Last data update: Jan 13, 2025. (Total: 48570 publications since 2009)
Records 1-2 (of 2 Records) |
Query Trace: Lehtikoski A[original query] |
---|
Development and application of a high throughput one-pot extraction protocol for quantitative LC-MS/MS analysis of phospholipids in serum and lipoprotein fractions in normolipidemic and dyslipidemic subjects
Gardner MS , Kuklenyik Z , Lehtikoski A , Carter KA , McWilliams LG , Kusovschi J , Bierbaum K , Jones JI , Rees J , Reis G , Pirkle JL , Barr JR . J Chromatogr B Analyt Technol Biomed Life Sci 2019 1118-1119 137-147 Progress toward better diagnosis and treatment of lipid metabolism-related diseases requires high throughput approaches for multiplexed quantitative analysis of structurally diverse lipids, including phospholipids (PLs). This work demonstrates a simplified "one-pot" phospholipid extraction protocol, as an alternative to conventional liquid-liquid extraction. Performed in a 96-well format, the extraction was coupled with high throughput UPLC and multiplexed tandem mass spectrometry (MS/MS) detection, allowing non-targeted quantification of phosphatidylcholines (PC), sphingomyelins (SM), lysophosphatidylcholines (LPC), phosphatidylethanolamines (PE), and phosphatidylinositols (PI). Using 50muL aliquots of serum samples from 110 individuals, lipoproteins were fractionated by size, and analyzed for phospholipids and non-polar lipids including free cholesterol (FC), cholesteryl esters (CEs) and triglycerides (TGs). Analysis of serum samples with wide range of Total-TG levels showed significant differences in PL composition. The correlations of molar ratios in lipoprotein size fractions, SM/PL with FC/PL, PE/PL with TG/CE, and PE/PL with PI/PL, demonstrate the applicability of the method for quantitative composition analysis of high, low and very-low density lipoproteins (HDL, LDL and VLDL), and characterization of lipid metabolism related disease states. |
Core lipid, surface lipid and apolipoprotein composition analysis of lipoprotein particles as a function of particle size in one workflow integrating asymmetric flow field-flow fractionation and liquid chromatography-tandem mass spectrometry
Kuklenyik Z , Jones JI , Gardner MS , Schieltz DM , Parks BA , Toth CA , Rees JC , Andrews ML , Carter K , Lehtikoski AK , McWilliams LG , Williamson YM , Bierbaum KP , Pirkle JL , Barr JR . PLoS One 2018 13 (4) e0194797 Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 13, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure