Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Lo LM[original query] |
---|
Particle emissions from laboratory activities involving carbon nanotubes
Lo LM , Tsai CSJ , Heitbrink WA , Dunn KH , Topmiller J , Ellenbecker M . J Nanopart Res 2017 18 (293) This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20–30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure. |
Performance evaluation of mobile downflow booths for reducing airborne particles in the workplace
Lo LM , Hocker B , Steltz AE , Kremer J , Feng HA . J Occup Environ Hyg 2017 14 (11) 0 Compared to other common control measures, the downflow booth is a costly engineering control used to contain airborne dust or particles. The downflow booth provides unidirectional filtered airflow from the ceiling, entraining released particles away from the workers' breathing zone, and delivers contained airflow to a lower level exhaust for removing particulates by filtering media. In this study, we designed and built a mobile downflow booth that is capable of quick assembly and easy size change to provide greater flexibility and particle control for various manufacturing processes or tasks. An experimental study was conducted to thoroughly evaluate the control performance of downflow booths used for removing airborne particles generated by the transfer of powdered lactose between two containers. Statistical analysis compared particle reduction ratios obtained from various test conditions including booth size (short, regular, or extended), supply air velocity (0.41 and 0.51 m/s or 80 and 100 feet per minute, fpm), powder transfer location (near or far from the booth exhaust), and inclusion or exclusion of curtains at the booth entrance. Our study results show that only short-depth downflow booths failed to protect the worker performing powder transfer far from the booth exhausts. Statistical analysis shows that better control performance can be obtained with supply air velocity of 0.51 m/s (100 fpm) than with 0.41 m/s (80 fpm) and that use of curtains for downflow booths did not improve their control performance. |
Performance of particulate containment at nanotechnology workplaces
Lo LM , Tsai CSJ , Dunn KH , Hammond D , Marlow D , Topmiller J , Ellenbecker M . J Nanopart Res 2015 17 435 The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These control assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37 % reduction on the particle concentration in the worker's breathing zone, and produce a 42 % lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15-20 % higher ultrafine (<500 nm) particle concentrations at the source and at the worker's breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored. |
Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites
Heitbrink WA , Lo LM . J Nanopart Res 2015 17 (8) 335 Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 108 and 2.8 × 106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC. |
Exposure controls for nanomaterials at three manufacturing sites
Heitbrink WA , Lo LM , Dunn KH . J Occup Environ Hyg 2014 12 (1) 16-28 Because nanomaterials are thought to be more biologically active than their larger parent compounds, careful control of exposures to nanomaterials is recommended. Field studies were conducted at three sites to develop information about the effectiveness of control measures including process changes, a downflow room, a ventilated enclosure, and an enclosed reactor. Aerosol mass and number concentrations were measured during specific operations with a photometer and an electrical mobility particle sizer to provide concentration measurements across a broad range of sizes (from 5.6 nm to 30 mum). At site A, the dust exposure and during product harvesting was eliminated by implementing a wait time of 30 minutes following process completion. And, the dust exposure attributed to process tank cleaning was reduced from 0.7 to 0.2 mg/m3 by operating the available process ventilation during this task. At site B, a ventilated enclosure was used to control dust generated by the manual weigh-out and manipulation of powdered nanomaterials inside of a downflow room. Dust exposures were at room background (under 0.04 mg/m3 and 500 particles/cm3) during these tasks however, manipulations conducted outside of the enclosure were correlated with a transient increase in concentration measured at the source. At site C, a digitally controlled reactor was used to produce aligned carbon nanotubes. This reactor was a closed system and the ventilation functioned as a redundant control measure. Process emissions were well controlled by this system with the exception of increased concentrations measured during the unloading the product. However, this emission source could be easily controlled through increasing cabinet ventilation. The identification and adoption of effective control technologies is an important first step in reducing the risk associated with worker exposure to engineered nanoparticles. Properly designing and evaluating the effectiveness of these controls is a key component in a comprehensive health and safety program. |
Numerical study of pleated fabric cartridges during pulse-jet cleaning
Lo LM , Hu- SC , Chen DR , Pui DYH . Powder Technol 2010 198 (1) 75-81 We established a numerical model and used computational fluid dynamics (CFD) analysis to observe transient flow behavior across pleated filter cartridges in a dust collector during pulse-jet cleaning. The numerical results were in good agreement with the filter-testing data during important periods including during pressure ramp-up and valve opening. Larger errors for predicting overpressure occurred during the pressure ramp-down period likely due to the uniformity of the filters' permeability. This confirmed that the numerical model demonstrated the cleaning efficiency and the local cleaning quality of three different filter cartridges with different filter dimensions and pleat ratios. Data calculated from the average static pressure on the filters' surfaces were more closely correlated to cleaning efficiency than overpressure. The surface static pressure distribution along all filter cartridges showed that the top area of the filter cartridge is difficult to clean because of the lower surface pressure generated by the pulse jet. Filter cartridges with higher pleat ratios were found to have greater instances of incomplete cleaning due to the large variation of static pressure distribution along the filter cartridges. Our results showed that although information such as average pressure and pressure distribution on the filter surface is difficult to obtain by physical measurement, this data is tractable using CFD analysis and is useful for filter design and system optimization. |
Experimental study of pleated fabric cartridges in a pulse-jet cleaned dust collector
Lo LM , Chen DR , Pui DYH . Powder Technol 2010 197 (3) 141-149 Six pleated filter cartridges with different base media and geometrical dimensions were tested in a full-size dust collector periodically cleaned by a short burst of pulse-jet. The evaluation was performed under two different cleaning modes called clean-on-demand (to clean the filter once the pressure drop reaches a preset value) and clean-on-time (to clean the filter at a fixed time interval). The filter performance was evaluated by the effective residual pressure drop and downstream particle concentration. The results showed that the pleat ratio, defined as the ratio of pleat height to pleat pitch, had a great influence on the preferred operating mode for cleaning the filter. Clean-on-time mode demonstrated better performance for filters with a high pleat ratio (N4.0), while clean-on-demand mode performed better for filters with a low pleat ratio (b4.0). The test results also showed the tank pressure was critical for cleaning the pleated filter cartridges, whereas the pulse duration only had a small effect on the cleaning efficiency. With the same base media, cartridges with surface treatment such as fine fiber were superior to those without surface treatment. Pulse-jet cleaning could also promote particle penetration through filter media. The downstream particle concentration during cleaning was at least twice of that during filtration process for all pleated filter cartridges tested. Further, the downstream particle concentration was independent of the applied cleaning mode and the cleaning intensity in this study. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure