Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-30 (of 49 Records) |
Query Trace: Loparev V[original query] |
---|
Correction for Weigand et al., Complete Genome Sequences of Two Bordetella hinzii Strains Isolated from Humans.
Weigand MR , Changayil S , Kulasekarapandian Y , Batra D , Loparev V , Juieng P , Rowe L , Sheth M , Davis JK , Tondella ML . Genome Announc 2016 4 (1) ![]() Volume 3, no. 4, e00965-15, 2015. Page 1: The byline and affiliation line should read as given above. |
Genomic basis of multidrug-resistance, mating, and virulence in Candida auris and related emerging species (preprint)
Munoz JF , Gade L , Chow NA , Loparev VN , Juieng P , Berkow EL , Farrer RA , Litvintseva AP , Cuomo CA . bioRxiv 2018 299917 Candida auris is an emergent fungal pathogen of rising public health concern due to increasing reports of outbreaks in healthcare settings and resistance to multiple classes of antifungal drugs. While distantly related to the more common pathogens C. albicans and C. glabrata, C. auris is closely related to three rarely observed and often multidrug-resistant species, C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. Here, we generated and analyzed near complete genome assemblies and RNA-Seq-guided gene predictions for isolates from each of the four major C. auris clades and for C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. Our analyses mapped seven chromosomes and revealed chromosomal rearrangements between C. auris clades and related species. We found conservation of genes involved in mating and meiosis and identified both MTLa and MTLα C. auris isolates, suggesting the potential for mating between clades. Gene conservation analysis highlighted that many genes linked to drug resistance and virulence in other pathogenic Candida species are conserved in C. auris and related species including expanded families of transporters and lipases, as well as mutations and copy number variants in ERG11 that confer drug resistance. In addition, we found genetic features of the emerging species that likely underlie differences in virulence and drug response between these and other Candida species, including genes involved in cell wall structure. To begin to characterize the species-specific genes important for antifungal response, we profiled the gene expression of C. auris in response to voriconazole and amphotericin B and found induction of several transporters and metabolic regulators that may play a role in drug resistance. This study provides a comprehensive view of the genomic basis of drug resistance, potential for mating, and virulence in this emerging fungal clade. |
The first complete genome of the simian malaria parasite Plasmodium brasilianum.
Bajic M , Ravishankar S , Sheth M , Rowe LA , Pacheco MA , Patel DS , Batra D , Loparev V , Olsen C , Escalante AA , Vannberg F , Udhayakumar V , Barnwell JW , Talundzic E . Sci Rep 2022 12 (1) 19802 ![]() ![]() Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species. |
Draft Chromosome Sequences of a Clinical Isolate of the Free-Living Ameba Naegleria fowleri.
Ali IKM , Kelley A , Joseph SJ , Park S , Roy S , Jackson J , Cope JR , Rowe LA , Burroughs M , Sheth M , Batra D , Loparev V . Microbiol Resour Announc 2021 10 (15) ![]() We present the chromosome sequences of a Naegleria fowleri isolate from a human primary amebic meningoencephalitis (PAM) case. The genome sequences were assembled from Illumina HiSeq and PacBio sequencing data and verified with the optical mapping data. This led to the identification of 37 contigs representing 37 chromosomes in N. fowleri. |
Conserved Patterns of Symmetric Inversion in the Genome Evolution of Bordetella Respiratory Pathogens.
Weigand MR , Peng Y , Batra D , Burroughs M , Davis JK , Knipe K , Loparev VN , Johnson T , Juieng P , Rowe LA , Sheth M , Tang K , Unoarumhi Y , Williams MM , Tondella ML . mSystems 2019 4 (6) ![]() ![]() Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species. |
Rapid inactivation of non-endospore-forming bacterial pathogens by heat stabilization is compatible with downstream next-generation sequencing
Schroeder MR , Loparev V . Appl Biosaf 2019 24 (3) 129-133 Introduction: Heat stabilization treatment preserves the in vivo state of biological samples by rapidly inactivating enzymes that cause degradation of proteins and nucleic acids. Historically, proteomics studies used this technique as an alternative to chemical fixation. More recently, microbiologists discovered that heat stabilization treatment rapidly inactivates pathogens present in tissue samples and preserves deoxyribonucleic acid (DNA) in the tissue. However, these recent studies did not investigate the inactivation of high-density bacterial suspensions and the quality of bacterial DNA. Methods and Results: High-density suspensions of Escherichia coli (>109 cfu/mL) were completely inactivated by heat stabilization treatment using the Denator Stabilizor T1 instrument at 72°C and 95°C for 45 seconds. Using the heat stabilization instrument, a panel of 30 species, 20 Gram-negative and 10 non-endospore-forming Gram-positive species, were fully inactivated by treatment (95°C for 45 seconds). DNA was isolated from bacterial suspensions of Gram-negative bacteria, including E. albertii, E. coli, Shigella dysenteriae, and S. flexneri, following inactivation via heat stabilization treatment and without treatment. DNA isolated following heat stabilization treatment was fully compatible with all downstream molecular applications tested, including next-generation sequencing, pulsed-field gel electrophoresis, multiplex polymerase chain reaction (PCR), and real-time PCR. Conclusions and Discussion: Heat stabilization treatment of Gram-negative and non-endospore-forming Gram-positive pathogens completely inactivates high-density bacterial suspensions. This treatment is compatible with downstream DNA molecular assays, including next-generation sequencing, pulsed-field gel electrophoresis, and PCR. Inactivation by heat stabilization is a rapid process that may increase safety by decreasing risks for laboratory-associated infections and risks associated with transportation of infectious materials. |
Draft Genome Sequences of Leishmania ( Leishmania ) amazonensis , Leishmania ( Leishmania ) mexicana , and Leishmania ( Leishmania ) aethiopica , Potential Etiological Agents of Diffuse Cutaneous Leishmaniasis.
Batra D , Lin W , Narayanan V , Rowe LA , Sheth M , Zheng Y , Loparev V , de Almeida M . Microbiol Resour Announc 2019 8 (20) ![]() ![]() We present here the draft genome sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, potential etiological agents of diffuse cutaneous leishmaniasis (DCL). Sequence data were obtained using PacBio and MiSeq platforms. The PacBio assemblies generated using Canu v1.6 are more contiguous than are those in the available data. |
First Draft Genome Sequence of Leishmania (Viannia) lainsoni Strain 216-34, Isolated from a Peruvian Clinical Case.
Lin W , Batra D , Narayanan V , Rowe LA , Sheth M , Zheng Y , Juieng P , Loparev V , de Almeida M . Microbiol Resour Announc 2019 8 (6) ![]() ![]() We present here the first draft genome sequence of Leishmania (Viannia) lainsoni strain 216-34, sequenced using PacBio and MiSeq platforms. PacBio contigs were generated from de novo assemblies using CANU version 1.6 and polished using Illumina reads. |
Draft Genome Sequence of French Guiana Leishmania ( Viannia ) guyanensis Strain 204-365, Assembled Using Long Reads.
Batra D , Lin W , Rowe LA , Sheth M , Zheng Y , Loparev V , de Almeida M . Microbiol Resour Announc 2018 7 (23) ![]() ![]() We present here the draft genome sequence for Leishmania (Viannia) guyanensis. The isolate was obtained from a clinical case of cutaneous leishmaniasis in French Guiana. Genomic DNA was sequenced using PacBio and MiSeq platforms. |
Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species.
Munoz JF , Gade L , Chow NA , Loparev VN , Juieng P , Berkow EL , Farrer RA , Litvintseva AP , Cuomo CA . Nat Commun 2018 9 (1) 5346 ![]() Candida auris is an emergent multidrug-resistant fungal pathogen causing increasing reports of outbreaks. While distantly related to C. albicans and C. glabrata, C. auris is closely related to rarely observed and often multidrug-resistant species from the C. haemulonii clade. Here, we analyze near complete genome assemblies for the four C. auris clades and three related species, and map intra- and inter-species rearrangements across the seven chromosomes. Using RNA-Seq-guided gene predictions, we find that most mating and meiosis genes are conserved and that clades contain either the MTLa or MTLalpha mating loci. Comparing the genomes of these emerging species to those of other Candida species identifies genes linked to drug resistance and virulence, including expanded families of transporters and lipases, as well as mutations and copy number variants in ERG11. Gene expression analysis identifies transporters and metabolic regulators specific to C. auris and those conserved with related species which may contribute to differences in drug response in this emerging fungal clade. |
PacBio Genome Sequences of Escherichia coli Serotype O157:H7, Diffusely Adherent E. coli , and Salmonella enterica Strains, All Carrying Plasmids with an mcr-1 Resistance Gene.
Lindsey RL , Batra D , Smith P , Patel PN , Tagg KA , Garcia-Toledo L , Loparev VN , Juieng P , Sheth M , Joung YJ , Rowe LA . Microbiol Resour Announc 2018 7 (14) ![]() ![]() We report here Illumina-corrected PacBio whole-genome sequences of an Escherichia coli serotype O157:H7 strain (2017C-4109), an E. coli serotype O[undetermined]:H2 strain (2017C-4173W12), and a Salmonella enterica subsp. enterica serovar Enteritidis strain (2017K-0021), all of which carried the mcr-1 resistance gene on an IncI2 or IncX4 plasmid. We also determined that pMCR-1-CTSe is identical to a previously published plasmid, pMCR-1-CT. |
High-Quality Whole-Genome Sequences for 77 Shiga Toxin-Producing Escherichia coli Strains Generated with PacBio Sequencing.
Patel PN , Lindsey RL , Garcia-Toledo L , Rowe LA , Batra D , Whitley SW , Drapeau D , Stoneburg D , Martin H , Juieng P , Loparev VN , Strockbine N . Genome Announc 2018 6 (19) ![]() ![]() Shiga toxin-producing Escherichia coli (STEC) is an enteric foodborne pathogen that can cause mild to severe illness. Here, we report the availability of high-quality whole-genome sequences for 77 STEC strains generated using the PacBio sequencing platform. |
High-Quality Whole-Genome Sequences for 59 Historical Shigella Strains Generated with PacBio Sequencing.
Kim J , Lindsey RL , Garcia-Toledo L , Loparev VN , Rowe LA , Batra D , Juieng P , Stoneburg D , Martin H , Knipe K , Smith P , Strockbine N . Genome Announc 2018 6 (15) ![]() ![]() Shigella spp. are enteric pathogens that cause shigellosis. We report here the high-quality whole-genome sequences of 59 historical Shigella strains that represent the four species and a variety of serotypes. |
Genome Sequence of a Multidrug-Resistant Candida haemulonii Isolate from a Patient with Chronic Leg Ulcers in Israel.
Chow NA , Gade L , Batra D , Rowe LA , Juieng P , Ben-Ami R , Loparev VN , Litvintseva AP . Genome Announc 2018 6 (15) ![]() ![]() Candida haemulonii is an emerging multidrug-resistant yeast that can cause invasive candidiasis. Here, we report the first genome sequence of C. haemulonii (isolate B11899) generated using PacBio sequencing technology. The estimated genome size was 13.3 Mb, with a GC content of 45.19%. |
Genome Sequence of the Amphotericin B-Resistant Candida duobushaemulonii Strain B09383.
Chow NA , Gade L , Batra D , Rowe LA , Juieng P , Loparev VN , Litvintseva AP . Genome Announc 2018 6 (13) ![]() ![]() Candida duobushaemulonii is a drug-resistant yeast that can cause invasive candidiasis. Here, we report the first genome sequence of C. duobushaemulonii, isolate B09383, generated using PacBio sequencing technology. The estimated genome size was 12.5 Mb with a GC content of 46.84%. |
Screening and genomic characterization of filamentous hemagglutinin-deficient Bordetella pertussis.
Weigand MR , Pawloski LC , Peng Y , Ju H , Burroughs M , Cassiday PK , Davis JK , DuVall M , Johnson T , Juieng P , Knipe K , Loparev VN , Mathis MH , Rowe LA , Sheth M , Williams MM , Tondella ML . Infect Immun 2018 86 (4) ![]() ![]() Despite high vaccine coverage, pertussis cases in the United States (US) have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The US exclusively employs acellular vaccines and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the US retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 US surveillance isolates collected from 2010-2016 identified two that were both Prn- and Fha-deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutation to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure. |
High-Quality Complete and Draft Genome Sequences for Three Escherichia spp. and Three Shigella spp. Generated with Pacific Biosciences and Illumina Sequencing and Optical Mapping.
Schroeder MR , Juieng P , Batra D , Knipe K , Rowe LA , Sheth M , Smith P , Garcia-Toledo L , Loparev VN , Lindsey RL . Genome Announc 2018 6 (1) ![]() ![]() Escherichia spp., including E. albertii and E. coli, Shigella dysenteriae, and S. flexneri are causative agents of foodborne disease. We report here reference-level whole-genome sequences of E. albertii (2014C-4356), E. coli (2011C-4315 and 2012C-4431), S. dysenteriae (BU53M1), and S. flexneri (94-3007 and 71-2783). |
Standardization and validation of real time PCR assays for the diagnosis of histoplasmosis using three molecular targets in an animal model.
Lopez LF , Munoz CO , Caceres DH , Tobon AM , Loparev V , Clay O , Chiller T , Litvintseva A , Gade L , Gonzalez A , Gomez BL . PLoS One 2017 12 (12) e0190311 ![]() Histoplasmosis is considered one of the most important endemic and systemic mycoses worldwide. Until now few molecular techniques have been developed for its diagnosis. The aim of this study was to develop and evaluate three real time PCR (qPCR) protocols for different protein-coding genes (100-kDa, H and M antigens) using an animal model. Fresh and formalin-fixed and paraffin-embedded (FFPE) lung tissues from BALB/c mice inoculated i.n. with 2.5x106 Histoplasma capsulatum yeast or PBS were obtained at 1, 2, 3, 4, 8, 12 and 16 weeks post-infection. A collection of DNA from cultures representing different clades of H. capsulatum (30 strains) and other medically relevant pathogens (36 strains of related fungi and Mycobacterium tuberculosis) were used to analyze sensitivity and specificity. Analytical sensitivity and specificity were 100% when DNAs from the different strains were tested. The highest fungal burden occurred at first week post-infection and complete fungal clearance was observed after the third week; similar results were obtained when the presence of H. capsulatum yeast cells was demonstrated in histopathological analysis. In the first week post-infection, all fresh and FFPE lung tissues from H. capsulatum-infected animals were positive for the qPCR protocols tested except for the M antigen protocol, which gave variable results when fresh lung tissue samples were analyzed. In the second week, all qPCR protocols showed variable results for both fresh and FFPE tissues. Samples from the infected mice at the remaining times post-infection and uninfected mice (controls) were negative for all protocols. Good agreement was observed between CFUs, histopathological analysis and qPCR results for the 100-kDa and H antigen protocols. We successfully standardized and validated three qPCR assays for detecting H. capsulatum DNA in fresh and FFPE tissues, and conclude that the 100-kDa and H antigen molecular assays are promising tests for diagnosing this mycosis. |
Complete Circularized Genome Sequences of Four Strains of Elizabethkingia anophelis, Including Two Novel Strains Isolated from Wild-Caught Anopheles sinensis.
Pei D , Nicholson AC , Jiang J , Chen H , Whitney AM , Villarma A , Bell M , Humrighouse B , Rowe LA , Sheth M , Batra D , Juieng P , Loparev VN , McQuiston JR , Lan Y , Ma Y , Xu J . Genome Announc 2017 5 (47) ![]() We provide complete circularized genome sequences of two mosquito-derived Elizabethkingia anophelis strains with draft sequences currently in the public domain (R26 and Ag1), and two novel E. anophelis strains derived from a different mosquito species, Anopheles sinensis (AR4-6 and AR6-8). The genetic similarity of all four mosquito-derived strains is remarkable. |
Twelve Complete Reference Genomes of Clinical Isolates in the Capnocytophaga Genus.
Villarma A , Gulvik CA , Rowe LA , Sheth M , Juieng P , Nicholson AC , Loparev VN , McQuiston JR . Genome Announc 2017 5 (44) ![]() We report here 1 near-complete genome sequence and 12 complete genome sequences for clinical Capnocytophaga isolates. Total read coverages ranged from 211x to 737x, and genome sizes ranged from 2.41 Mb to 3.10 Mb. These genomes will enable a more comprehensive taxonomic evaluation of the Capnocytophaga genus. |
Complete Genome Sequences of Bordetella pertussis Isolates with Novel Pertactin-Deficient Deletions.
Weigand MR , Peng Y , Cassiday PK , Loparev VN , Johnson T , Juieng P , Nazarian EJ , Weening K , Tondella ML , Williams MM . Genome Announc 2017 5 (37) ![]() ![]() Clinical isolates of the respiratory pathogen Bordetella pertussis in the United States have become predominantly deficient for the acellular vaccine immunogen pertactin through various independent mutations. Here, we report the complete genome sequences for four B. pertussis isolates that harbor novel deletions responsible for pertactin deficiency. |
High-Quality Draft Genome Sequences for Four Drug-Resistant or Outbreak-Associated Shigella sonnei Strains Generated with PacBio Sequencing and Whole-Genome Maps.
Lindsey RL , Batra D , Rowe L , Loparev V N , Juieng P , Garcia-Toledo L , Bicknese A , Stripling D , Martin H , Chen J , Strockbine N , Trees E . Genome Announc 2017 5 (35) ![]() Drug-resistant Shigella sonnei poses a clinical and public health challenge. We report here the high-quality draft whole-genome sequences of four outbreak-associated S. sonnei isolates; three were resistant to two or more antibiotics, and one was resistant to streptomycin only. |
Revisiting the taxonomy of the genus Elizabethkingia using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel Elizabethkingia species: Elizabethkingia bruuniana sp. nov., Elizabethkingia ursingii sp. nov., and Elizabethkingia occulta sp. nov.
Nicholson AC , Gulvik CA , Whitney AM , Humrighouse BW , Graziano J , Emery B , Bell M , Loparev V , Juieng P , Gartin J , Bizet C , Clermont D , Criscuolo A , Brisse S , McQuiston JR . Antonie Van Leeuwenhoek 2017 111 (1) 55-72 ![]() ![]() The genus Elizabethkingia is genetically heterogeneous, and the phenotypic similarities between recognized species pose challenges in correct identification of clinically derived isolates. In addition to the type species Elizabethkingia meningoseptica, and more recently proposed Elizabethkingia miricola, Elizabethkingia anophelis and Elizabethkingia endophytica, four genomospecies have long been recognized. By comparing historic DNA-DNA hybridization results with whole genome sequences, optical maps, and MALDI-TOF mass spectra on a large and diverse set of strains, we propose a comprehensive taxonomic revision of this genus. Genomospecies 1 and 2 contain the type strains E. anophelis and E. miricola, respectively. Genomospecies 3 and 4 are herein proposed as novel species named as Elizabethkingia bruuniana sp. nov. (type strain, G0146T = DSM 2975T = CCUG 69503T = CIP 111191T) and Elizabethkingia ursingii sp. nov. (type strain, G4122T = DSM 2974T = CCUG 69496T = CIP 111192T), respectively. Finally, the new species Elizabethkingia occulta sp. nov. (type strain G4070T = DSM 2976T = CCUG 69505T = CIP 111193T), is proposed. |
Enterococcus crotali sp. nov., isolated from faecal material of a timber rattlesnake
McLaughlin RW , Shewmaker PL , Whitney AM , Humrighouse BW , Lauer AC , Loparev VN , Gulvik CA , Cochran PA , Dowd SE . Int J Syst Evol Microbiol 2017 67 (6) 1984-1989 A facultatively anaerobic, Gram-stain-positive bacterium, designated ETRF1T, was found in faecal material of a timber rattlesnake (Crotalus horridus). Based on a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus Enterococcus. The 16S rRNA gene sequence of strain ETRF1T showed >97 % similarity to that of the type strains of Enterococcus rotai, E. caccae, E. silesiacus, E haemoperoxidus, E. ureasiticus, E. moraviensis, E. plantarum, E. quebecensis, E. ureilyticus, E. termitis, E. rivorum and E. faecalis. The organism could be distinguished from these 12 phylogenetically related enterococci using conventional biochemical testing, the Rapid ID32 Strep system, comparative pheS and rpoA gene sequence analysis, and comparative whole genome sequence analysis. The estimated in silico DNA-DNA hybridization values were <70 %, and average nucleotide identity values were <96 %, when compared to these 12 species, further validating that ETRF1T represents a unique species within the genus Enterococcus. On the basis of these analyses, strain ETRF1T (=CCUG 65857T=LMG 28312T) is proposed as the type strain of a novel species, Enterococcus crotali sp. nov. |
Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain.
Perrin A , Larsonneur E , Nicholson AC , Edwards DJ , Gundlach KM , Whitney AM , Gulvik CA , Bell ME , Rendueles O , Cury J , Hugon P , Clermont D , Enouf V , Loparev V , Juieng P , Monson T , Warshauer D , Elbadawi LI , Walters MS , Crist MB , Noble-Wang J , Borlaug G , Rocha EPC , Criscuolo A , Touchon M , Davis JP , Holt KE , McQuiston JR , Brisse S . Nat Commun 2017 8 15483 ![]() ![]() An atypically large outbreak of Elizabethkingia anophelis infections occurred in Wisconsin. Here we show that it was caused by a single strain with thirteen characteristic genomic regions. Strikingly, the outbreak isolates show an accelerated evolutionary rate and an atypical mutational spectrum. Six phylogenetic sub-clusters with distinctive temporal and geographic dynamics are revealed, and their last common ancestor existed approximately one year before the first recognized human infection. Unlike other E. anophelis, the outbreak strain had a disrupted DNA repair mutY gene caused by insertion of an integrative and conjugative element. This genomic change probably contributed to the high evolutionary rate of the outbreak strain and may have increased its adaptability, as many mutations in protein-coding genes occurred during the outbreak. This unique discovery of an outbreak caused by a naturally occurring mutator bacterial pathogen provides a dramatic example of the potential impact of pathogen evolutionary dynamics on infectious disease epidemiology. |
Evaluation of TaqMan Array Card (TAC) for the Detection of Central Nervous System Infections in Kenya.
Onyango CO , Loparev V , Lidechi S , Bhullar V , Schmid DS , Radford K , Lo MK , Rota P , Johnson BW , Munoz J , Oneko M , Burton D , Black CM , Neatherlin J , Montgomery JM , Fields B . J Clin Microbiol 2017 55 (7) 2035-2044 ![]() Infections of the central nervous system (CNS) are often acute with significant morbidity and mortality. Routine diagnosis of such infections is limited in developing countries and requires modern equipment in advanced laboratories that may be unavailable to a number of patients in sub-Saharan Africa. We developed a TaqMan Array Card (TAC) that detects multiple pathogens simultaneously from cerebrospinal fluid (CSF). The 21-pathogen TAC assays include two parasites (Balamuthia mandrillaris and Acanthamoeba), six bacterial pathogens (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Mycoplasma pneumoniae, Mycobacterium tuberculosis, and Bartonella) and 13 viruses (parechovirus, dengue, nipah, varicella zoster, mumps, measles, lyssa, herpes simplex virus 1 and 2, Epstein Barr virus, enterovirus, cytomegalovirus and chikungunya). The card also includes human RNAse P as a nucleic acid extraction control and an internal manufacturer control (glyceraldehyde 3-phosphate dehydrogenase (GAPDH)). This CNS-TAC can test up to eight samples for all 21 agents within 2.5 hours following nucleic acid extraction. The assay was validated for linearity, limit of detection, sensitivity and specificity by either using live viruses (dengue, mumps and measles) or nucleic acid material (nipah and chikungunya). Of the 120 samples tested by individual real-time PCR (IRTP), 35 were positive for eight different targets while CNS-TAC detected 37 positive samples across nine different targets. The TAC assays showed 85.6% sensitivity and 96.7% specificity across the assays. This assay may be useful for outbreak investigation and surveillance of suspected neurological disease. |
High-Quality Genome Sequence of an Escherichia coli O157 Strain Carrying an mcr-1 Resistance Gene Isolated from a Patient in the United States.
Lindsey RL , Batra D , Rowe L , Loparev VN , Stripling D , Garcia-Toledo L , Knipe K , Juieng P , Sheth M , Martin H , Laufer Halpin A . Genome Announc 2017 5 (11) ![]() Enterobacteriaceae carrying plasmid-mediated colistin resistance have been found around the world. We report here the high-quality whole-genome sequence of an Escherichia coli O157:H48 isolate (2016C-3936C1) from Connecticut that carried the mcr-1 resistance gene on an IncX4-type plasmid. |
First Full Draft Genome Sequence of Plasmodium brasilianum.
Talundzic E , Ravishankar S , Nayak V , Patel DS , Olsen C , Sheth M , Batra D , Loparev V , Vannberg FO , Udhayakumar V , Barnwell JW . Genome Announc 2017 5 (6) ![]() Plasmodium malariae is a protozoan parasite that can cause human malaria. The simian parasite Plasmodium brasilianum infects New World monkeys from Latin America and is morphologically indistinguishable from P. malariae Here, we report the first full draft genome sequence for P. brasilianum. |
The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement.
Weigand MR , Peng Y , Loparev V , Batra D , Bowden KE , Burroughs M , Cassiday PK , Davis JK , Johnson T , Juieng P , Knipe K , Mathis MH , Pruitt AM , Rowe L , Sheth M , Tondella ML , Williams MM . J Bacteriol 2017 199 (8) ![]() Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genome structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine potential evolution of chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. Observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigation of disease resurgence and molecular epidemiology. IMPORTANCE: Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a high number of repetitive, mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-coding genes which otherwise exhibit little nucleotide sequence diversity. By comparing complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology. |
Complete Genome Sequences of Enterococcus rotai LMG 26678T and Enterococcus silesiacus LMG 23085T.
Lauer AC , Humrighouse BW , Loparev V , Shewmaker PL , Whitney AM , McQuiston JR , McLaughlin RW . Genome Announc 2016 4 (6) ![]() The inclusion of molecular methods in the characterization of the novel species Enterococcus horridus necessitated the sequencing and assembly of the genomes of the closely related Enterococcus rotai and Enterococcus silesiacus Sequencing using Illumina technology in combination with optical mapping led to the generation of closed genomes for both isolates. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure