Last data update: Nov 04, 2024. (Total: 48056 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Mattioli Mia C[original query] |
---|
Microbial characterization, factors contributing to contamination, and household use of cistern water, U.S. Virgin Islands
Rao Gouthami , Kahler Amy , Voth-Gaeddert Lee E , Cranford Hannah , Libbey Stephen , Galloway Renee , Molinari Noelle-Angelique , Ellis Esther M , Yoder Jonathan S , Mattioli Mia C , Ellis Brett R . ACS ES T Water 2022 2 (12) 2634-2644 Households in the United States Virgin Islands (USVI) heavily rely on roof-harvested rainwater stored in cisterns for their daily activities. However, there are insufficient data on cistern water microbiological and physicochemical characteristics to inform appropriate cistern water management. Cistern and kitchen tap water samples were collected from 399 geographically representative households across St. Croix, St. Thomas, and St. John and an administered survey captured household site and cistern characteristics and water use behaviors. Water samples were analyzed for Escherichia coli by culture, and a subset of cistern water samples (N = 47) were analyzed for Salmonella, Naegleria fowleri, pathogenic Leptospira, Cryptosporidium, Giardia, and human-specific fecal contamination using real-time polymerase chain reaction (PCR). Associations between E. coli cistern contamination and cistern and site characteristics were evaluated to better understand possible mechanisms of contamination. E. coli was detected in 80% of cistern water samples and in 58% of kitchen tap samples. For the subset of samples tested by PCR, at least one of the pathogens was detected in 66% of cisterns. Our results suggest that covering overflow pipes with screens, decreasing animal presence at the household, and preventing animals or insects from entering the cisterns can decrease the likelihood of E. coli contamination in USVI cistern water. |
Yersinia enterocolitica Outbreak Associated with Pasteurized Milk
Gruber JF , Morris S , Warren KA , Kline KE , Schroeder B , Dettinger L , Husband B , Pollard K , Davis C , Miller J , Weltman A , Mattioli M , Ray L , Tarr C , Longenberger AH . Foodborne Pathog Dis 2021 18 (7) 448-454 In July 2019, we investigated a cluster of Yersinia enterocolitica cases affecting a youth summer camp and nearby community in northeastern Pennsylvania. After initial telephone interviews with camp owners and community members, we identified pasteurized milk from a small dairy conducting on-site pasteurization, Dairy A, as a shared exposure. We conducted site visits at the camp and Dairy A where we collected milk and other samples. Samples were cultured for Y. enterocolitica. Clinical and nonclinical isolates were compared using molecular subtyping. We performed case finding, conducted telephone interviews for community cases, and conducted a cohort study among adult camp staff by administering an online questionnaire. In total, we identified 109 Y. enterocolitica cases. Consumption of Dairy A milk was known for 37 (34%); of these, Dairy A milk was consumed by 31 (84%). Dairy A had shipped 214 gallons of pasteurized milk in 5 weekly shipments to the camp by mid-July. Dairy A milk was the only shared exposure identified between the camp and community. Y. enterocolitica was isolated from Dairy A unpasteurized milk samples. Five clinical isolates from camp members, two clinical isolates from community members, and nine isolates from unpasteurized milk were indistinguishable by whole-genome sequencing. The risk for yersinosis among camp staff who drank Dairy A milk was 5.3 times the risk for those who did not (95% confidence interval: 1.6-17.3). Because Dairy A only sold pasteurized milk, pasteurized milk was considered the outbreak source. We recommend governmental agencies and small dairies conducting on-site pasteurization collaborate to develop outbreak prevention strategies. |
Identifying septic pollution exposure routes during a waterborne norovirus outbreak - A new application for human-associated microbial source tracking qPCR.
Mattioli MC , Benedict KM , Murphy J , Kahler A , Kline KE , Longenberger A , Mitchell PK , Watkins S , Berger P , Shanks OC , Barrett CE , Barclay L , Hall AJ , Hill V , Weltman A . J Microbiol Methods 2020 180 106091 In June 2017, the Pennsylvania Department of Health (PADOH) was notified of multiple norovirus outbreaks associated with 179 ill individuals who attended separate events held at an outdoor venue and campground over a month period. Epidemiologic investigations were unable to identify a single exposure route and therefore unable to determine whether there was a persistent contamination source to target for exposure mitigation. Norovirus was detected in a fresh recreational water designated swimming area and a drinking water well. A hydrogeological site evaluation suggested a nearby septic leach field as a potential contamination source via ground water infiltration. Geological characterization revealed a steep dip of the bedrock beneath the septic leach field toward the well, providing a viral transport pathway in a geologic medium not previously documented as high risk for viral ground water contamination. The human-associated microbial source tracking (MST) genetic marker, HF183, was used as a microbial tracer to demonstrate the hydrogeological connection between the malfunctioning septic system, drinking water well, and recreational water area. Based on environmental investigation findings, venue management and local public health officials implemented a series of outbreak prevention strategies including discontinuing the use of the contaminated well, issuing a permit for a new drinking water well, increasing portable toilet and handwashing station availability, and promoting proper hand hygiene. Despite the outbreaks at the venue and evidence of ground water contamination impacting nearby recreational water and the drinking water well, no new norovirus cases were reported during a large event one week after implementing prevention practices. This investigation highlights a new application for human-associated MST methods to trace hydrological connections between multiple fecal pollutant exposure routes in an outbreak scenario. In turn, pollutant source information can be used to develop effective intervention practices to mitigate exposure and prevent future outbreaks associated with human fecal contaminated waters. |
Shiga Toxin-Producing E. coli Infections Associated with Romaine Lettuce - United States, 2018.
Bottichio L , Keaton A , Thomas D , Fulton T , Tiffany A , Frick A , Mattioli M , Kahler A , Murphy J , Otto M , Tesfai A , Fields A , Kline K , Fiddner J , Higa J , Barnes A , Arroyo F , Salvatierra A , Holland A , Taylor W , Nash J , Morawski BM , Correll S , Hinnenkamp R , Havens J , Patel K , Schroeder MN , Gladney L , Martin H , Whitlock L , Dowell N , Newhart C , Watkins LF , Hill V , Lance S , Harris S , Wise M , Williams I , Basler C , Gieraltowski L . Clin Infect Dis 2019 71 (8) e323-e330 BACKGROUND: Produce-associated outbreaks of Shiga toxin-producing Escherichia coli (STEC) were first identified in 1991. In April 2018, New Jersey and Pennsylvania officials reported a cluster of STEC O157 infections associated with multiple locations of a restaurant chain. CDC queried PulseNet, the national laboratory network for foodborne disease surveillance, for additional cases and began a national investigation. METHODS: A case was defined as an infection between March 13 and August 22, 2018 with one of the 22 identified outbreak-associated E. coli O157:H7 or E. coli O61 pulsed-field gel electrophoresis pattern combinations, or with a strain STEC O157 that was closely related to the main outbreak strain by whole genome sequencing. We conducted epidemiologic and traceback investigations to identify illness sub-clusters and common sources. An FDA-led environmental assessment, which tested water, soil, manure, compost, and scat samples, was conducted to evaluate potential sources of STEC contamination. RESULTS: We identified 240 case-patients from 37 states; 104 were hospitalized, 28 developed hemolytic uremic syndrome, and five died. Of 179 people who were interviewed, 152 (85%) reported consuming romaine lettuce in the week before illness onset. Twenty sub-clusters were identified. Product traceback from sub-cluster restaurants identified numerous romaine lettuce distributors and growers; all lettuce originated from the Yuma growing region. Water samples collected from an irrigation canal in the region yielded the outbreak strain of STEC O157. CONCLUSION: We report on the largest multistate leafy green-linked STEC O157 outbreak in several decades. The investigation highlights the complexities associated with investigating outbreaks involving widespread environmental contamination. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 04, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure