoV-2 infection is needed. OBJECTIVE: To evaluate the diagnostic performance of home antigen tests compared with reverse transcription-polymerase chain reaction (RT-PCR) and viral culture by days from illness onset, as well as user acceptability. DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study was conducted from January to May 2021 in San Diego County, California, and metropolitan Denver, Colorado. The convenience sample included adults and children with RT-PCR-confirmed infection who used self-collected home antigen tests for 15 days and underwent at least 1 nasopharyngeal swab for RT-PCR, viral culture, and sequencing. EXPOSURES: SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES: The primary outcome was the daily sensitivity of home antigen tests to detect RT-PCR-confirmed cases. Secondary outcomes included the daily percentage of antigen test, RT-PCR, and viral culture results that were positive, and antigen test sensitivity compared with same-day RT-PCR and cultures. Antigen test use errors and acceptability were assessed for a subset of participants. RESULTS: This study enrolled 225 persons with RT-PCR-confirmed infection (median [range] age, 29 [1-83] years; 117 female participants [52%]; 10 [4%] Asian, 6 [3%] Black or African American, 50 [22%] Hispanic or Latino, 3 [1%] Native Hawaiian or Other Pacific Islander, 145 [64%] White, and 11 [5%] multiracial individuals) who completed 3044 antigen tests and 642 nasopharyngeal swabs. Antigen test sensitivity was 50% (95% CI, 45%-55%) during the infectious period, 64% (95% CI, 56%-70%) compared with same-day RT-PCR, and 84% (95% CI, 75%-90%) compared with same-day cultures. Antigen test sensitivity peaked 4 days after illness onset at 77% (95% CI, 69%-83%). Antigen test sensitivity improved with a second antigen test 1 to 2 days later, particularly early in the infection. Six days after illness onset, antigen test result positivity was 61% (95% CI, 53%-68%). Almost all (216 [96%]) surveyed individuals reported that they would be more likely to get tested for SARS-CoV-2 infection if home antigen tests were available over the counter. CONCLUSIONS AND RELEVANCE: The results of this cohort study of home antigen tests suggest that sensitivity for SARS-CoV-2 was moderate compared with RT-PCR and high compared with viral culture. The results also suggest that symptomatic individuals with an initial negative home antigen test result for SARS-CoV-2 infection should test again 1 to 2 days later because test sensitivity peaked several days after illness onset and improved with repeated testing. |
Household Transmission and Symptomology of SARS-CoV-2 Alpha Variant Among Children-California and Colorado, 2021.
Waltenburg MA , Whaley MJ , Chancey RJ , Donnelly MAP , Chuey MR , Soto R , Schwartz NG , Chu VT , Sleweon S , McCormick DW , Uehara A , Retchless AC , Tong S , Folster JM , Petway M , Thornburg NJ , Drobeniuc J , Austin B , Hudziec MM , Stringer G , Albanese BA , Totten SE , Matzinger SR , Staples JE , Killerby ME , Hughes LJ , Matanock A , Beatty M , Tate JE , Kirking HL , Hsu CH . J Pediatr 2022 247 29-37 e7 OBJECTIVE: To assess the household secondary infection risk (SIR) of B.1.1.7 (Alpha) and non-Alpha lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children. STUDY DESIGN: During January-April 2021, we prospectively followed households with a SARS-CoV-2 infection. We collected questionnaires, serial nasopharyngeal swabs for RT-PCR testing and whole genome sequencing, and serial blood samples for serology testing. We calculated SIRs by primary case age (pediatric vs. adult), household contact age, and viral lineage. We evaluated risk factors associated with transmission and described symptom profiles among children. RESULTS: Among 36 households with pediatric primary cases, 21 (58%) had secondary infections. Among 91 households with adult primary cases, 51 (56%) had secondary infections. SIRs among pediatric and adult primary cases were 45% and 54%, respectively (OR: 0.79 [95% CI 0.41-1.54]). SIRs among pediatric primary cases with Alpha and non-Alpha lineage were 55% and 46%, respectively (OR: 1.52 [CI 0.51-4.53]). SIRs among pediatric and adult household contacts were 55% and 49%, respectively (OR: 1.01 [CI 0.68-1.50]). Among pediatric contacts, no significant differences in odds of acquiring infection by demographic or household characteristics were observed. CONCLUSIONS: Household transmission of SARS-CoV-2 from children and adult primary cases to household members was frequent. Risk of secondary infection was similar among child and adult household contacts. Among children, household transmission of SARS-CoV-2 and risk of secondary infection was not influenced by lineage. Continued mitigation strategies (e.g., masking, physical distancing, vaccination) are needed to protect at-risk groups regardless of virus lineage circulating in communities. |
Notes from the Field: Early Evidence of the SARS-CoV-2 B.1.1.529 (Omicron) Variant in Community Wastewater - United States, November-December 2021.
Kirby AE , Welsh RM , Marsh ZA , Yu AT , Vugia DJ , Boehm AB , Wolfe MK , White BJ , Matzinger SR , Wheeler A , Bankers L , Andresen K , Salatas C , Gregory DA , Johnson MC , Trujillo M , Kannoly S , Smyth DS , Dennehy JJ , Sapoval N , Ensor K , Treangen T , Stadler LB , Hopkins L . MMWR Morb Mortal Wkly Rep 2022 71 (3) 103-105 The United States designated the B.1.1.529 (Omicron) variant of SARS-CoV-2 (the virus that causes COVID-19) a variant of concern on November 30, 2021, and the first U.S. Omicron COVID-19 case was reported on December 1 (1). By December 18, Omicron was estimated to account for 37.9% of U.S. COVID-19 cases.* Early warning systems, such as sewage (wastewater) surveillance,† can help track the spread of SARS-CoV-2 variants across communities (2). | | The National Wastewater Surveillance System (NWSS) comprises 43 health departments funded by CDC to provide data on presence of and trends in SARS-CoV-2 infections that are independent of clinical testing. In addition to total SARS-CoV-2 testing, some health departments track SARS-CoV-2 variants by detecting variant-associated mutations in wastewater. Health departments in four states (California, Colorado, New York, and Texas) were the first wastewater surveillance programs to detect evidence of Omicron in community wastewater. This report describes the initial detections in wastewater during November 21–December 16, 2021, and the interpretative framework for these types of data. This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy.§ |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure