Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-8 (of 8 Records) |
Query Trace: Mandal P[original query] |
---|
Genomic surveillance for SARS-CoV-2 variants: Circulation of Omicron XBB and JN.1 lineages - United States, May 2023-September 2024
Ma KC , Castro J , Lambrou AS , Rose EB , Cook PW , Batra D , Cubenas C , Hughes LJ , MacCannell DR , Mandal P , Mittal N , Sheth M , Smith C , Winn A , Hall AJ , Wentworth DE , Silk BJ , Thornburg NJ , Paden CR . MMWR Morb Mortal Wkly Rep 2024 73 (42) 938-945 CDC continues to track the evolution of SARS-CoV-2, including the Omicron variant and its descendants, using national genomic surveillance. This report summarizes U.S. trends in variant proportion estimates during May 2023-September 2024, a period when SARS-CoV-2 lineages primarily comprised descendants of Omicron variants XBB and JN.1. During summer and fall 2023, multiple descendants of XBB with immune escape substitutions emerged and reached >10% prevalence, including EG.5-like lineages by June 24, FL.1.5.1-like lineages by August 5, HV.1 lineage by September 30, and HK.3-like lineages by November 11. In winter 2023, the JN.1 variant emerged in the United States and rapidly attained predominance nationwide, representing a substantial genetic shift (>30 spike protein amino acid differences) from XBB lineages. Descendants of JN.1 subsequently circulated and reached >10% prevalence, including KQ.1-like and KP.2-like lineages by April 13, KP.3 and LB.1-like lineages by May 25, and KP.3.1.1 by July 20. Surges in COVID-19 cases occurred in winter 2024 during the shift to JN.1 predominance, as well as in summer 2023 and 2024 during circulation of multiple XBB and JN.1 descendants, respectively. The ongoing evolution of the Omicron variant highlights the importance of continued genomic surveillance to guide medical countermeasure development, including the selection of antigens for updated COVID-19 vaccines. |
The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis
Walker TM , Fowler PW , Knaggs J , Hunt M , Peto TE , Walker AS , Crook DW , Walker TM , Miotto P , Cirillo DM , Kser CU , Knaggs J , Iqbal Z , Hunt M , Chindelevitch L , Farhat MR , Comas I , Comas I , Posey J , Omar SV , Peto TE , Walker AS , Crook DW , Suresh A , Uplekar S , Laurent S , Colman RE , Rodwell TC , Nathanson CM , Zignol M , Ismail N , Rodwell TC , Walker AS , Steyn AJC , Lalvani A , Baulard A , Christoffels A , Mendoza-Ticona A , Trovato A , Skrahina A , Lachapelle AS , Brankin A , Piatek A , GibertoniCruz A , Koch A , Cabibbe AM , Spitaleri A , Brandao AP , Chaiprasert A , Suresh A , Barbova A , VanRie A , Ghodousi A , Bainomugisa A , Mandal A , Roohi A , Javid B , Zhu B , Letcher B , Rodrigues C , Nimmo C , Nathanson CM , Duncan C , Coulter C , Utpatel C , Liu C , Grazian C , Kong C , Kser CU , Wilson DJ , Cirillo DM , Matias D , Jorgensen D , Zimenkov D , Chetty D , Moore DA , Clifton DA , Crook DW , vanSoolingen D , Liu D , Kohlerschmidt D , Barreira D , Ngcamu D , SantosLazaro ED , Kelly E , Borroni E , Roycroft E , Andre E , Bttger EC , Robinson E , Menardo F , Mendes FF , Jamieson FB , Coll F , Gao GF , Kasule GW , Rossolini GM , Rodger G , Smith EG , Meintjes G , Thwaites G , Hoffmann H , Albert H , Cox H , Laurenson IF , Comas I , Arandjelovic I , Barilar I , Robledo J , Millard J , Johnston J , Posey J , Andrews JR , Knaggs J , Gardy J , Guthrie J , Taylor J , Werngren J , Metcalfe J , Coronel J , Shea J , Carter J , Pinhata JM , Kus JV , Todt K , Holt K , Nilgiriwala KS , Ghisi KT , Malone KM , Faksri K , Musser KA , Joseph L , Rigouts L , Chindelevitch L , Jarrett L , Grandjean L , Ferrazoli L , Rodrigues M , Farhat M , Schito M , Fitzgibbon MM , Loemb MM , Wijkander M , Ballif M , Rabodoarivelo MS , Mihalic M , Wilcox M , Hunt M , Zignol M , Merker M , Egger M , O'Donnell M , Caws M , Wu MH , Whitfield MG , Inouye M , Mansj M , DangThi MH , Joloba M , Kamal SM , Okozi N , Ismail N , Mistry N , Hoang NN , Rakotosamimanana N , Paton NI , Rancoita PMV , Miotto P , Lapierre P , Hall PJ , Tang P , Claxton P , Wintringer P , Keller PM , Thai PVK , Fowler PW , Supply P , Srilohasin P , Suriyaphol P , Rathod P , Kambli P , Groenheit R , Colman RE , Ong RTH , Warren RM , Wilkinson RJ , Diel R , Oliveira RS , Khot R , Jou R , Tahseen S , Laurent S , Gharbia S , Kouchaki S , Shah S , Plesnik S , Earle SG , Dunstan S , Hoosdally SJ , Mitarai S , Gagneux S , Omar SV , Yao SY , GrandjeanLapierre S , Battaglia S , Niemann S , Pandey S , Uplekar S , Halse TA , Cohen T , Cortes T , Prammananan T , Kohl TA , Thuong NTT , Teo TY , Peto TEA , Rodwell TC , William T , Walker TM , Rogers TR , Surve U , Mathys V , Furi V , Cook V , Vijay S , Escuyer V , Dreyer V , Sintchenko V , Saphonn V , Solano W , Lin WH , vanGemert W , He W , Yang Y , Zhao Y , Qin Y , Xiao YX , Hasan Z , Iqbal Z , Puyen ZM , CryPticConsortium theSeq , Treat Consortium . Lancet Microbe 2022 3 (4) e265-e273 Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (73%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (07%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (914%), moxifloxacin (916%) and ethambutol (933%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation. 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license |
Penicillin use in meningococcal disease management: Active Bacterial Core surveillance sites, 2009
Blain AE , Mandal S , Wu H , MacNeil JR , Harrison LH , Farley MM , Lynfield R , Miller L , Nichols M , Petit S , Reingold A , Schaffner W , Thomas A , Zansky SM , Anderson R , Harcourt BH , Mayer LW , Clark TA , Cohn AC . Open Forum Infect Dis 2016 3 (3) ofw152 In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines. |
Investigation of a Chlamydia pneumoniae outbreak in a federal correctional facility in Texas
Conklin L , Adjemian J , Loo J , Mandal S , Davis C , Parks S , Parsons T , McDonough B , Partida J , Thurman K , Diaz MH , Benitez A , Pondo T , Whitney CG , Winchell JM , Kendig N , Van Beneden C . Clin Infect Dis 2013 57 (5) 639-47 BACKGROUND: Chlamydia pneumoniae illness is poorly characterized, particularly as a sole causative pathogen. We investigated a C. pneumoniae outbreak at a federal correctional facility. METHODS: We identified inmates with acute respiratory illness (ARI) from November 1, 2009 - February 24, 2010 through clinic self-referral and active case-finding. We tested oropharyngeal and/or nasopharyngeal swabs for C. pneumoniae by quantitative polymerase chain reaction (qPCR) and sera by microimmunofluorescence. Cases were inmates with ARI and radiologically-confirmed pneumonia, positive qPCR, or serological evidence of recent infection. Swabs from 7 acutely ill inmates were tested for 18 respiratory pathogens using qPCR TaqMan array cards (TAC). Follow-up swabs from case-patients were collected for up to 8 weeks. RESULTS: Among 33 self-referred and 226 randomly selected inmates, 52 (20.1%) met case definition; 4 were confirmed by radiologically-confirmed pneumonia only, 9 by qPCR only, 17 by serology only, and 22 by both qPCR and serology. The prison attack rate was 10.4% (95% CI: 7.0, 13.8%). White inmates and residents of housing unit Y were at highest risk. TAC testing detected C. pneumoniae in 4 (57%) inmates; no other causative pathogens were identified. Among 40 inmates followed prospectively, C. pneumoniae was detected for up to 8 weeks. Thirteen (52%) of 25 inmates treated with azithromycin continued to be qPCR positive >2 weeks after treatment. CONCLUSIONS: C. pneumoniae was the causative pathogen of this outbreak. Higher risk among certain groups suggests social interaction contributed to transmission. Persistence of C. pneumoniae in the oropharynx creates challenges for outbreak control measures. |
Prolonged university outbreak of meningococcal disease associated with a serogroup B strain rarely seen in the US
Mandal S , Wu HM , Macneil JR , Machesky K , Garcia J , Plikaytis BD , Quinn K , King L , Schmink SE , Wang X , Mayer LW , Clark TA , Gaskell JR , Messonnier NE , Diorio M , Cohn AC . Clin Infect Dis 2013 57 (3) 344-8 BACKGROUND: College students living in residential halls are at increased risk of meningococcal disease. Unlike for serogroups prevented by quadrivalent meningococcal vaccines, public health response to outbreaks of serogroup B meningococcal disease is limited by lack of a US licensed vaccine. METHODS: In March 2010 we investigated a prolonged outbreak of serogroup B disease associated with a university. In addition to case ascertainment, molecular typing of isolates was performed to characterize the outbreak. We conducted a matched case-control study to examine risk factors for serogroup B disease. Five controls per case, matched by college year, were randomly selected. Participants completed a risk factor questionnaire. Data were analyzed using conditional logistic regression. RESULTS: Between January 2008 and November 2010, we identified 13 meningococcal disease cases (seven confirmed, four probable, and two suspected) among university students (ten) or university-linked persons (three). One student died. Ten cases were determined to be serogroup B. Isolates from six confirmed cases had an indistinguishable pulse-field gel electrophoresis pattern and belonged to sequence type ST-269, clonal complex 269. Factors significantly associated with disease were Greek Society membership (matched odds ratio [mOR] 15.0; p=0.03), >1 kissing partner (mOR 13.7; p=0.03) and attending bars (mOR 8.1; p=0.04). CONCLUSIONS: The outbreak was associated with a novel serogroup B strain (CC269) and risk factors indicative of increased social mixing. Control measures were appropriate but limited by lack of vaccine. Understanding serogroup B transmission in college and other settings will help inform use of serogroup B vaccines currently under consideration for licensure. |
Epidemiologic and laboratory features of a large outbreak of pertussis-like illnesses associated with co-circulating Bordetella holmesii and Bordetella pertussis -- Ohio, 2010-2011
Rodgers L , Martin SW , Cohn A , Budd J , Marcon M , Terranella A , Mandal S , Salamon D , Leber A , Tondella ML , Tatti K , Spicer K , Emanuel A , Koch E , McGlone L , Pawloski L , Lemaile-Williams M , Tucker N , Iyer R , Clark TA , Diorio M . Clin Infect Dis 2012 56 (3) 322-31 BACKGROUND: During May 9 2010-May 7 2011, an outbreak of pertussis-like illness (incidence 80 cases/100,000 persons) occurred in Franklin County, Ohio. The majority of cases were identified by IS481-directed polymerase chain reaction (PCR), which does not differentiate among Bordetella species. We sought to determine outbreak etiology and epidemiologic characteristics. METHODS: We obtained demographic, clinical, and vaccination-related data from the Ohio Disease Reporting System and Impact Statewide Immunization Information System. We tested sera from 14 patients for anti-pertussis toxin (PT) antibodies and used species-specific PCR on 298 nasopharyngeal specimens. RESULTS: Reported cases totaled 918. IS481 results were available for 10 serologically tested patients; 5/10 had discordant anti-PT antibody and IS481 results, suggestive of Bordetella holmesii, which lacks PT and harbors IS481. We identified specific Bordetella species in 164 of 298 specimens tested with multitarget PCR; B. holmesii and Bordetella pertussis were exclusively detected among 48 (29%) and 112 (68%), respectively; both were detected in 4 (2%). Among 48 patients with B. holmesii infections, 63% were aged 11-18 years, compared with 35% of 112 patients with B. pertussis infections (P = .001). Symptoms were similar among B. holmesii and B. pertussis-infected patients. Adolescent pertussis ("Tdap") booster vaccinations were more effective against B. pertussis than B. holmesii (effectiveness: 67% and 36%, respectively; 95% confidence intervals: 38%-82% and -33%-69%, respectively). CONCLUSIONS: We report the first documented mixed outbreak of B. pertussis and B. holmesii infections. B. holmesii particularly affected adolescents. Although laboratory capacity limitations might inhibit routine use of multitarget PCRs for clinical diagnosis; focused testing and enhanced surveillance might improve understanding the burden of B. holmesii infection. |
Pertussis Pseudo-outbreak linked to specimens contaminated by Bordetella pertussis DNA From clinic surfaces.
Mandal S , Tatti KM , Woods-Stout D , Cassiday PK , Faulkner AE , Griffith MM , Jackson ML , Pawloski LC , Wagner B , Barnes M , Cohn AC , Gershman KA , Messonnier NE , Clark TA , Tondella ML , Martin SW . Pediatrics 2012 129 (2) e424-30 BACKGROUND AND OBJECTIVES: We investigated a pertussis outbreak characterized by atypical cases, confirmed by polymerase chain reaction (PCR) alone at a single laboratory, which persisted despite high vaccine coverage and routine control measures. We aimed to determine whether Bordetella pertussis was the causative agent and advise on control interventions. METHODS: We conducted case ascertainment, confirmatory testing for pertussis and other pathogens, and an assessment for possible sources of specimen contamination, including a survey of clinic practices, sampling clinics for B pertussis DNA, and review of laboratory quality indicators. RESULTS: Between November 28, 2008, and September 4, 2009, 125 cases were reported, of which 92 (74%) were PCR positive. Cases occurring after April 2009 (n = 79; 63%) had fewer classic pertussis symptoms (63% vs 98%; P < .01), smaller amounts of B pertussis DNA (mean PCR cycle threshold value: 40.9 vs 33.1; P < .01), and a greater proportion of PCR-positive results (34% vs 6%; P < .01). Cultures and serology for B pertussis were negative. Other common respiratory pathogens were detected. We identified factors that likely resulted in specimen contamination at the point of collection: environmentally present B pertussis DNA in clinics from vaccine, clinic standard specimen collection practices, use of liquid transport medium, and lack of clinically relevant PCR cutoffs. CONCLUSIONS: A summer pertussis pseudo-outbreak, multifactorial in cause, likely occurred. Recommendations beyond standard practice were made to providers on specimen collection and environmental cleaning, and to laboratories on standardizing PCR protocols and reporting results, to minimize false-positive results from contaminated clinical specimens. |
Characterization of 107 genomic DNA reference materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1. A GeT-RM and Association for Molecular Pathology collaborative project
Pratt VM , Zehnbauer B , Wilson JA , Baak R , Babic N , Bettinotti M , Buller A , Butz K , Campbell M , Civalier C , El-Badry A , Farkas DH , Lyon E , Mandal S , McKinney J , Muralidharan K , Noll L , Sander T , Shabbeer J , Smith C , Telatar M , Toji L , Vairavan A , Vance C , Weck KE , Wu AH , Yeo KT , Zeller M , Kalman L . J Mol Diagn 2010 12 (6) 835-46 Pharmacogenetic testing is becoming more common; however, very few quality control and other reference materials that cover alleles commonly included in such assays are currently available. To address these needs, the Centers for Disease Control and Prevention's Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, have characterized a panel of 107 genomic DNA reference materials for five loci (CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1) that are commonly included in pharmacogenetic testing panels and proficiency testing surveys. Genomic DNA from publicly available cell lines was sent to volunteer laboratories for genotyping. Each sample was tested in three to six laboratories using a variety of commercially available or laboratory-developed platforms. The results were consistent among laboratories, with differences in allele assignments largely related to the manufacturer's assay design and variable nomenclature, especially for CYP2D6. The alleles included in the assay platforms varied, but most were identified in the set of 107 DNA samples. Nine additional pharmacogenetic loci (CYP4F2, EPHX1, ABCB1, HLAB, KIF6, CYP3A4, CYP3A5, TPMT, and DPD) were also tested. These samples are publicly available from Coriell and will be useful for quality assurance, proficiency testing, test development, and research. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure