Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-2 (of 2 Records) |
Query Trace: Llewellyn AC[original query] |
---|
Lessons from the reestablishment of Public Health Laboratory activities in Puerto Rico after Hurricane Maria
Hardy MC , Stinnett RC , Kines KJ , Rivera-Nazario DM , Lowe DE , Mercante AM , Gonzalez Jimenez N , Cuevas Ruiz RI , Rivera Arbolay HI , Gonzalez Pena RL , Toro M , Trujillo AA , Pappas CL , Llewellyn AC , Candal F , Burgos Garay M , Gomez GA , Concepcion Acevedo J , Ansbro M , Moura H , Shaw MW , Muehlenbachs A , Romanoff LC , Sunshine BJ , Rose DA , Patel A , Shapiro CN , Luna-Pinto SC , Pillai SK , O'Neill E . Nat Commun 2019 10 (1) 2720 Public Health Laboratories (PHLs) in Puerto Rico did not escape the devastation caused by Hurricane Maria. We implemented a quality management system (QMS) approach to systematically reestablish laboratory testing, after evaluating structural and functional damage. PHLs were inoperable immediately after the storm. Our QMS-based approach began in October 2017, ended in May 2018, and resulted in the reestablishment of 92% of baseline laboratory testing capacity. Here, we share lessons learned from the historic recovery of the largest United States' jurisdiction to lose its PHL capacity, and provide broadly applicable tools for other jurisdictions to enhance preparedness for public health emergencies. |
Distribution of Legionella and bacterial community composition among regionally diverse US cooling towers
Llewellyn AC , Lucas CE , Roberts SE , Brown EW , Nayak BS , Raphael BH , Winchell JM . PLoS One 2017 12 (12) e0189937 Cooling towers (CTs) are a leading source of outbreaks of Legionnaires' disease (LD), a severe form of pneumonia caused by inhalation of aerosols containing Legionella bacteria. Accordingly, proper maintenance of CTs is vital for the prevention of LD. The aim of this study was to determine the distribution of Legionella in a subset of regionally diverse US CTs and characterize the associated microbial communities. Between July and September of 2016, we obtained aliquots from water samples collected for routine Legionella testing from 196 CTs located in eight of the nine continental US climate regions. After screening for Legionella by PCR, positive samples were cultured and the resulting Legionella isolates were further characterized. Overall, 84% (164) were PCR-positive, including samples from every region studied. Of the PCR-positive samples, Legionella spp were isolated from 47% (78), L. pneumophila was isolated from 32% (53), and L. pneumophila serogroup 1 (Lp1) was isolated from 24% (40). Overall, 144 unique Legionella isolates were identified; 53% (76) of these were Legionella pneumophila. Of the 76 L. pneumophila isolates, 51% (39) were Lp1. Legionella were isolated from CTs in seven of the eight US regions examined. 16S rRNA amplicon sequencing was used to compare the bacterial communities of CT waters with and without detectable Legionella as well as the microbiomes of waters from different climate regions. Interestingly, the microbial communities were homogenous across climate regions. When a subset of seven CTs sampled in April and July were compared, there was no association with changes in corresponding CT microbiomes over time in the samples that became culture-positive for Legionella. Legionella species and Lp1 were detected frequently among the samples examined in this first large-scale study of Legionella in US CTs. Our findings highlight that, under the right conditions, there is the potential for CT-related LD outbreaks to occur throughout the US. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure