Last data update: May 16, 2025. (Total: 49299 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Livengood JA[original query] |
---|
Single dose of chimeric dengue-2/Zika vaccine candidate protects mice and non-human primates against Zika virus.
Baldwin WR , Giebler HA , Stovall JL , Young G , Bohning KJ , Dean HJ , Livengood JA , Huang CY . Nat Commun 2021 12 (1) 7320 ![]() The development of a safe and effective Zika virus (ZIKV) vaccine has become a global health priority since the widespread epidemic in 2015-2016. Based on previous experience in using the well-characterized and clinically proven dengue virus serotype-2 (DENV-2) PDK-53 vaccine backbone for live-attenuated chimeric flavivirus vaccine development, we developed chimeric DENV-2/ZIKV vaccine candidates optimized for growth and genetic stability in Vero cells. These vaccine candidates retain all previously characterized attenuation phenotypes of the PDK-53 vaccine virus, including attenuation of neurovirulence for 1-day-old CD-1 mice, absence of virulence in interferon receptor-deficient mice, and lack of transmissibility in the main mosquito vectors. A single DENV-2/ZIKV dose provides protection against ZIKV challenge in mice and rhesus macaques. Overall, these data indicate that the ZIKV live-attenuated vaccine candidates are safe, immunogenic and effective at preventing ZIKV infection in multiple animal models, warranting continued development. |
Purified inactivated Zika vaccine candidates afford protection against lethal challenge in mice
Baldwin WR , Livengood JA , Giebler HA , Stovall JL , Boroughs KL , Sonnberg S , Bohning KJ , Dietrich EA , Ong YT , Danh HK , Patel HK , Huang CY , Dean HJ . Sci Rep 2018 8 (1) 16509 In response to the 2016 global public health emergency of international concern announced by the World Health Organization surrounding Zika virus (ZIKV) outbreaks, we developed a purified inactivated Zika virus vaccine (PIZV) candidate from ZIKV strain PRVABC59, isolated during the outbreak in 2015. The virus isolate was plaque purified, creating six sub-isolated virus stocks, two of which were selected to generate PIZV candidates for preclinical immunogenicity and efficacy evaluation in mice. The alum-adjuvanted PIZV candidates were highly immunogenic in both CD-1 and AG129 mice after a 2-dose immunization. Further, AG129 mice receiving 2 doses of PIZV formulated with alum were fully protected against lethal ZIKV challenge and mouse immune sera elicited by the PIZV candidates were capable of neutralizing ZIKVs of both African and Asian genetic lineages in vitro. Additionally, passive immunization of naive mice with ZIKV-immune serum showed strong positive correlation between neutralizing ZIKV antibody (NAb) titers and protection against lethal challenge. This study supported advancement of the PIZV candidate toward clinical development. |
Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax).
Huang CY , Kinney RM , Livengood JA , Bolling B , Arguello JJ , Luy BE , Silengo SJ , Boroughs KL , Stovall JL , Kalanidhi AP , Brault AC , Osorio JE , Stinchcomb DT . PLoS Negl Trop Dis 2013 7 (5) e2243 ![]() BACKGROUND: We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax) viruses. These viruses, containing the pre-membrane (prM) and envelope (E) genes of dengue serotypes 1-4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP. METHODOLOGY/PRINCIPAL FINDINGS: After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai) Aedes aegypti mosquito vectors. CONCLUSION/SIGNIFICANCE: All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia. |
Novel formulations enhance the thermal stability of live-attenuated flavivirus vaccines
Wiggan O , Livengood JA , Silengo SJ , Kinney RM , Osorio JE , Huang CY , Stinchcomb DT . Vaccine 2011 29 (43) 7456-62 Thermal stability is important for the manufacture, distribution and administration of vaccines, especially in tropical developing countries, where particularly adverse field conditions exist. Current live-attenuated flavivirus vaccines exhibit relatively poor liquid stability in clinical settings, and clinicians are instructed to discard the yellow fever vaccine 1h after reconstitution. We have identified novel combinations of excipients that greatly enhance the thermal stability of live-attenuated DEN-2 PDK-53-based flavivirus vaccine candidates. Liquid formulations comprising a sugar, albumin and a pluronic polymer minimized the loss of flavivirus infectious titer to less than 0.5log(10)pfu after storage for at least 8h at 37 degrees C, 7 days at room temperature or at least 11 weeks at 4 degrees C. Additionally, these formulations prevented reduction of viral infectivity after two freeze-thaw cycles of virus. Formulated candidate vaccines were readily lyophilized and reconstituted with minimal loss of viral titers. In mice, the formulations were safe and did not hinder the ability of the vaccine virus to generate a potent, protective immune response. These formulations provided significantly greater liquid-phase stability than has been reported previously for other flavivirus vaccine formulations. The enhanced thermal stability provided by the formulations described here will facilitate the effective distribution of flavivirus vaccines worldwide. |
Efficacy of a tetravalent chimeric dengue vaccine (DENVax) in cynomolgus macaques
Osorio JE , Brewoo JN , Silengo SJ , Arguello J , Moldovan IR , Tary-Lehmann M , Powell TD , Livengood JA , Kinney RM , Huang CY , Stinchcomb DT . Am J Trop Med Hyg 2011 84 (6) 978-87 Three tetravalent formulations of chimeric dengue (DENVax) viruses containing the pre-membrane and envelope genes of serotypes 1-4 expressed by the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity, and efficacy in cynomolgus macaques (Macaca fascicularis). Subcutaneous injection of the DENVax formulations was well-tolerated. Low levels of viremia of only one of the four vaccine viruses were detected yet virus neutralizing antibody titers were induced against all four dengue virus serotypes after one or two administrations of vaccine. All animals immunized with the high-dose formulation were protected from viremia, and all immunized animals were completely protected from DENV-3 and DENV-4 challenge. A lower dose of DENVax formulation partially protected animals from DENV-1 or DENV-2 challenge. In contrast, all control animals developed high levels of viremia for multiple days after challenge with DENV 1-4. This study highlights the immunogenicity and efficacy of the tetravalent DENVax formulations in nonhuman primates. |
- Page last reviewed:Feb 1, 2024
- Page last updated:May 16, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure