Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-11 (of 11 Records) |
Query Trace: Leonard HD[original query] |
---|
Lung toxicity, deposition, and clearance of thermal spray coating particles with different metal profiles after inhalation in rats
Antonini JM , Kodali V , Meighan TG , McKinney W , Cumpston JL , Leonard HD , Cumpston JB , Friend S , Leonard SS , Andrews R , Zeidler-Erdely PC , Erdely A , Lee EG , Afshari AA . Nanotoxicology 2023 1-18 Thermal spray coating is a process in which molten metal is sprayed onto a surface. Little is known about the health effects associated with these aerosols. Sprague-Dawley rats were exposed to aerosols (25 mg/m(3) × 4 hr/d × 4 d) generated during thermal spray coating using different consumables [i.e. stainless-steel wire (PMET731), Ni-based wire (PMET885), Zn-based wire (PMET540)]. Control animals received air. Bronchoalveolar lavage was performed at 4 and 30 d post-exposure to assess lung toxicity. The particles were chain-like agglomerates and similar in size (310-378 nm). Inhalation of PMET885 aerosol caused a significant increase in lung injury and inflammation at both time points. Inhalation of PMET540 aerosol caused a slight but significant increase in lung toxicity at 4 but not 30 d. Exposure to PMET731 aerosol had no effect on lung toxicity. Overall, the lung responses were in the order: PMET885≫PMET540 >PMT731. Following a shorter exposure (25 mg/m(3) × 4 h/d × 1d), lung burdens of metals from the different aerosols were determined by ICP-AES at 0, 1, 4 and 30 d post-exposure. Zn was cleared from the lungs at the fastest rate with complete clearance by 4 d post-exposure. Ni, Cr, and Mn had similar rates of clearance as nearly half of the deposited metal was cleared by 4 d. A small but significant percentage of each of these metals persisted in the lungs at 30 d. The pulmonary clearance of Fe was difficult to assess because of inherently high levels of Fe in control lungs. |
In vivo and in vitro toxicity of a stainless-steel aerosol generated during thermal spray coating
Kodali V , Afshari A , Meighan T , McKinney W , Mazumder MHH , Majumder N , Cumpston JL , Leonard HD , Cumpston JB , Friend S , Leonard SS , Erdely A , Zeidler-Erdely PC , Hussain S , Lee EG , Antonini JM . Arch Toxicol 2022 96 (12) 3201-3217 Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m(3) × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days. |
Biological effects of inhaled crude oil vapor V. Altered biogenic amine neurotransmitters and neural protein expression
Sriram K , Lin GX , Jefferson AM , McKinney W , Jackson MC , Cumpston JL , Cumpston JB , Leonard HD , Kashon ML , Fedan JS . Toxicol Appl Pharmacol 2022 449 116137 Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300ppm; Macondo surrogate crude oil) following an acute (6h/d1 d) or sub-chronic (6h/d4 d/wk.4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated. |
Development of a thermal spray coating aerosol generator and inhalation exposure system
Afshari AA , McKinney W , Cumpston JL , Leonard HD , Cumpston JB , Meighan TG , Jackson M , Friend S , Kodali V , Lee EG , Antonini JM . Toxicol Rep 2022 9 126-135 Thermal spray coating involves spraying a product (oftentimes metal) that is melted by extremely high temperatures and then applied under pressure onto a surface. Large amounts of a complex metal aerosol (e.g., Fe, Cr, Ni, Zn) are formed during the process, presenting a potentially serious risk to the operator. Information about the health effects associated with exposure to these aerosols is lacking. Even less is known about the chemical and physical properties of these aerosols. The goal was to develop and test an automated thermal spray coating aerosol generator and inhalation exposure system that would simulate workplace exposures. An electric arc wire-thermal spray coating aerosol generator and exposure system was designed and separated into two areas: (1) an enclosed room where the spray coating occurs; (2) an exposure chamber with different measurement devices and controllers. The physicochemical properties of aerosols generated during electric arc wire-thermal spray coating using five different consumable wires were examined. The metal composition of each was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), including two stainless-steel wires [PMET720 (82 % Fe, 13 % Cr); PMET731(66 % Fe, 26 % Cr)], two Ni-based wires [PMET876 (55 % Ni, 17 % Cr); PMET885 (97 % Ni)], and one Zn-based wire [PMET540 (99 % Zn)]. The particles generated regardless of composition were poorly soluble, complex metal oxides and mostly arranged as chain-like agglomerates and similar in size distribution as determined by micro-orifice uniform deposit impactor (MOUDI) and electrical low-pressure impactor (ELPI). To allow for continuous, sequential spray coating during a 4-hr exposure period, a motor rotated the metal pipe to be coated in a circular and up-and-down direction. In a pilot animal study, male Sprague-Dawley rats were exposed to aerosols (25mg/m(3) 4h/d 9 d) generated from electric arc wire- thermal spray coating using the stainless-steel PMET720 consumable wire. The targeted exposure chamber concentration was achieved and maintained during a 4-hr period. At 1 d after exposure, lung injury and inflammation were significantly elevated in the group exposed to the thermal spray coating aerosol compared to the air control group. The system was designed and constructed for future animal exposure studies to generate continuous metal spray coating aerosols at a targeted concentration for extended periods of time without interruption. |
Biological effects of inhaled hydraulic fracturing sand dust VII. Neuroinflammation and altered synaptic protein expression
Sriram K , Lin GX , Jefferson AM , McKinney W , Jackson MC , Cumpston A , Cumpston JL , Cumpston JB , Leonard HD , Kashon M , Fedan JS . Toxicol Appl Pharmacol 2020 409 115300 Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits. |
Tobacco smoke exposure exacerbated crystalline silica-induced lung toxicity in rats
Sager TM , Umbright CM , Mustafa GM , Yanamala N , Leonard HD , McKinney WG , Kashon ML , Joseph P . Toxicol Sci 2020 178 (2) 375-390 Smoking may modify the lung response to silica exposure including cancer and silicosis. Nevertheless, the precise role of exposure to tobacco smoke (TS) on the lung response to crystalline silica (CS) exposure and the underlying mechanisms need further clarification. The objectives of the present study were to determine the role of TS on lung response to CS exposure and the underlying mechanism(s). Male Fischer 344 rats were exposed by inhalation to air, CS (15 mg/m3, 6 hrs/day, 5 days), TS (80 mg/m3, 3 hrs/day, twice weekly, 6 months), or CS (15 mg/m3, 6 hrs/day, 5 days) followed by TS (80 mg/m3, 3 hrs/day, twice weekly, 6 months). The rats were euthanized 6 months and 3 weeks following initiation of the first exposure and the lung response was assessed. Silica exposure resulted in significant lung toxicity as evidenced by lung histological changes, enhanced neutrophil infiltration, increased LDH levels, enhanced oxidant production, and increased cytokine levels. The TS exposure alone had only a minimal effect on these toxicity parameters. However, the combined exposure to TS and CS exacerbated the lung response, compared to TS or CS exposure alone. Global gene expression changes in the lungs correlated with the lung toxicity severity. Bioinformatic analysis of the gene expression data demonstrated significant enrichment in functions, pathways, and networks relevant to the response to CS exposure which correlated with the lung toxicity detected. Collectively our data demonstrated an exacerbation of CS-induced lung toxicity by TS exposure and the molecular mechanisms underlying the exacerbated toxicity. |
Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice
Falcone LM , Erdely A , Kodali V , Salmen R , Battelli LA , Dodd T , McKinney W , Stone S , Donlin M , Leonard HD , Cumpston JL , Cumpston JB , Andrews RN , Kashon ML , Antonini JM , Zeidler-Erdely PC . Toxicology 2018 409 24-32 Welding fumes were reclassified as a Group 1 carcinogen by the International Agency for Research on Cancer in 2017. Gas metal arc welding (GMAW) is a process widely used in industry. Fume generated from GMAW-mild steel (MS) is abundant in iron with some manganese, while GMAW-stainless steel (SS) fume also contains significant amounts of chromium and nickel, known carcinogenic metals. It has been shown that exposure to GMAW-SS fume in A/J mice promotes lung tumors. The objective was to determine if GMAW-MS fume, which lacks known carcinogenic metals, also promotes lung tumors in mice. Male A/J mice received a single intraperitoneal injection of corn oil or the initiator 3-methylcholanthrene (MCA; 10 mug/g) and, one week later, were exposed by whole-body inhalation to GMAW-MS aerosols for 4 hours/day x 4 days/week x 8 weeks at a mean concentration of 34.5 mg/m(3). Lung nodules were enumerated by gross examination at 30 weeks post-initiation. GMAW-MS fume significantly increased lung tumor multiplicity in mice initiated with MCA (21.86 +/- 1.50) compared to MCA/air-exposed mice (8.34 +/- 0.59). Histopathological analysis confirmed these findings and also revealed an absence of inflammation. Bronchoalveolar lavage analysis also indicated a lack of lung inflammation and toxicity after short-term inhalation exposure to GMAW-MS fume. In conclusion, this study demonstrates that inhalation of GMAW-MS fume promotes lung tumors in vivo and aligns with epidemiologic evidence that shows MS welders, despite less exposure to carcinogenic metals, are at an increased risk for lung cancer. |
Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel
Sriram K , Jefferson AM , Lin GX , Afshari A , Zeidler-Erdely PC , Meighan TG , McKinney W , Jackson M , Cumpston A , Cumpston JL , Leonard HD , Frazer DG , Antonini JM . Inhal Toxicol 2014 26 (12) 720-32 Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD). Some applications in manufacturing industry employ a variant welding technology known as "weld-bonding" that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague-Dawley rats were exposed (25 mg/m(3) targeted concentration; 4 h/day x 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood-brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration. |
Graphene oxide attenuates Th2-type immune responses, but augments airway remodeling and hyperresponsiveness in a murine model of asthma
Shurin MR , Yanamala N , Kisin ER , Tkach AV , Shurin GV , Murray AR , Leonard HD , Reynolds JS , Gutkin DW , Star A , Fadeel B , Savolainen K , Kagan VE , Shvedova AA . ACS Nano 2014 8 (6) 5585-99 Several lines of evidence indicate that exposure to nanoparticles (NPs) is able to modify airway immune responses, thus facilitating the development of respiratory diseases. Graphene oxide (GO) is a promising carbonaceous nanomaterial with unique physicochemical properties, envisioned for a multitude of medical and industrial applications. In this paper, we determined how exposure to GO modulates the allergic pulmonary response. Using a murine model of ovalbumin (OVA)-induced asthma, we revealed that GO, given at the sensitization stage, augmented airway hyperresponsiveness and airway remodeling in the form of goblet cell hyperplasia and smooth muscle hypertrophy. At the same time, the levels of the cytokines IL-4, IL-5, and IL-13 were reduced in broncho-alveolar lavage (BAL) fluid in GO-exposed mice. Exposure to GO during sensitization with OVA decreased eosinophil accumulation and increased recruitment of macrophages in BAL fluid. In line with the cytokine profiles, sensitization with OVA in the presence of GO stimulated the production of OVA-specific IgG2a and down-regulated the levels of IgE and IgG1. Moreover, exposure to GO increased the macrophage production of the mammalian chitinases, CHI3L1 and AMCase, whose expression is associated with asthma. Finally, molecular modeling has suggested that GO may directly interact with chitinase, affecting AMCase activity, which has been directly proven in our studies. Thus, these data show that GO exposure attenuates Th2 immune response in a model of OVA-induced asthma, but leads to potentiation of airway remodeling and hyperresponsiveness, with the induction of mammalian chitinases. |
Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology
Erdely A , Dahm M , Chen BT , Zeidler-Erdely PC , Fernback JE , Birch ME , Evans DE , Kashon ML , Deddens JA , Hulderman T , Bilgesu SA , Battelli L , Schwegler-Berry D , Leonard HD , McKinney W , Frazer DG , Antonini JM , Porter DW , Castranova V , Schubauer-Berigan MK . Part Fibre Toxicol 2013 10 (1) 53 BACKGROUND: Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. RESULTS: Upon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 mug/m3 (geometric mean 4.21 mug/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 mug/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose. CONCLUSION: These findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level. |
Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways
Knuckles TL , Yi J , Frazer DG , Leonard HD , Chen BT , Castranova V , Nurkiewicz TR . Nanotoxicology 2011 6 (7) 724-35 The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 mcg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure