Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Lollis L[original query] |
---|
Susceptibility of influenza A, B, C, and D viruses to Baloxavir
Mishin VP , Patel MC , Chesnokov A , De La Cruz J , Nguyen HT , Lollis L , Hodges E , Jang Y , Barnes J , Uyeki T , Davis CT , Wentworth DE , Gubareva LV . Emerg Infect Dis 2019 25 (10) 1969-1972 Baloxavir showed broad-spectrum in vitro replication inhibition of 4 types of influenza viruses (90% effective concentration range 1.2-98.3 nmol/L); susceptibility pattern was influenza A > B > C > D. This drug also inhibited influenza A viruses of avian and swine origin, including viruses that have pandemic potential and those resistant to neuraminidase inhibitors. |
Replicative fitness of seasonal influenza A viruses with decreased susceptibility to baloxavir
Chesnokov A , Patel MC , Mishin VP , De La Cruz JA , Lollis L , Nguyen HT , Dugan V , Wentworth DE , Gubareva LV . J Infect Dis 2019 221 (3) 367-371 Susceptibility of influenza A viruses to baloxavir can be affected by changes at amino acid residue 38 in polymerase acidic (PA) protein. Information on replicative fitness of PA-I38-substituted viruses remains sparse. We demonstrated that substitutions I38L/M/S/T not only had a differential effect on baloxavir susceptibility (9- to 116-fold), but also on in vitro replicative fitness. While I38L conferred undiminished growth, other substitutions led to mild attenuation. In a ferret model, control viruses outcompeted those carrying I38M or I38T substitutions, although their advantage was limited. These findings offer insights into the attributes of baloxavir resistant viruses needed for informed risk assessment. |
Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017
Lackenby A , Besselaar TG , Daniels RS , Fry A , Gregory V , Gubareva LV , Huang W , Hurt AC , Leang SK , Lee RTC , Lo J , Lollis L , Maurer-Stroh S , Odagiri T , Pereyaslov D , Takashita E , Wang D , Zhang W , Meijer A . Antiviral Res 2018 157 38-46 A total of 13672 viruses, collected by World Health Organization recognised National Influenza Centres between May 2016 and May 2017, were assessed for neuraminidase inhibitor susceptibility by four WHO Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance Epidemiology and Control of Influenza. The 50% inhibitory concentration (IC50) was determined for oseltamivir and zanamivir for all viruses, and for peramivir and laninamivir in a subset (n=8457). Of the viruses tested, 94% were obtained from the Western Pacific, Americas and European WHO regions, while limited viruses were available from the Eastern Mediterranean, African and South East Asian regions. Reduced inhibition (RI) by one or more neuraminidase inhibitor was exhibited by 0.2% of viruses tested (n=32). The frequency of viruses with RI has remained low since this global analysis began (2015/16: 0.8%, 2014/15: 0.5%; 2013/14: 1.9%; 2012/13: 0.6%) but 2016/17 has the lowest frequency observed to date. Analysis of 13581 neuraminidase sequences retrieved from public databases, of which 5243 sequences were from viruses not included in the phenotypic analyses, identified 58 further viruses (29 without phenotypic analyses) with amino acid substitutions associated with RI by at least one neuraminidase inhibitor. Bringing the total proportion to 0.5% (90/18915). This 2016/17 analysis demonstrates that neuraminidase inhibitors remain suitable for treatment and prophylaxis of influenza virus infections, but continued monitoring is important. An expansion of surveillance testing is paramount since several novel influenza antivirals are in late stage clinical trials with some resistance already having been identified. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure