Last data update: Jul 11, 2025. (Total: 49561 publications since 2009)
Records 1-30 (of 36 Records) |
Query Trace: Laven J[original query] |
---|
Chikungunya outbreak risks after the 2014 outbreak, Dominican Republic
Loevinsohn G , Paulino CT , Spring J , Hughes HR , Restrepo AC , Mayfield H , de St Aubin M , Laven J , Panella A , Duke W , Etienne MC , Abdalla G , Garnier S , Iihoshi N , Lopez B , de la Cruz L , Henríquez B , Baldwin M , Peña F , Kucharski AJ , Vasquez M , Gutiérrez EZ , Brault AC , Skewes-Ramm R , Lau CL , Nilles EJ . Emerg Infect Dis 2024 30 (12) 2679-2683 The 2014 chikungunya outbreak in the Dominican Republic resulted in intense local transmission, with high postoutbreak seroprevalence. The resulting population immunity will likely minimize risk for another large outbreak through 2035, but changes in population behavior or environmental conditions or emergence of different virus strains could lead to increased transmission. |
Immunological response to fractional-dose yellow fever vaccine administered during an outbreak in Kinshasa, Democratic Republic of the Congo: results 5 years after vaccination from a prospective cohort study
Doshi RH , Mukadi PK , Casey RM , Kizito GM , Gao H , Nguete UB , Laven J , Sabi L , Kaba DK , Muyembe-Tamfum JJ , Hyde TB , Ahuka-Mundeke S , Staples JE . Lancet Infect Dis 2024 BACKGROUND: In 2016, outbreaks of yellow fever in Angola and the Democratic Republic of the Congo led to a global vaccine shortage. A fractional dose of 17DD yellow fever vaccine (containing one-fifth [0·1 ml] of the standard dose) was used during a pre-emptive mass campaign in August, 2016, in Kinshasa, Democratic Republic of the Congo among children aged 2 years and older and non-pregnant adults (ie, those aged 18 years and older). 1 year following vaccination, 97% of participants were seropositive; however, the long-term durability of the immune response is unknown. We aimed to conduct a prospective cohort study and invited participants enrolled in the previous evaluation to return 5 years after vaccination to assess durability of the immune response. METHODS: Participants returned to one of six health facilities in Kinshasa in 2021, where study staff collected a brief medical history and blood specimen. We assessed neutralising antibody titres against yellow fever virus using a plaque reduction neutralisation test with a 50% cutoff (PRNT(50)). Participants with a PRNT(50) titre of 10 or higher were considered seropositive. The primary outcome was the proportion of participants seropositive at 5 years. FINDINGS: Among the 764 participants enrolled, 566 (74%) completed the 5-year visit. 5 years after vaccination, 539 (95·2%, 95% CI 93·2-96·7) participants were seropositive, including 361 (94·3%, 91·5-96·2) of 383 who were seronegative and 178 (97·3%, 93·8-98·8) of 183 who were seropositive at baseline. Geometric mean titres (GMTs) differed significantly across age groups for those who were initially seronegative with the lowest GMT among those aged 2-5 years and highest among those aged 13 years and older. INTERPRETATION: A fractional dose of the 17DD yellow fever vaccine induced an immunologic response with detectable titres at 5 years among the majority of participants in the Democratic Republic of the Congo. These findings support the use of fractional-dose vaccination for outbreak prevention with the potential for sustained immunity. FUNDING: Gavi, the Vaccine Alliance through the CDC Foundation. TRANSLATION: For the French translation of the abstract see Supplementary Materials section. |
Transmission of yellow fever vaccine virus through blood transfusion and organ transplantation in the USA in 2021: Report of an investigation
Gould CV , Free RJ , Bhatnagar J , Soto RA , Royer TL , Maley WR , Moss S , Berk MA , Craig-Shapiro R , Kodiyanplakkal RPL , Westblade LF , Muthukumar T , Puius YA , Raina A , Hadi A , Gyure KA , Trief D , Pereira M , Kuehnert MJ , Ballen V , Kessler DA , Dailey K , Omura C , Doan T , Miller S , Wilson MR , Lehman JA , Ritter JM , Lee E , Silva-Flannery L , Reagan-Steiner S , Velez JO , Laven JJ , Fitzpatrick KA , Panella A , Davis EH , Hughes HR , Brault AC , St George K , Dean AB , Ackelsberg J , Basavaraju SV , Chiu CY , Staples JE . Lancet Microbe 2023 4 (9) e711-e721 ![]() ![]() BACKGROUND: In 2021, four patients who had received solid organ transplants in the USA developed encephalitis beginning 2-6 weeks after transplantation from a common organ donor. We describe an investigation into the cause of encephalitis in these patients. METHODS: From Nov 7, 2021, to Feb 24, 2022, we conducted a public health investigation involving 15 agencies and medical centres in the USA. We tested various specimens (blood, cerebrospinal fluid, intraocular fluid, serum, and tissues) from the organ donor and recipients by serology, RT-PCR, immunohistochemistry, metagenomic next-generation sequencing, and host gene expression, and conducted a traceback of blood transfusions received by the organ donor. FINDINGS: We identified one read from yellow fever virus in cerebrospinal fluid from the recipient of a kidney using metagenomic next-generation sequencing. Recent infection with yellow fever virus was confirmed in all four organ recipients by identification of yellow fever virus RNA consistent with the 17D vaccine strain in brain tissue from one recipient and seroconversion after transplantation in three recipients. Two patients recovered and two patients had no neurological recovery and died. 3 days before organ procurement, the organ donor received a blood transfusion from a donor who had received a yellow fever vaccine 6 days before blood donation. INTERPRETATION: This investigation substantiates the use of metagenomic next-generation sequencing for the broad-based detection of rare or unexpected pathogens. Health-care workers providing vaccinations should inform patients of the need to defer blood donation for at least 2 weeks after receiving a yellow fever vaccine. Despite mitigation strategies and safety interventions, a low risk of transfusion-transmitted infections remains. FUNDING: US Centers for Disease Control and Prevention (CDC), the Biomedical Advanced Research and Development Authority, and the CDC Epidemiology and Laboratory Capacity Cooperative Agreement for Infectious Diseases. |
Fatal case of heartland virus disease acquired in the Mid-Atlantic Region, United States
Liu S , Kannan S , Meeks M , Sanchez S , Girone KW , Broyhill JC , Martines RB , Bernick J , Flammia L , Murphy J , Hills SL , Burkhalter KL , Laven JJ , Gaines D , Hoffmann CJ . Emerg Infect Dis 2023 29 (5) 992-996 Heartland virus (HRTV) disease is an emerging tickborne illness in the midwestern and southern United States. We describe a reported fatal case of HRTV infection in the Maryland and Virginia region, states not widely recognized to have human HRTV disease cases. The range of HRTV could be expanding in the United States. |
Immune response to co-administration of measles, mumps, and rubella (MMR), and yellow fever vaccines: a randomized non-inferiority trial among one-year-old children in Argentina
Vizzotti C , Harris JB , Aquino A , Rancaño C , Biscayart C , Bonaventura R , Pontoriero A , Baumeister E , Freire MC , Magariños M , Duarte B , Grant G , Reef S , Laven J , Wannemuehler KA , Alvarez AMR , Staples JE . BMC Infect Dis 2023 23 (1) 165 BACKGROUND: In yellow fever (YF) endemic areas, measles, mumps, and rubella (MMR), and YF vaccines are often co-administered in childhood vaccination schedules. Because these are live vaccines, we assessed potential immune interference that could result from co-administration. METHODS: We conducted an open-label, randomized non-inferiority trial among healthy 1-year-olds in Misiones Province, Argentina. Children were randomized to one of three groups (1:1:1): Co-administration of MMR and YF vaccines (MMR(1)YF(1)), MMR followed by YF vaccine four weeks later (MMR(1)YF(2)), or YF followed by MMR vaccine four weeks later (YF(1)MMR(2)). Blood samples obtained pre-vaccination and 28 days post-vaccination were tested for immunoglobulin G antibodies against measles, mumps, and rubella, and for YF virus-specific neutralizing antibodies. Non-inferiority in seroconversion was assessed using a -5% non-inferiority margin. Antibody concentrations were compared with Kruskal-Wallis tests. RESULTS: Of 851 randomized children, 738 were correctly vaccinated, had ≥ 1 follow-up sample, and were included in the intention-to-treat population. Non-inferior seroconversion was observed for all antigens (measles seroconversion: 97.9% in the MMR(1)YF(1) group versus 96.3% in the MMR(1)YF(2) group, a difference of 1.6% [90% CI -1.5, 4.7]; rubella: 97.9% MMR(1)YF(1) versus 94.7% MMR(1)YF(2), a difference of 3.3% [-0.1, 6.7]; mumps: 96.7% MMR(1)YF(1) versus 97.9% MMR(1)YF(2), a difference of -1.3% [-4.1, 1.5]; and YF: 96.3% MMR(1)YF(1) versus 97.5% YF(1)MMR(2), a difference of -1.2% [-4.2, 1.7]). Rubella antibody concentrations and YF titers were significantly lower following co-administration; measles and mumps concentrations were not impacted. CONCLUSION: Effective seroconversion was achieved and was not impacted by the co-administration, although antibody levels for two antigens were lower. The impact of lower antibody levels needs to be weighed against missed opportunities for vaccination to determine optimal timing for MMR and YF vaccine administration. TRIAL REGISTRATION: The study was retrospectively registered in ClinicalTrials.gov (NCT03368495) on 11/12/2017. |
Severe arboviral neuroinvasive disease in patients on rituximab therapy: A review
Kapadia RK , Staples JE , Gill CM , Fischer M , Khan E , Laven JJ , Panella A , Velez JO , Hughes HR , Brault A , Pastula DM , Gould CV . Clin Infect Dis 2022 76 (6) 1142-1148 With increasing use of rituximab and other B-cell depleting monoclonal antibodies for multiple indications, infectious complications are being recognized. We summarize clinical findings of patients on rituximab with arboviral diseases identified through literature review or consultation with the Centers for Disease Control and Prevention. We identified 21 patients on recent rituximab therapy who were diagnosed with an arboviral disease caused by West Nile, tick-borne encephalitis, eastern equine encephalitis, Cache Valley, Jamestown Canyon, and Powassan viruses. All reported patients had neuroinvasive disease. The diagnosis of arboviral infection required molecular testing in 20 (95%) patients. Median illness duration was 36 days (range, 12 days-1 year) and 15/19 (79%) patients died from their illness. Patients on rituximab with arboviral disease can have a severe or prolonged course with an absence of serologic response. Patients should be counseled about mosquito and tick bite prevention when receiving rituximab and other B-cell depleting therapies. |
Duration of West Nile Virus immunoglobulin m antibodies up to 81 months following West Nile Virus disease onset
Staples JE , Gibney KB , Panella AJ , Prince HE , Basile AJ , Laven J , Sejvar JJ , Fischer M . Am J Trop Med Hyg 2022 106 (6) 1721-4 West Nile virus (WNV) IgM antibodies typically indicate a recent infection. However, WNV IgM antibodies can remain detectable for months to years following illness onset. We found that 23% (11/47) of samples tested with a WNV ELISA and 43% (20/47) of samples tested with WNV microsphere immunoassay (MIA) at 16-19 months following WNV illness onset were positive for IgM antibodies. The proportion of samples testing positive for WNV IgM by ELISA decreased over time, but 5% (2/44) of individuals remained positive at 60-63 months after their acute illness and 4% (2/50) were WNV IgM equivocal at 72-81 months. Testing by MIA showed the same general trend of decreased proportion positive over time though the rates of positivity were higher at most time points compared with the ELISA, including 6% (3/50) of participant's samples identified as IgM positive by MIA at 72-81 months post their acute illness. With the MIA, there also was a high proportion of samples with nonspecific results at each time point; average of 23% across all time points. Clinicians and public health officials should consider these findings along with clinical and epidemiologic data when interpreting WNV IgM antibody test results. |
West Nile virus transmission by solid organ transplantation and considerations for organ donor screening practices, United States
Soto RA , McDonald E , Annambhotla P , Velez JO , Laven J , Panella AJ , Machesky KD , White JL , Hyun J , Freuck E , Habel J , Oh D , Levi M , Hasz R , Eidbo E , Staples JE , Basavaraju SV , Gould CV . Emerg Infect Dis 2022 28 (2) 403-406 West Nile virus (WNV) is the most common domestic arbovirus in the United States. During 2018, WNV was transmitted through solid organ transplantation to 2 recipients who had neuroinvasive disease develop. Because of increased illness and death in transplant recipients, organ procurement organizations should consider screening during region-specific WNV transmission months. |
Tick-borne encephalitis among US travellers, 2010-20
Hills SL , Broussard KR , Broyhill JC , Shastry LG , Cossaboom CM , White JL , Machesky KD , Kosoy O , Girone K , Klena JD , Backenson BP , Gould CV , Lind L , Hieronimus A , Gaines DN , Wong SJ , Choi MJ , Laven JJ , Staples JE , Fischer M . J Travel Med 2021 29 (2) BACKGROUND: Tick-borne encephalitis (TBE) is an arboviral disease that is focally endemic in parts of Europe and Asia. TBE cases among US travellers are rare, with previous reports of only six cases among civilian travellers through 2009 and nine military-related cases through 2020. A TBE vaccine was licenced in the USA in August 2021. Understanding TBE epidemiology and risks among US travellers can help with the counselling of travellers going to TBE-endemic areas. METHODS: Diagnostic testing for TBE in the USA is typically performed at the Centers for Disease Control and Prevention (CDC) because no commercial testing is available. Diagnostic testing for TBE at CDC since 2010 was reviewed. For individuals with evidence of TBE virus infection, information was gathered on demographics, clinical presentations and risk factors for infection. RESULTS: From 2010-20, six patients with TBE were identified. Cases occurred among both paediatric and adult travellers and all were male. Patients were diagnosed with meningitis (n = 2) or encephalitis (n = 4); none died. Cases had travelled to various countries in Europe or Russia. Three cases reported visiting friends or relatives. Activities reported included hiking, camping, trail running, or working outdoors, and two cases had a recognized tick bite. CONCLUSIONS: TBE cases among US travellers are uncommon, with these six cases being the only known TBE cases among civilian travellers during this 11-year period. Nonetheless, given potential disease severity, pre-travel counselling for travellers to TBE-endemic areas should include information on measures to reduce the risk for TBE and other tick-borne diseases, including possible TBE vaccine use if a traveller's itinerary puts them at higher risk for infection. Clinicians should consider the diagnosis of TBE in a patient with a neurologic or febrile illness recently returned from a TBE-endemic country, particularly if a tick bite or possible tick exposure is reported. |
Frequency of Zika Virus Immunoglobulin M Antibody in Persons with West Nile Virus Infection
Hills SL , Laven J , Biggerstaff BJ , Kosoy O , Staples JE , Panella A . Vector Borne Zoonotic Dis 2021 21 (10) 817-821 West Nile virus (WNV) and Zika virus (ZIKV) are mosquito-borne viruses in the family Flaviviridae. Residents in, and travelers to, areas where the viruses are circulating are at risk for infection, and both viruses can cause an acute febrile illness. Given known cross-reactivity in flavivirus serologic assays, it is possible a patient with acute WNV infection could be misdiagnosed as having ZIKV infection if appropriate testing is not conducted. To understand how frequently persons with WNV infection have detectable cross-reactive ZIKV immunoglobulin M (IgM) antibody, we used archived serum samples from patients in the United States with recent WNV infection confirmed by a microsphere-based immunoassay test for IgM antibody and neutralizing antibody testing. Samples were tested for ZIKV IgM antibody with the Centers for Disease Control and Prevention (CDC) ZIKV IgM antibody capture enzyme-linked immunosorbent assay. Among 153 sera from patients with acute WNV infection, the ZIKV IgM antibody result was positive in 56 (37%; 95% confidence interval [CI] 29-44%) and equivocal in 28 (18%; 95% CI 13-25%). With 55% of samples having cross-reactive antibodies, it is important for health care providers to request appropriate testing based on the most likely cause of a patient's possible arboviral infection considering their clinical symptoms and signs, travel history, and place of residence. For cases where the epidemiology does not support the preliminary IgM findings, confirmatory neutralizing antibody testing should be performed. These measures will avoid an incorrect diagnosis of ZIKV infection, based on cross-reactive antibodies, in a person truly infected with WNV. |
Fatal Human Infection with Evidence of Intrahost Variation of Eastern Equine Encephalitis Virus, Alabama, USA, 2019.
Hughes HR , Velez JO , Davis EH , Laven J , Gould CV , Panella AJ , Lambert AJ , Staples JE , Brault AC . Emerg Infect Dis 2021 27 (7) 1886-1892 ![]() ![]() Eastern equine encephalitis virus (EEEV) is an arbovirus in the family Togaviridae, genus Alphavirus, found in North America and associated with freshwater/hardwood swamps in the Atlantic, Gulf Coast, and Great Lakes regions. EEEV disease in humans is rare but causes substantial illness and death. To investigate the molecular epidemiology and microevolution of EEEV from a fatal case in Alabama, USA, in 2019, we used next-generation sequencing of serum and cerebrospinal fluid (CSF). Phylogenetic inference indicated that the infecting strain may be closely related to isolates from Florida detected during 2010-2014, suggesting potential seeding from Florida. EEEV detected in serum displayed a higher degree of variability with more single-nucleotide variants than that detected in the CSF. These data refine our knowledge of EEEV molecular epidemiologic dynamics in the Gulf Coast region and demonstrate potential quasispecies bottlenecking within the central nervous system of a human host. |
Duration of seropositivity following yellow fever vaccination in U.S. military service members
Lindsey NP , Perry L , Fischer M , Woolpert T , Biggerstaff BJ , Brice G , Fitzpatrick K , Kosoy OI , Laven JJ , Myers CA , Hollis EM , Staples JE . Vaccine 2020 38 (52) 8286-8291 BACKGROUND: The United States military regularly deploys thousands of service members throughout areas of South America and Africa that are endemic for yellow fever (YF) virus. To determine if booster doses might be needed for service members who are repetitively or continually deployed to YF endemic areas, we evaluated seropositivity among US military personnel receiving a single dose of YF vaccine based on time post-vaccination. METHODS: Serum antibodies were measured using a plaque reduction neutralization test with 50% cutoff in 682 military personnel at 5-39 years post-vaccination. We determined noninferiority of immune response by comparing the proportion seropositive among those vaccinated 10-14 years previously with those vaccinated 5-9 years previously. Noninferiority was supported if the lower-bound of the 2-tailed 95% CI for p(10-14years) - p(5-9years) was ≥-0.10. Additionally, the geometric mean antibody titer (GMT) at various timepoints following vaccination were compared to the GMT at 5-9 years. RESULTS: The proportion of military service members with detectable neutralizing antibodies 10-14 years after a single dose of YF vaccine (95.8%, 95% CI 91.2-98.1%) was non-inferior to the proportion 5-9 years after vaccination (97.8%, 95% CI 93.7-99.3%). Additionally, GMT among vaccine recipients at 10-14 years post vaccination (99, 95% CI 82-121) was non-inferior to GMT in YF vaccine recipients at 5-9 years post vaccination (115, 95% CI 96-139). The proportion of vaccinees with neutralizing antibodies remained high, and non-inferior, among those vaccinated 15-19 years prior (98.5%, 95%CI 95.5-99.7%). Although the proportion seropositive decreased among vaccinees ≥ 20 years post vaccination, >90% remained seropositive. CONCLUSIONS: Neutralizing antibodies were present in > 95% of vaccine recipients for at least 19 years after vaccination, suggesting that booster doses every 10 years are not essential for most U.S. military personnel. |
Immune response at 12-23months following a single dose of Vero cell culture-derived Japanese encephalitis (JE) vaccine in adults previously vaccinated with mouse brain-derived JE vaccine
Krow-Lucal ER , Laven J , Perry L , Biggerstaff BJ , Johnson BW , Hollis E , Fischer M , Woolpert T , Hills SL . Vaccine 2020 38 (44) 6899-6903 BACKGROUND: Japanese encephalitis (JE) virus is an important cause of neurological disease in Asia. JE vaccine is recommended for travelers with higher JE risk itineraries. Inactivated Vero cell culture-derived JE vaccine (JE-VC) is the only JE vaccine currently available in the United States. An inactivated mouse brain-derived JE vaccine (JE-MB) previously was available but production was discontinued. One JE-VC dose administered to adults previously vaccinated with ≥3 doses of JE-MB provides good short-term protection for at least one month, but data on longer-term protection are limited. We evaluated non-inferiority of the JE virus neutralizing antibody response at 12-23 months in JE-MB-vaccinated adults administered one JE-VC dose compared with JE vaccine-naïve adults administered a JE-VC two-dose primary series. METHODS: We obtained archived sera from U.S. military personnel and performed a 50% plaque reduction neutralization test for anti-JE virus neutralizing antibodies. We compared the geometric mean titer (GMT) and seroprotection rate at 12-23 months after one JE-VC dose in previously JE-MB-vaccinated personnel and after the second JE-VC dose in previously JE vaccine-naïve personnel. Non-inferiority was concluded if the lower bound of the two-sided 95% confidence interval (CI) of the GMT ratio in previously vaccinated to vaccine-naïve personnel was >1/1.5. RESULTS: The GMT in previously JE-MB-vaccinated persons was 75 (95% CI 63-90) and in previously JE vaccine-naïve persons was 12 (95% CI 11-14), and seroprotection rates were 94% (235/250) and 54% (135/250), respectively. The ratio of GMTs was 6.3 (95% CI: 5.0-7.7), satisfying the criterion for non-inferiority. CONCLUSIONS: One JE-VC dose in previously JE-MB-vaccinated military personnel provides good protection for at least 1-2 years. The benefits of administration of a single JE-VC dose in previously JE-MB-vaccinated adults include a shorter time to completion of re-vaccination before travel, a decrease in the risk of adverse events, and reduced costs. |
Transmission of eastern equine encephalitis virus from an organ donor to 3 transplant recipients
Pouch SM , Katugaha SB , Shieh WJ , Annambhotla P , Walker WL , Basavaraju SV , Jones J , Huynh T , Reagan-Steiner S , Bhatnagar J , Grimm K , Stramer SL , Gabel J , Lyon GM , Mehta AK , Kandiah P , Neujahr DC , Javidfar J , Subramanian RM , Parekh SM , Shah P , Cooper L , Psotka MA , Radcliffe R , Williams C , Zaki SR , Staples JE , Fischer M , Panella AJ , Lanciotti RS , Laven JJ , Kosoy O , Rabe IB , Gould CV . Clin Infect Dis 2019 69 (3) 450-458 BACKGROUND: In fall 2017, 3 solid organ transplant (SOT) recipients from a common donor developed encephalitis within 1 week of transplantation, prompting suspicion of transplant-transmitted infection. Eastern equine encephalitis virus (EEEV) infection was identified during testing of endomyocardial tissue from the heart recipient. METHODS: We reviewed medical records of the organ donor and transplant recipients and tested serum, whole blood, cerebrospinal fluid, and tissue from the donor and recipients for evidence of EEEV infection by multiple assays. We investigated blood transfusion as a possible source of organ donor infection by testing remaining components and serum specimens from blood donors. We reviewed data from the pretransplant organ donor evaluation and local EEEV surveillance. RESULTS: We found laboratory evidence of recent EEEV infection in all organ recipients and the common donor. Serum collected from the organ donor upon hospital admission tested negative, but subsequent samples obtained prior to organ recovery were positive for EEEV RNA. There was no evidence of EEEV infection among donors of the 8 blood products transfused into the organ donor or in products derived from these donations. Veterinary and mosquito surveillance showed recent EEEV activity in counties nearby the organ donor's county of residence. Neuroinvasive EEEV infection directly contributed to the death of 1 organ recipient and likely contributed to death in another. CONCLUSIONS: Our investigation demonstrated EEEV transmission through SOT. Mosquito-borne transmission of EEEV to the organ donor was the likely source of infection. Clinicians should be aware of EEEV as a cause of transplant-associated encephalitis. |
Comparison of characteristics of patients with West Nile virus or St. Louis encephalitis virus neuroinvasive disease during concurrent outbreaks, Maricopa County, Arizona, 2015
Venkat H , Krow-Lucal E , Kretschmer M , Sylvester T , Levy C , Adams L , Fitzpatrick K , Laven J , Kosoy O , Sunenshine R , Smith K , Townsend J , Chevinsky J , Hennessey M , Jones J , Komatsu K , Fischer M , Hills S . Vector Borne Zoonotic Dis 2020 20 (8) 624-629 West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related mosquito-borne flaviviruses that can cause neuroinvasive disease. No concurrent WNV and SLEV disease outbreaks have previously been identified. When concurrent outbreaks occurred in 2015 in Maricopa County, Arizona, we collected data to describe the epidemiology, and to compare features of patients with WNV and SLEV neuroinvasive disease. We performed enhanced case finding, and gathered information from medical records and patient interviews. A case was defined as a clinically compatible illness and laboratory evidence of WNV, SLEV, or unspecified flavivirus infection in a person residing in Maricopa County in 2015. We compared demographic and clinical features of WNV and SLEV neuroinvasive cases; for this analysis, a case was defined as physician-documented encephalitis or meningitis and a white blood cell count >5 cells/mm(3) in cerebrospinal fluid. In total, we identified 82 cases, including 39 WNV, 21 SLEV, and 22 unspecified flavivirus cases. The comparative analysis included 21 WNV and 14 SLEV neuroinvasive cases. Among neuroinvasive cases, the median age of patients with SLEV (63 years) was higher than WNV (52 years). Patients had similar symptoms; rash was identified more frequently in WNV (33%) neuroinvasive cases than in SLEV (7%) cases, but this difference was not statistically significant (p = 0.11). In summary, during the first known concurrent WNV and SLEV disease outbreaks, no specific clinical features were identified that could differentiate between WNV and SLEV neuroinvasive cases. Health care providers should consider both infections in patients with aseptic meningitis or encephalitis. |
Immunogenicity of fractional-dose vaccine during a yellow fever outbreak - final report
Casey RM , Harris JB , Ahuka-Mundeke S , Dixon MG , Kizito GM , Nsele PM , Umutesi G , Laven J , Kosoy O , Paluku G , Gueye AS , Hyde TB , Ewetola R , Sheria GKM , Muyembe-Tamfum JJ , Staples JE . N Engl J Med 2019 381 (5) 444-454 BACKGROUND: In 2016, the response to a yellow fever outbreak in Angola and the Democratic Republic of Congo led to a global shortage of yellow fever vaccine. As a result, a fractional dose of the 17DD yellow fever vaccine (containing one fifth [0.1 ml] of the standard dose) was offered to 7.6 million children 2 years of age or older and nonpregnant adults in a preemptive campaign in Kinshasa. The goal of this study was to assess the immune response to the fractional dose in a large-scale campaign. METHODS: We recruited participants in four age strata at six vaccination sites. We assessed neutralizing antibody titers against yellow fever virus in blood samples obtained before vaccination and at 1 month and 1 year after vaccination, using a plaque reduction neutralization test with a 50% cutoff (PRNT50). Participants with a PRNT50 titer of 10 or higher were considered to be seropositive. Those with a baseline titer of less than 10 who became seropositive at follow-up were classified as having undergone seroconversion. Participants who were seropositive at baseline and who had an increase in the titer by a factor of 4 or more at follow-up were classified as having an immune response. RESULTS: Among 716 participants who completed the 1-month follow-up, 705 (98%; 95% confidence interval [CI], 97 to 99) were seropositive after vaccination. Among 493 participants who were seronegative at baseline, 482 (98%; 95% CI, 96 to 99) underwent seroconversion. Among 223 participants who were seropositive at baseline, 148 (66%; 95% CI, 60 to 72) had an immune response. Lower baseline titers were associated with a higher probability of having an immune response (P<0.001). Among 684 participants who completed the 1-year follow-up, 666 (97%; 95% CI, 96 to 98) were seropositive for yellow fever antibody. The distribution of titers among the participants who were seronegative for yellow fever antibody at baseline varied significantly among age groups at 1 month and at 1 year (P<0.001 for both comparisons). CONCLUSIONS: A fractional dose of the 17DD yellow fever vaccine was effective at inducing seroconversion in participants who were seronegative at baseline. Titers remained above the threshold for seropositivity at 1 year after vaccination in nearly all participants who were seropositive at 1 month after vaccination. These findings support the use of fractional-dose vaccination for outbreak control. (Funded by the U.S. Agency for International Development and the Centers for Disease Control and Prevention.). |
Multi-laboratory comparison of three commercially available Zika IgM enzyme-linked immunosorbent assays
Basile AJ , Goodman C , Horiuchi K , Sloan A , Johnson BW , Kosoy O , Laven J , Panella AJ , Sheets I , Medina F , Mendoza EJ , Epperson M , Maniatis P , Semenova V , Steward-Clark E , Wong E , Biggerstaff BJ , Lanciotti R , Drebot M , Safronetz D , Schiffer J . J Virol Methods 2018 260 26-33 Zika virus (ZIKV) is an enveloped, positive-sense RNA virus in the family Flaviviridae, genus Flavivirus. It was first discovered in rhesus monkeys in 1947 in the Zika Forest of Uganda (Dick et al., 1952) and historically of unclear importance given the rarity of reported cases and to relatively mild symptoms in humans. The virus is chiefly transmitted by Aedes mosquitoes, the carrier of other flaviviruses of medical importance such as the dengue viruses (DENVs) and yellow fever virus (YFV). Little research had been conducted on ZIKV prior to a 2007 outbreak in Yap, Federated States of Micronesia (Duffy et al., 2009), at which point the virus was sequenced and molecular and serological tests were developed (Lanciotti et al., 2008). |
Incorporation of IgG depletion in a neutralization assay facilitates differential diagnosis of Zika and dengue in secondary flavivirus infection cases
Calvert AE , Boroughs KL , Laven J , Stovall JL , Luy BE , Kosoy OI , Huang CY . J Clin Microbiol 2018 56 (6) Zika virus (ZIKV) has emerged as a major global public health concern due to its link as a causative agent of human birth defects. Laboratory diagnosis of suspected ZIKV infections by serological testing of specimens collected a week or more after symptom onset primarily relies on detection of anti-ZIKV-specific IgM antibodies by enzyme-linked immunosorbent assay coupled with detection of ZIKV-specific neutralizing antibody by neutralization tests. A definitive diagnosis based on serological assays is possible during primary ZIKV infections; however, due to the cross-reactivity of antibodies elicited during flaviviral infections, a definitive diagnosis is not always possible, especially among individuals who have previously been exposed to closely related flaviviruses, such as dengue virus (DENV). Here, we investigated the neutralizing IgM antibody profiles of 33 diagnostic specimens collected from individuals with suspected primary and secondary flaviviral infections acquired when visiting areas experiencing active ZIKV transmission in 2015 and 2016. Specimens collected between 1 day and 3 months postexposure were tested for ZIKV and dengue virus type 1 (DENV1) and type 2 (DENV2) by the plaque reduction neutralization test (PRNT) before and after IgG depletion. We found that IgG depletion prior to neutralization testing had little effect in differentiating samples from individuals with secondary infections taken less than 3 weeks postexposure; however, IgG depletion significantly reduced the cross-reactive neutralizing antibody titers and increased the percentage of cases discernible by PRNT from 15.4% (95% confidence interval [CI], 4.3 to 42.2%) to 76.9% (95% CI, 49.7 to 91.8%) for samples collected between roughly 3 and 12 weeks postexposure. These results highlight the potential of IgG depletion to improve the specificity of PRNT for better confirmation and differential diagnosis of flavivirus infections. |
Immunogenicity of fractional-dose vaccine during a yellow fever outbreak - preliminary report
Ahuka-Mundeke S , Casey RM , Harris JB , Dixon MG , Nsele PM , Kizito GM , Umutesi G , Laven J , Paluku G , Gueye AS , Hyde TB , Sheria GKM , Muyembe-Tanfum JJ , Staples JE . N Engl J Med 2018 381 (5) 444-454 Background In 2016, the response to a yellow fever outbreak in Angola and the Democratic Republic of Congo led to a global shortage of yellow fever vaccine. As a result, a fractional dose of the 17DD yellow fever vaccine (containing one fifth [0.1 ml] of the standard dose) was offered to 7.6 million children 2 years of age or older and nonpregnant adults in a preemptive campaign in Kinshasa. The goal of this study was to assess the immune response to the fractional dose in a large-scale campaign. Methods We recruited participants in four age strata at six vaccination sites. We assessed neutralizing antibody titers against yellow fever virus in blood samples obtained before vaccination and 28 to 35 days after vaccination, using a plaque reduction neutralization test with a 50% cutoff (PRNT50). Participants with a PRNT50 titer of 10 or higher at baseline were considered to be seropositive. Those with a baseline titer of less than 10 who became seropositive at follow-up were classified as having undergone seroconversion. Participants who were seropositive at baseline and who had an increase in the titer by a factor of 4 or more at follow-up were classified as having an immune response. Results Among 716 participants who completed follow-up, 705 (98%; 95% confidence interval [CI], 97 to 99) were seropositive after vaccination. Among 493 participants who were seronegative at baseline, 482 (98%; 95% CI, 96 to 99) underwent seroconversion. Among 223 participants who were seropositive at baseline, 148 (66%; 95% CI, 60 to 72) had an immune response. Lower baseline titers were associated with a higher probability of having an immune response (P<0.001). Conclusions A fractional dose of the 17DD yellow fever vaccine was effective at inducing seroconversion in most of the participants who were seronegative at baseline. These findings support the use of fractional-dose vaccination for outbreak control. (Funded by the U.S. Agency for International Development and the Centers for Disease Control and Prevention.). |
Ability to serologically confirm recent Zika virus infection in areas with varying past incidence of dengue virus infection in the United States and U.S. territories in 2016
Lindsey NP , Staples JE , Powell K , Rabe IB , Fischer M , Powers AM , Kosoy OI , Mossel EC , Munoz-Jordan JL , Beltran M , Hancock WT , Toews KE , Ellis EM , Ellis BR , Panella AJ , Basile AJ , Calvert AE , Laven J , Goodman CH , Gould CV , Martin SW , Thomas JD , Villanueva J , Mataia ML , Sciulli R , Gose R , Whelen AC , Hills SL . J Clin Microbiol 2017 56 (1) Background. Cross-reactivity within flavivirus antibody assays, produced by shared epitopes in the envelope proteins, can complicate serological diagnosis of Zika virus (ZIKAV) infection. We assessed the utility of the plaque reduction neutralization test (PRNT) to confirm recent ZIKAV infections and rule out misleading positive IgM results in areas with varying past dengue virus (DENV) infection incidence. Methods. We reviewed PRNT results of sera collected for diagnosis of ZIKAV infection from January 1 through August 31, 2016 with positive ZIKAV IgM results and ZIKAV and DENV PRNT performed. PRNT result interpretations included ZIKAV, unspecified flavivirus, DENV infection, or negative. For this analysis, ZIKAV IgM was considered false-positive for samples interpreted as DENV infection or negative. Results. In US states, 208 (27%) of 759 IgM positives were confirmed as ZIKAV, compared to 11 (21%) of 52 in the US Virgin Islands (USVI), 15 (15%) of 103 in American Samoa, and 13 (11%) of 123 in Puerto Rico. In American Samoa and Puerto Rico, more than 80% of IgM positives were unspecified flavivirus infections. The false-positivity rate was 27% in US states, 18% in USVI, 2% in American Samoa, and 6% in Puerto Rico. Conclusions. In US states, PRNT provided a virus-specific diagnosis or ruled out infection in the majority of IgM positive samples. Almost a third of ZIKAV IgM positive results did not confirm; therefore, providers and patients must understand that IgM results are preliminary. In territories with historically higher DENV transmission, PRNT usually could not differentiate between ZIKAV and DENV infections. |
Notes from the Field: Fatal yellow fever in a traveler returning from Peru - New York, 2016
Newman AP , Becraft R , Dean AB , Hull R , Backenson B , Hale G , Laven J , Bhatnagar J , Staples JE . MMWR Morb Mortal Wkly Rep 2017 66 (34) 914-915 In October 2016, a male New York resident aged 74 years developed fever, myalgia, nausea, and vomiting while traveling in Peru, 3 days after visiting the northern Amazon area. During the next 2 days, he experienced fever, abdominal pain, and watery diarrhea and was admitted to a hospital in Peru, where Entamoeba histolytica was detected in his stool. He was treated with intravenous fluids and antibiotics and released 1 day after admission. His condition worsened, however, and he returned to New York and immediately sought care at a hospital emergency department, where he was found to be afebrile, slightly confused, and jaundiced. Laboratory tests revealed leukopenia, thrombocytopenia, acute renal failure, liver dysfunction, and a metabolic acidosis (Table). He was transferred from the emergency department to a tertiary care center, where he was admitted and received intravenous fluids, antibiotics, and hemodialysis. During the next 2 days, he developed melena and disseminated intravascular coagulation. He experienced multiple episodes of ventricular fibrillation and died 3 days after admission. Autopsy revealed gastrointestinal hemorrhage and subtotal hepatocellular necrosis. Testing for selected viral, bacterial, and parasitic agents was negative, except for antibody to Salmonella H type A/B (Table). He had not received yellow fever vaccine before traveling. Serum specimens and tissues were sent to Wadsworth Center, the New York State Public Health Laboratory, and CDC to test for yellow fever virus and other pathogens. |
Zika Virus Infection in Patient with No Known Risk Factors, Utah, USA, 2016
Krow-Lucal ER , Novosad SA , Dunn AC , Brent CR , Savage HM , Faraji A , Peterson D , Dibbs A , Vietor B , Christensen K , Laven JJ , Godsey MS Jr , Christensen B , Beyer B , Cortese MM , Johnson NC , Panella AJ , Biggerstaff BJ , Rubin M , Fridkin SK , Staples JE , Nakashima AK . Emerg Infect Dis 2017 23 (8) 1260-1267 In 2016, Zika virus disease developed in a man (patient A) who had no known risk factors beyond caring for a relative who died of this disease (index patient). We investigated the source of infection for patient A by surveying other family contacts, healthcare personnel, and community members, and testing samples for Zika virus. We identified 19 family contacts who had similar exposures to the index patient; 86 healthcare personnel had contact with the index patient, including 57 (66%) who had contact with body fluids. Of 218 community members interviewed, 28 (13%) reported signs/symptoms and 132 (61%) provided a sample. Except for patient A, no other persons tested had laboratory evidence of recent Zika virus infection. Of 5,875 mosquitoes collected, none were known vectors of Zika virus and all were negative for Zika virus. The mechanism of transmission to patient A remains unknown but was likely person-to-person contact with the index patient. |
Chikungunya virus disease outbreak in Yap State, Federated States of Micronesia
Pastula DM , Hancock WT , Bel M , Biggs H , Marfel M , Lanciotti R , Laven J , Chen TH , Staples JE , Fischer M , Hills SL . PLoS Negl Trop Dis 2017 11 (3) e0005410 BACKGROUND: Chikungunya virus is a mosquito-borne alphavirus which causes an acute febrile illness associated with polyarthralgia. Beginning in August 2013, clinicians from the Yap State Department of Health in the Federated States of Micronesia (FSM) identified an unusual cluster of illness which was subsequently confirmed to be chikungunya virus disease. Chikungunya virus disease previously had not been recognized in FSM. METHODOLOGY/PRINCIPAL FINDINGS: Information from patients presenting to healthcare facilities was collected and analyzed. During August 11, 2013, to August 10, 2014, a total of 1,761 clinical cases were reported for an attack rate of 155 clinical cases per 1,000 population. Among residents of Yap Main Island, 3% were hospitalized. There were no deaths. The outbreak began on Yap Main Island and rapidly spread throughout Yap Main Island and to three neighboring islands. CONCLUSIONS/SIGNIFICANCE: Chikungunya virus can cause explosive outbreaks with substantial morbidity. Given the increasing globalization of chikungunya virus, strong surveillance systems and access to laboratory testing are essential to detect outbreaks. |
Investigation of a Guillain-Barre syndrome cluster in the Republic of Fiji
Pastula DM , Khan AS , Sharp TM , Biaukula VL , Naivalu TK , Rafai E , Belay E , Staples JE , Fischer M , Kosoy OI , Laven JJ , Bennett EJ , Jenney AW , Naidu RN , Lanciotti RS , Galloway RL , Nilles EJ , Sejvar JJ , Kama M . J Neurol Sci 2016 372 350-355 BACKGROUND: In 2014, we investigated a cluster of Guillain-Barre syndrome (GBS) in Fiji that occurred during a dengue epidemic. We designed a case-control study to determine the etiology. METHODS: Cases were patients meeting Brighton Collaboration criteria for GBS with onset from February 2014 to May 2014. Controls were persons without symptoms of GBS who were matched by age group and location. We collected information on demographics and potential exposures. Serum samples were tested for evidence of recent arboviral or Leptospira spp. infections. RESULTS: Nine cases of GBS were identified for an incidence of five cases per 100,000 population/year. Median age of cases was 27years (range: 0.8-52); five (56%) were male. Six (67%) reported an acute illness prior to GBS onset. Among the 9 cases and 28 controls enrolled, odds ratios for reported exposures or antibodies against various arboviruses or Leptospira spp. were not statistically significant. CONCLUSIONS: No clear etiologies were identified for this unusual GBS cluster. There was a temporal association between the GBS cluster and a dengue epidemic, but we were unable to substantiate an epidemiologic or laboratory association. Further study is needed to explore potential associations between arboviral infections and GBS. |
Zika virus disease in travelers returning to the United States, 2010-2014
Hennessey MJ , Fischer M , Panella A , Kosoy O , Laven J , Lanciotti RS , Staples JE . Am J Trop Med Hyg 2016 95 (1) 212-5 Zika virus is an emerging mosquito-borne flavivirus that typically causes a mild febrile illness with rash, arthralgia, or conjunctivitis. Zika virus has recently caused large outbreaks of disease in southeast Asia, Pacific Ocean Islands, and the Americas. We identified all positive Zika virus test results performed at U.S. Centers for Disease Control and Prevention from 2010 to 2014. For persons with test results indicating a recent infection with Zika virus, we collected information on demographics, travel history, and clinical features. Eleven Zika virus disease cases were identified among travelers returning to the United States. The median age of cases was 50 years (range: 29-74 years) and six (55%) were male. Nine (82%) cases had their illness onset from January to April. All cases reported a travel history to islands in the Pacific Ocean during the days preceding illness onset, and all cases were potentially viremic while in the United States. Public health prevention messages about decreasing mosquito exposure, preventing sexual exposure, and preventing infection in pregnant women should be targeted to individuals traveling to or living in areas with Zika virus activity. Health-care providers and public health officials should be educated about the recognition, diagnosis, and prevention of Zika virus disease. |
Travel-associated Zika virus disease cases among U.S. residents - United States, January 2015-February 2016
Armstrong P , Hennessey M , Adams M , Cherry C , Chiu S , Harrist A , Kwit N , Lewis L , McGuire DO , Oduyebo T , Russell K , Talley P , Tanner M , Williams C , Basile J , Brandvold J , Calvert A , Cohn A , Fischer M , Goldman-Israelow B , Goodenough D , Goodman C , Hills S , Kosoy O , Lambert A , Lanciotti R , Laven J , Ledermann J , Lehman J , Lindsey N , Mead P , Mossel E , Nelson C , Nichols M , O'Leary D , Panella A , Powers A , Rabe I , Reagan-Steiner S , Staples JE , Velez J . MMWR Morb Mortal Wkly Rep 2016 65 (11) 286-9 Zika virus is an emerging mosquito-borne flavivirus. Recent outbreaks of Zika virus disease in the Pacific Islands and the Region of the Americas have identified new modes of transmission and clinical manifestations, including adverse pregnancy outcomes. However, data on the epidemiology and clinical findings of laboratory-confirmed Zika virus disease remain limited. During January 1, 2015-February 26, 2016, a total of 116 residents of 33 U.S. states and the District of Columbia had laboratory evidence of recent Zika virus infection based on testing performed at CDC. Cases include one congenital infection and 115 persons who reported recent travel to areas with active Zika virus transmission (n = 110) or sexual contact with such a traveler (n = 5). All 115 patients had clinical illness, with the most common signs and symptoms being rash (98%; n = 113), fever (82%; 94), and arthralgia (66%; 76). Health care providers should educate patients, particularly pregnant women, about the risks for, and measures to prevent, infection with Zika virus and other mosquito-borne viruses. Zika virus disease should be considered in patients with acute onset of fever, rash, arthralgia, or conjunctivitis, who traveled to areas with ongoing Zika virus transmission (http://www.cdc.gov/zika/geo/index.html) or who had unprotected sex with a person who traveled to one of those areas and developed compatible symptoms within 2 weeks of returning. |
Serological survey for antibodies to mosquito-borne bunyaviruses among US National Park Service and US Forest Service employees
Kosoy O , Rabe I , Geissler A , Adjemian J , Panella A , Laven J , Basile AJ , Velez J , Griffith K , Wong D , Fischer M , Lanciotti RS . Vector Borne Zoonotic Dis 2016 16 (3) 191-8 Serum samples from 295 employees of Great Smoky Mountains National Park (GRSM), Rocky Mountain National Park (ROMO), and Grand Teton National Park with adjacent Bridger-Teton National Forest (GRTE-BTNF) were subjected to serological analysis for mosquito-borne bunyaviruses. The sera were analyzed for neutralizing antibodies against six orthobunyaviruses: La Crosse virus (LACV), Jamestown Canyon virus (JCV), snowshoe hare virus (SSHV), California encephalitis virus, and Trivittatus virus (TVTV) belonging to the California serogroup and Cache Valley virus (CVV) belonging to the Bunyamwera serogroup. Sera were also tested for immunoglobulin (Ig) G antibodies against LACV and JCV by enzyme-linked immunosorbent assay (ELISA). The proportion of employees with neutralizing antibodies to any California serogroup bunyavirus was similar in all three sites, with the prevalence ranging from 28% to 36%. The study demonstrated a seroprevalence of 3% to CVV across the three parks. However, proportions of persons with antibodies to specific viruses differed between parks. Participants residing in the eastern regions had a higher seroprevalence to LACV, with 24% (18/75) GRSM employees being seropositive. In contrast, SSHV seroprevalence was limited to employees from the western sites, with 1.7% (1/60) ROMO and 3.8% (6/160) GRTE-BTNF employees being positive. Seroprevalence to JCV was noted in employees from all sites at rates of 6.7% in GRSM, 21.7% in ROMO, and 15.6% in GRTE-BTNF. One employee each from ROMO (1.7%) and GRTE-BTNF (1.9%) were positive for TVTV. This study also has illustrated the greater sensitivity and specificity of plaque reduction neutralization test compared to IgG ELISA in conducting serosurveys for LACV and JCV. |
Development and validation of an ELISA kit (YF MAC-HD) to detect IgM to yellow fever virus
Basile AJ , Goodman C , Horiuchi K , Laven J , Panella AJ , Kosoy O , Lanciotti RS , Johnson BW . J Virol Methods 2015 225 41-8 Yellow fever virus (YFV) is endemic in tropical and sub-tropical regions of the world, with around 180,000 human infections a year occurring in Africa. Serologic testing is the chief laboratory diagnostic means of identifying an outbreak and to inform the decision to commence a vaccination campaign. The World Health Organization disseminates the reagents for YFV testing to African reference laboratories, and the US Centers for Disease Control and Prevention (CDC) is charged with producing and providing these reagents. The CDC M-antibody capture ELISA is a 2-day test, requiring titration of reagents when new lots are received, which leads to inconsistency in testing and wastage of material. Here we describe the development of a kit-based assay (YF MAC-HD) based upon the CDC method, that is completed in approximately 3.5h, with equivocal samples being reflexed to an overnight protocol. The kit exhibits >90% accuracy when compared to the 2-day test. The kits were designed for use with a minimum of equipment and are stored at 4 degrees C, removing the need for freezing capacity. This kit is capable of tolerating temporary sub-optimal storage conditions which will ease shipping or power outage concerns, and a shelf life of >6 months was demonstrated with no deterioration in accuracy. All reagents necessary to run the YF MAC-HD are included in the kit and are single-use, with 8 or 24 sample options per kit. Field trials are envisioned for the near future, which will enable refinement of the method. The use of the YF MAC-HD is anticipated to reduce materials wastage, and improve the quality and consistency of YFV serologic testing in endemic areas. |
Production of a Sindbis/Eastern Equine Encephalitis chimeric virus inactivated cell culture antigen
Goodman CH , Russell BJ , Velez JO , Laven JJ , Bagarozzi DA Jr , Moon JL , Bedi K , Johnson BW . J Virol Methods 2015 223 19-24 Eastern Equine Encephalitis virus (EEEV) is a medically important pathogen that can cause severe encephalitis in humans, with mortality rates ranging from 30 to 80%. Unfortunately there are no antivirals or licensed vaccines available for human use, and laboratory diagnosis is essential to differentiate EEEV infection from other pathogens with similar clinical manifestations. The Arboviral Diseases Branch (ADB) reference laboratory at the CDC Division of Vector-Borne Diseases (DVBD) produces reference antigens used in serological assays such as the EEEV immunoglobulin M antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). However, EEEV is classified as a HHS select agent and requires biosafety level (BSL) three containment, limiting EEEV antigen production in non-select agent and BSL-2 laboratories. A recombinant Sindbis virus (SINV)/EEEV has been constructed for use under BSL-2 conditions and is not regulated as a select agent. Cell culture production of inactivated EEEV antigen from SINV/EEEV for use in the EEEV MAC-ELISA is reported here. Cell culture conditions and inactivation procedures were analyzed for SINV/EEEV using a recently developed antigen production algorithm, with the MAC-ELISA as the performance indicator. |
Chikungunya virus infections among travelers-United States, 2010-2013
Lindsey NP , Prince HE , Kosoy O , Laven J , Messenger S , Staples JE , Fischer M . Am J Trop Med Hyg 2014 92 (1) 82-7 Chikungunya virus is an emerging threat to the United States because humans are amplifying hosts and competent mosquito vectors are present in many regions of the country. We identified laboratory-confirmed chikungunya virus infections with diagnostic testing performed in the United States from 2010 to 2013. We described the epidemiology of these cases and determined which were reported to ArboNET. From 2010 to 2013, 115 laboratory-confirmed chikungunya virus infections were identified. Among 55 cases with known travel history, 53 (96%) reported travel to Asia and 2 (4%) to Africa. No locally acquired infections were identified. Six patients had detectable viremia after returning to the United States. Only 21% of identified cases were reported to ArboNET, with a median of 72 days between illness onset and reporting. Given the risk of introduction into the United States, healthcare providers and public health officials should be educated about the recognition, diagnosis, and timely reporting of chikungunya virus disease cases. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jul 11, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure