Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-30 (of 53 Records) |
Query Trace: Lambert AJ[original query] |
---|
Changes to virus taxonomy and the ICTV statutes ratified by the International Committee on Taxonomy of Viruses (2024)
Simmonds P , Adriaenssens EM , Lefkowitz EJ , Oksanen HM , Siddell SG , Zerbini FM , Alfenas-Zerbini P , Aylward FO , Dempsey DM , Dutilh BE , Freitas-Astúa J , García ML , Hendrickson RC , Hughes HR , Junglen S , Krupovic M , Kuhn JH , Lambert AJ , Łobocka M , Mushegian AR , Penzes J , Muñoz AR , Robertson DL , Roux S , Rubino L , Sabanadzovic S , Smith DB , Suzuki N , Turner D , Van Doorslaer K , Vandamme AM , Varsani A . Arch Virol 2024 169 (11) 236 ![]() This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2024. The entire ICTV membership was invited to vote on 203 taxonomic proposals that had been approved by the ICTV Executive Committee (EC) in July 2023 at the 55th EC meeting in Jena, Germany, or in the second EC vote in November 2023. All proposals were ratified by online vote. Taxonomic additions include one new phylum (Ambiviricota), one new class, nine new orders, three new suborders, 51 new families, 18 new subfamilies, 820 new genera, and 3547 new species (excluding taxa that have been abolished). Proposals to complete the process of species name replacement to the binomial (genus + species epithet) format were ratified. Currently, a total of 14,690 virus species have been established. |
Reemergence of Oropouche virus in the Americas and risk for spread in the United States and its territories, 2024
Guagliardo SAJ , Connelly CR , Lyons S , Martin SW , Sutter R , Hughes HR , Brault AC , Lambert AJ , Gould CV , Staples JE . Emerg Infect Dis 2024 30 (11) 2241-2249 Oropouche virus has recently caused outbreaks in South America and the Caribbean, expanding into areas to which the virus was previously not endemic. This geographic range expansion, in conjunction with the identification of vertical transmission and reports of deaths, has raised concerns about the broader threat this virus represents to the Americas. We review information on Oropouche virus, factors influencing its spread, transmission risk in the United States, and current status of public health response tools. On the basis of available data, the risk for sustained local transmission in the continental United States is considered low because of differences in vector ecology and in human-vector interactions when compared with Oropouche virus-endemic areas. However, more information is needed about the drivers for the current outbreak to clarify the risk for further expansion of this virus. Timely detection and control of this emerging pathogen should be prioritized to mitigate disease burden and stop its spread. |
Promotion of order Bunyavirales to class Bunyaviricetes to accommodate a rapidly increasing number of related polyploviricotine viruses
Kuhn JH , Brown K , Adkins S , de la Torre JC , Digiaro M , Ergünay K , Firth AE , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Shi M , Zhang YZ , Wolf YI , Turina M . J Virol 2024 e0106924 ![]() ![]() Prior to 2017, the family Bunyaviridae included five genera of arthropod and rodent viruses with tri-segmented negative-sense RNA genomes related to the Bunyamwera virus. In 2017, the International Committee on Taxonomy of Viruses (ICTV) promoted the family to order Bunyavirales and subsequently greatly expanded its composition by adding multiple families for non-segmented to polysegmented viruses of animals, fungi, plants, and protists. The continued and accelerated discovery of bunyavirals highlighted that an order would not suffice to depict the evolutionary relationships of these viruses. Thus, in April 2024, the order was promoted to class Bunyaviricetes. This class currently includes two major orders, Elliovirales (Cruliviridae, Fimoviridae, Hantaviridae, Peribunyaviridae, Phasmaviridae, Tospoviridae, and Tulasviridae) and Hareavirales (Arenaviridae, Discoviridae, Konkoviridae, Leishbuviridae, Mypoviridae, Nairoviridae, Phenuiviridae, and Wupedeviridae), for hundreds of viruses, many of which are pathogenic for humans and other animals, plants, and fungi. |
Oropouche virus disease among U.S. travelers - United States, 2024
Morrison A , White JL , Hughes HR , Guagliardo SAJ , Velez JO , Fitzpatrick KA , Davis EH , Stanek D , Kopp E , Dumoulin P , Locksmith T , Heberlein L , Zimler R , Lassen J , Bestard C , Rico E , Mejia-Echeverri A , Edwards-Taylor KA , Holt D , Halphen D , Peters K , Adams C , Nichols AM , Ciota AT , Dupuis AP 2nd , Backenson PB , Lehman JA , Lyons S , Padda H , Connelly RC , Tong VT , Martin SW , Lambert AJ , Brault AC , Blackmore C , Staples JE , Gould CV . MMWR Morb Mortal Wkly Rep 2024 73 (35) 769-773 Beginning in late 2023, Oropouche virus was identified as the cause of large outbreaks in Amazon regions with known endemic transmission and in new areas in South America and the Caribbean. The virus is spread to humans by infected biting midges and some mosquito species. Although infection typically causes a self-limited febrile illness, reports of two deaths in patients with Oropouche virus infection and vertical transmission associated with adverse pregnancy outcomes have raised concerns about the threat of this virus to human health. In addition to approximately 8,000 locally acquired cases in the Americas, travel-associated Oropouche virus disease cases have recently been identified in European travelers returning from Cuba and Brazil. As of August 16, 2024, a total of 21 Oropouche virus disease cases were identified among U.S. travelers returning from Cuba. Most patients initially experienced fever, myalgia, and headache, often with other symptoms including arthralgia, diarrhea, nausea or vomiting, and rash. At least three patients had recurrent symptoms after the initial illness, a common characteristic of Oropouche virus disease. Clinicians and public health jurisdictions should be aware of the occurrence of Oropouche virus disease in U.S. travelers and request testing for suspected cases. Travelers should prevent insect bites when traveling, and pregnant persons should consider deferring travel to areas experiencing outbreaks of Oropouche virus disease. |
Phylogeny of Zika Virus in Western Hemisphere, 2015.
Lanciotti RS , Lambert AJ , Holodniy M , Saavedra S , Signor Ldel C . Emerg Infect Dis 2016 22 (5) 933-5 ![]() Zika virus belongs to the genus Flavivirus, family Flaviviridae, and is transmitted by Aedes spp. mosquitoes. Clinical signs and symptoms of human infection include fever, headache, malaise, maculopapular rash, and conjunctivitis. | | Zika virus was first isolated in 1947 from the blood of a febrile sentinel rhesus monkey during a study of yellow fever in the Zika Forest of Uganda (1). During the next 20 years, Zika virus isolates were obtained primarily from East and West Africa during arbovirus surveillance studies in the absence of epidemics. During those 20 years, cases of Zika virus infection were detected sporadically; however, given the clinical similarity of Zika virus and dengue virus infections and the extensive cross-reactivity of Zika virus antibodies with dengue viruses, it is possible that Zika virus was associated with epidemics that were incorrectly attributed to dengue viruses. Beginning in 2007, substantial Zika virus outbreaks were reported first in Yap Island (Federated States of Micronesia), then in French Polynesia, and then in other Pacific Islands (2–4). |
ICTV virus taxonomy profile: Cruliviridae 2023
Kuhn JH , Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Turina M , Zhang YZ . J Gen Virol 2023 104 (12) ![]() Cruliviridae is a family of negative-sense RNA viruses with genomes of 10.8-11.5 kb that have been found in crustaceans. The crulivirid genome consists of three RNA segments with ORFs that encode a nucleoprotein (NP), a glycoprotein (GP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and in some family members, a zinc-finger (Z) protein of unknown function. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Cruliviridae, which is available at ictv.global/report/cruliviridae. |
ICTV virus taxonomy profile: Wupedeviridae 2023
Kuhn JH , Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Turina M , Zhang YZ . J Gen Virol 2023 104 (12) ![]() Wupedeviridae is a family of negative-sense RNA viruses with genomes of about 20.5 kb that have been found in myriapods. The wupedevirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Wupedeviridae, which is available at ictv.global/report/wupedeviridae. |
ICTV virus taxonomy profile: Mypoviridae 2023
Kuhn JH , Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Turina M , Zhang YZ . J Gen Virol 2023 104 (12) ![]() Mypoviridae is a family of negative-sense RNA viruses with genomes of about 16.0 kb that have been found in myriapods. The mypovirid genome consists of three monocistronic RNA segments that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Mypoviridae, which is available at: ictv.global/report/mypoviridae. |
ICTV virus taxonomy profile: Tulasviridae 2023
Kuhn JH , Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Zhang YZ , Turina M . J Gen Virol 2023 104 (12) ![]() Tulasviridae is a family of ambisense RNA viruses with genomes of about 12.2 kb that have been found in fungi. The tulasvirid genome is nonsegmented and contains three open reading frames (ORFs) that encode a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and a protein of unknown function (X). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Tulasviridae, which is available at ictv.global/report/tulasviridae. |
ICTV virus taxonomy profile: Leishbuviridae 2023
Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Turina M , Zhang YZ , Kuhn JH . J Gen Virol 2023 104 (12) ![]() Leishbuviridae is a family of negative-sense RNA viruses with genomes of about 8.0 kb that have been found in protists. The leishbuvirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Leishbuviridae, which is available at ictv.global/report/leishbuviridae. |
ICTV virus taxonomy profile: Discoviridae 2023
Kuhn JH , Adkins S , Brown K , Carlos de la Torre J , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Zhang YZ , Turina M . J Gen Virol 2023 104 (12) ![]() Discoviridae is a family of negative-sense RNA viruses with genomes of 6.2-9.7 kb that have been associated with fungi and stramenopiles. The discovirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a nonstructural protein (Ns), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Discoviridae, which is available at ictv.global/report/discoviridae. |
Correction to: Changes to virus taxonomy and the ICTV Statutes ratifed by the International Committee on Taxonomy of Viruses (2023)
Zerbini FM , Siddell SG , Lefkowitz EJ , Mushegian AR , Adriaenssens EM , Alfenas-Zerbini P , Dempsey DM , Dutilh BE , García ML , Hendrickson RC , Junglen S , Krupovic M , Kuhn JH , Lambert AJ , Łobocka M , Oksanen HM , Robertson DL , Rubino L , Sabanadzovic S , Simmonds P , Smith DB , Suzuki N , Van Doorslaer K , Vandamme AM , Varsani A . Arch Virol 2023 168 (11) 269 The correction refers to the sentence: Another notable taxonomic change approved in this ratification was the inclusion of gene transfer agents (GTAs) in the classification scheme as viriforms [153]. | | The sentence should read: Another notable taxonomic change approved in this ratification was the inclusion of gene transfer agents (GTAs) in the classification scheme as viriforms [154]. |
Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)
Kuhn JH , Abe J , Adkins S , Alkhovsky SV , Avšič-Županc T , Ayllón MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Kumar Baranwal V , Beer M , Bejerman N , Bergeron É , Biedenkopf N , Blair CD , Blasdell KR , Blouin AG , Bradfute SB , Briese T , Brown PA , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Büttner C , Calisher CH , Cao M , Casas I , Chandran K , Charrel RN , Kumar Chaturvedi K , Chooi KM , Crane A , Dal Bó E , Carlos de la Torre J , de Souza WM , de Swart RL , Debat H , Dheilly NM , Di Paola N , Di Serio F , Dietzgen RG , Digiaro M , Drexler JF , Duprex WP , Dürrwald R , Easton AJ , Elbeaino T , Ergünay K , Feng G , Firth AE , Fooks AR , Formenty PBH , Freitas-Astúa J , Gago-Zachert S , Laura García M , García-Sastre A , Garrison AR , Gaskin TR , Gong W , Gonzalez JJ , de Bellocq J , Griffiths A , Groschup MH , Günther I , Günther S , Hammond J , Hasegawa Y , Hayashi K , Hepojoki J , Higgins CM , Hongō S , Horie M , Hughes HR , Hume AJ , Hyndman TH , Ikeda K , Jiāng D , Jonson GB , Junglen S , Klempa B , Klingström J , Kondō H , Koonin EV , Krupovic M , Kubota K , Kurath G , Laenen L , Lambert AJ , Lǐ J , Li JM , Liu R , Lukashevich IS , MacDiarmid RM , Maes P , Marklewitz M , Marshall SH , Marzano SL , McCauley JW , Mirazimi A , Mühlberger E , Nabeshima T , Naidu R , Natsuaki T , Navarro B , Navarro JA , Neriya Y , Netesov SV , Neumann G , Nowotny N , Nunes MRT , Ochoa-Corona FM , Okada T , Palacios G , Pallás V , Papa A , Paraskevopoulou S , Parrish CR , Pauvolid-Corrêa A , Pawęska JT , Pérez DR , Pfaff F , Plemper RK , Postler TS , Rabbidge LO , Radoshitzky SR , Ramos-González PL , Rehanek M , Resende RO , Reyes CA , Rodrigues TCS , Romanowski V , Rubbenstroth D , Rubino L , Runstadler JA , Sabanadzovic S , Sadiq S , Salvato MS , Sasaya T , Schwemmle M , Sharpe SR , Shi M , Shimomoto Y , Kavi Sidharthan V , Sironi M , Smither S , Song JW , Spann KM , Spengler JR , Stenglein MD , Takada A , Takeyama S , Tatara A , Tesh RB , Thornburg NJ , Tian X , Tischler ND , Tomitaka Y , Tomonaga K , Tordo N , Tu C , Turina M , Tzanetakis IE , Maria Vaira A , van den Hoogen B , Vanmechelen B , Vasilakis N , Verbeek M , von Bargen S , Wada J , Wahl V , Walker PJ , Waltzek TB , Whitfield AE , Wolf YI , Xia H , Xylogianni E , Yanagisawa H , Yano K , Ye G , Yuan Z , Zerbini FM , Zhang G , Zhang S , Zhang YZ , Zhao L , Økland AL . J Gen Virol 2023 104 (8) ![]() In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2023)
Zerbini FM , Siddell SG , Lefkowitz EJ , Mushegian AR , Adriaenssens EM , Alfenas-Zerbini P , Dempsey DM , Dutilh BE , García ML , Hendrickson RC , Junglen S , Krupovic M , Kuhn JH , Lambert AJ , Łobocka M , Oksanen HM , Robertson DL , Rubino L , Sabanadzovic S , Simmonds P , Smith DB , Suzuki N , Van Doorslaer K , Vandamme AM , Varsani A . Arch Virol 2023 168 (7) 175 ![]() This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership. Of note, the ICTV continued the process of renaming existing species in accordance with the recently mandated binomial format and included gene transfer agents (GTAs) in the classification framework by classifying them as viriforms. In total, one class, seven orders, 31 families, 214 genera, and 858 species were created. |
Virus taxonomy and the role of the International Committee on Taxonomy of Viruses (ICTV)
Siddell SG , Smith DB , Adriaenssens E , Alfenas-Zerbini P , Dutilh BE , Garcia ML , Junglen S , Krupovic M , Kuhn JH , Lambert AJ , Lefkowitz EJ , Łobocka M , Mushegian AR , Oksanen HM , Robertson DL , Rubino L , Sabanadzovic S , Simmonds P , Suzuki N , Van Doorslaer K , Vandamme AM , Varsani A , Zerbini FM . J Gen Virol 2023 104 (5) The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community. |
Four principles to establish a universal virus taxonomy.
Simmonds P , Adriaenssens EM , Zerbini FM , Abrescia NGA , Aiewsakun P , Alfenas-Zerbini P , Bao Y , Barylski J , Drosten C , Duffy S , Duprex WP , Dutilh BE , Elena SF , García ML , Junglen S , Katzourakis A , Koonin EV , Krupovic M , Kuhn JH , Lambert AJ , Lefkowitz EJ , Łobocka M , Lood C , Mahony J , Meier-Kolthoff JP , Mushegian AR , Oksanen HM , Poranen MM , Reyes-Muñoz A , Robertson DL , Roux S , Rubino L , Sabanadzovic S , Siddell S , Skern T , Smith DB , Sullivan MB , Suzuki N , Turner D , Van Doorslaer K , Vandamme AM , Varsani A , Vasilakis N . PLoS Biol 2023 21 (2) e3001922 ![]() ![]() A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent. |
2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Kuhn JH , Adkins S , Alkhovsky SV , Avi-upanc T , Aylln MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Bandte M , Beer M , Bejerman N , Bergeron , Biedenkopf N , Bigarr L , Blair CD , Blasdell KR , Bradfute SB , Briese T , Brown PA , Bruggmann R , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Bttner C , Calisher CH , Candresse T , Carson J , Casas I , Chandran K , Charrel RN , Chiaki Y , Crane A , Crane M , Dacheux L , B ED , delaTorre JC , deLamballerie X , deSouza WM , deSwart RL , Dheilly NM , DiPaola N , DiSerio F , Dietzgen RG , Digiaro M , Drexler JF , Duprex WP , Drrwald R , Easton AJ , Elbeaino T , Ergnay K , Feng G , Feuvrier C , Firth AE , Fooks AR , Formenty PBH , Freitas-Asta J , Gago-Zachert S , Garca ML , Garca-Sastre A , Garrison AR , Godwin SE , Gonzalez JJ , deBellocq JG , Griffiths A , Groschup MH , Gnther S , Hammond J , Hepojoki J , Hierweger MM , Hong S , Horie M , Horikawa H , Hughes HR , Hume AJ , Hyndman TH , Jing D , Jonson GB , Junglen S , Kadono F , Karlin DG , Klempa B , Klingstrm J , Koch MC , Kond H , Koonin EV , Krsov J , Krupovic M , Kubota K , Kuzmin IV , Laenen L , Lambert AJ , L J , Li JM , Lieffrig F , Lukashevich IS , Luo D , Maes P , Marklewitz M , Marshall SH , Marzano SL , McCauley JW , Mirazimi A , Mohr PG , Moody NJG , Morita Y , Morrison RN , Mhlberger E , Naidu R , Natsuaki T , Navarro JA , Neriya Y , Netesov SV , Neumann G , Nowotny N , Ochoa-Corona FM , Palacios G , Pallandre L , Palls V , Papa A , Paraskevopoulou S , Parrish CR , Pauvolid-Corra A , Pawska JT , Prez DR , Pfaff F , Plemper RK , Postler TS , Pozet F , Radoshitzky SR , Ramos-Gonzlez PL , Rehanek M , Resende RO , Reyes CA , Romanowski V , Rubbenstroth D , Rubino L , Rumbou A , Runstadler JA , Rupp M , Sabanadzovic S , Sasaya T , Schmidt-Posthaus H , Schwemmle M , Seuberlich T , Sharpe SR , Shi M , Sironi M , Smither S , Song JW , Spann KM , Spengler JR , Stenglein MD , Takada A , Tesh RB , Tkov J , Thornburg NJ , Tischler ND , Tomitaka Y , Tomonaga K , Tordo N , Tsunekawa K , Turina M , Tzanetakis IE , Vaira AM , vandenHoogen B , Vanmechelen B , Vasilakis N , Verbeek M , vonBargen S , Wada J , Wahl V , Walker PJ , Whitfield AE , Williams JV , Wolf YI , Yamasaki J , Yanagisawa H , Ye G , Zhang YZ , kland AL . Arch Virol 2022 167 (12) 2857-2906 ![]() In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
Laboratory evaluation of RealStar Yellow Fever Virus RT-PCR kit 1.0 for potential use in the global yellow fever laboratory network
Basile AJ , Niedrig M , Lambert AJ , Meurant R , Brault AC , Domingo C , Goodman CH , Johnson BW , Mossel EC , Mulders MN , Velez JO , Hughes HR . PLoS Negl Trop Dis 2022 16 (9) e0010770 BACKGROUND: Early detection of human yellow fever (YF) infection in YF-endemic regions is critical to timely outbreak mitigation. African National Laboratories chiefly rely on serological assays that require confirmation at Regional Reference Laboratories, thus delaying results, which themselves are not always definitive often due to antibody cross-reactivity. A positive molecular test result is confirmatory for YF; therefore, a standardized YF molecular assay would facilitate immediate confirmation at National Laboratories. The WHO-coordinated global Eliminate Yellow Fever Epidemics Laboratory Technical Working Group sought to independently evaluate the quality and performance of commercial YF molecular assays relevant to use in countries with endemic YF, in the absence of stringent premarket assessments. This report details a limited laboratory WHO-coordinated evaluation of the altona Diagnostics RealStar Yellow Fever Virus RT-PCR kit 1.0. METHODOLOGY AND PRINCIPAL FINDINGS: Specific objectives were to assess the assay's ability to detect YF virus strains in human serum from YF-endemic regions, determine the potential for interference and cross-reactions, verify the performance claims as stated by the manufacturer, and assess usability. RNA extracted from normal human serum spiked with YF virus showed the assay to be precise with minimal lot-to-lot variation. The 95% limit of detection calculated was approximately 1,245 RNA copies/ml [95% confidence interval 497 to 1,640 copies/ml]. Positive results were obtained with spatially and temporally diverse YF strains. The assay was specific for YF virus, was not subject to endogenous or exogenous interferents, and was clinically sensitive and specific. A review of operational characteristics revealed that a positivity cutoff was not defined in the instructions for use, but otherwise the assay was user-friendly. CONCLUSIONS AND SIGNIFICANCE: The RealStar Yellow Fever Virus RT-PCR kit 1.0 has performance characteristics consistent with the manufacturer's claims and is suitable for use in YF-endemic regions. Its use is expected to decrease YF outbreak detection times and be instrumental in saving lives. |
Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022).
Walker PJ , Siddell SG , Lefkowitz EJ , Mushegian AR , Adriaenssens EM , Alfenas-Zerbini P , Dempsey DM , Dutilh BE , García ML , Curtis Hendrickson R , Junglen S , Krupovic M , Kuhn JH , Lambert AJ , Łobocka M , Oksanen HM , Orton RJ , Robertson DL , Rubino L , Sabanadzovic S , Simmonds P , Smith DB , Suzuki N , Van Doorslaer K , Vandamme AM , Varsani A , Zerbini FM . Arch Virol 2022 167 (11) 2429-2440 ![]() This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2022. The entire ICTV was invited to vote on 174 taxonomic proposals approved by the ICTV Executive Committee at its annual meeting in July 2021. All proposals were ratified by an absolute majority of the ICTV members. Of note, the Study Groups have started to implement the new rule for uniform virus species naming that became effective in 2021 and mandates the binomial 'Genus_name species_epithet' format with or without Latinization. As a result of this ratification, the names of 6,481 virus species (more than 60 percent of all species names currently recognized by ICTV) now follow this format. |
Laboratory Validation of a Real-Time RT-PCR Assay for the Detection of Jamestown Canyon Virus.
Hughes HR , Kenney JL , Russell BJ , Lambert AJ . Pathogens 2022 11 (5) ![]() ![]() The neuroinvasive disease caused by Jamestown Canyon virus (JCV) infection is rare. However, increasing incidence and widespread occurrence of the infection make JCV a growing public health concern. Presently, clinical diagnosis is achieved through serological testing, and mosquito pool surveillance requires virus isolation and identification. A rapid molecular detection test, such as real-time RT-PCR, for diagnosis and surveillance of JCV has not been widely utilized. To enhance testing and surveillance, here, we describe the development and validation of a real-time RT-PCR test for the detection of JCV RNA. Three primer and probe sets were evaluated for analytical sensitivity and specificity. One probe set, JCV132FAM, was found to be the most sensitive test detecting 7.2 genomic equivalents/µL. While less sensitive, a second probe set JCV231cFAM was the most specific test with limited detection of Keystone virus at high RNA loads. Taken together, these data indicate both probe sets can be utilized for a primary sensitive screening assay and a secondary specific confirmatory assay. While both primer and probe sets detected high viral loads of Keystone virus, these assays did not detect any virus in the California encephalitis virus clade, including negative detection of the medically important La Crosse virus (LACV) and snowshoe hare virus (SSHV). The real-time RT-PCR assay described herein could be utilized in diagnosis and surveillance in regions with co-circulation of JCV and LACV or SSHV to inform public health action. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
Differentiating between viruses and virus species by writing their names correctly.
Zerbini FM , Siddell SG , Mushegian AR , Walker PJ , Lefkowitz EJ , Adriaenssens EM , Alfenas-Zerbini P , Dutilh BE , Garca ML , Junglen S , Krupovic M , Kuhn JH , Lambert AJ , obocka M , Oksanen HM , Robertson DL , Rubino L , Sabanadzovic S , Simmonds P , Suzuki N , VanDoorslaer K , Vandamme AM , Varsani A . Arch Virol 2022 167 (4) 1231-1234 ![]() Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly. Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly. |
Genomic Evaluation of the Genus Coltivirus Indicates Genetic Diversity among Colorado Tick Fever Virus Strains and Demarcation of a New Species.
Hughes HR , Velez JO , Fitzpatrick K , Davis EH , Russell BJ , Lambert AJ , Staples JE , Brault AC . Diseases 2021 9 (4) ![]() ![]() The type species of the genus Coltivirus, Colorado tick fever virus (CTFV), was discovered in 1943 and is the most common tick-borne viral infection in the Western US. Despite its long history, very little is known about the molecular diversity of viruses classified within the species Colorado tick fever coltivirus. Previous studies have suggested genetic variants and potential serotypes of CTFV, but limited genetic sequence information is available for CTFV strains. To address this knowledge gap, we report herein the full-length genomes of five strains of CTFV, including Salmon River virus and California hare coltivirus (CTFV-Ca). The sequence from the full-length genome of Salmon River virus identified a high genetic identity to the CTFV prototype strain with >90% amino acid identity in all the segments except segment four, suggesting Salmon River virus is a strain of the species Colorado tick fever coltivirus. Additionally, analysis suggests that segment four has been associated with reassortment in at least one strain. The CTFV-Ca full-length genomic sequence was highly variable from the prototype CTFV in all the segments. The genome of CTFV-Ca was most similar to the Eyach virus, including similar segments six and seven. These data suggest that CTFV-Ca is not a strain of CTFV but a unique species. Additional sequence information of CTFV strains will improve the molecular surveillance tools and provide additional taxonomic resolution to this understudied virus. |
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Kuhn JH , Adkins S , Agwanda BR , Al Kubrusli R , Alkhovsky Aльxoвcкий Cepгeй Bлaдимиpoвич SV , Amarasinghe GK , Avšič-Županc T , Ayllón MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Basler CF , Bavari S , Beer M , Bejerman N , Bennett AJ , Bente DA , Bergeron É , Bird BH , Blair CD , Blasdell KR , Blystad DR , Bojko J , Borth WB , Bradfute S , Breyta R , Briese T , Brown PA , Brown JK , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Büttner C , Calisher CH , Cao 曹孟籍 M , Casas I , Chandran K , Charrel RN , Cheng Q , Chiaki 千秋祐也 Y , Chiapello M , Choi IR , Ciuffo M , Clegg JCS , Crozier I , Dal Bó E , de la Torre JC , de Lamballerie X , de Swart RL , Debat H , Dheilly NM , Di Cicco E , Di Paola N , Di Serio F , Dietzgen RG , Digiaro M , Dolnik O , Drebot MA , Drexler JF , Dundon WG , Duprex WP , Dürrwald R , Dye JM , Easton AJ , Ebihara 海老原秀喜 H , Elbeaino T , Ergünay K , Ferguson HW , Fooks AR , Forgia M , Formenty PBH , Fránová J , Freitas-Astúa J , Fu 付晶晶 J , Fürl S , Gago-Zachert S , Gāo 高福 GF , García ML , García-Sastre A , Garrison AR , Gaskin T , Gonzalez JJ , Griffiths A , Goldberg TL , Groschup MH , Günther S , Hall RA , Hammond J , Han 韩彤 T , Hepojoki J , Hewson R , Hong 洪健 J , Hong 洪霓 N , Hongo 本郷誠治 S , Horie 堀江真行 M , Hu JS , Hu T , Hughes HR , Hüttner F , Hyndman TH , Ilyas M , Jalkanen R , Jiāng 姜道宏 D , Jonson GB , Junglen S , Kadono 上遠野冨士夫 F , Kaukinen KH , Kawate M , Klempa B , Klingström J , Kobinger G , Koloniuk I , Kondō 近藤秀樹 H , Koonin EV , Krupovic M , Kubota 久保田健嗣 K , Kurath G , Laenen L , Lambert AJ , Langevin SL , Lee B , Lefkowitz EJ , Leroy EM , Li 李邵蓉 S , Li 李龙辉 L , Lǐ 李建荣 J , Liu 刘华珍 H , Lukashevich IS , Maes P , de Souza WM , Marklewitz M , Marshall SH , Marzano SL , Massart S , McCauley JW , Melzer M , Mielke-Ehret N , Miller KM , Ming TJ , Mirazimi A , Mordecai GJ , Mühlbach HP , Mühlberger E , Naidu R , Natsuaki 夏秋知英 T , Navarro JA , Netesov Heтёcoв Cepгeй Bиктopoвич SV , Neumann G , Nowotny N , Nunes MRT , Olmedo-Velarde A , Palacios G , Pallás V , Pályi B , Papa Άννα Παπά A , Paraskevopoulou Σοφία Παρασκευοπούλου S , Park AC , Parrish CR , Patterson DA , Pauvolid-Corrêa A , Pawęska JT , Payne S , Peracchio C , Pérez DR , Postler TS , Qi 亓立莹 L , Radoshitzky SR , Resende RO , Reyes CA , Rima BK , Luna GR , Romanowski V , Rota P , Rubbenstroth D , Rubino L , Runstadler JA , Sabanadzovic S , Sall AA , Salvato MS , Sang R , Sasaya 笹谷孝英 T , Schulze AD , Schwemmle M , Shi 施莽 M , Shí 石晓宏 X , Shí 石正丽 Z , Shimomoto 下元祥史 Y , Shirako Y , Siddell SG , Simmonds P , Sironi M , Smagghe G , Smither S , Song 송진원 JW , Spann K , Spengler JR , Stenglein MD , Stone DM , Sugano J , Suttle CA , Tabata A , Takada 高田礼人 A , Takeuchi 竹内繁治 S , Tchouassi DP , Teffer A , Tesh RB , Thornburg NJ , Tomitaka 冨高保弘 Y , Tomonaga 朝長啓造 K , Tordo N , Torto B , Towner JS , Tsuda 津田新哉 S , Tu 涂长春 C , Turina M , Tzanetakis IE , Uchida J , Usugi 宇杉富雄 T , Vaira AM , Vallino M , van den Hoogen B , Varsani A , Vasilakis Νίκος Βασιλάκης N , Verbeek M , von Bargen S , Wada 和田治郎 J , Wahl V , Walker PJ , Wang 王林发 LF , Wang 王国平 G , Wang 王雁翔 Y , Wang 王亚琴 Y , Waqas M , Wèi 魏太云 T , Wen 温少华 S , Whitfield AE , Williams JV , Wolf YI , Wu 吴建祥 J , Xu 徐雷 L , Yanagisawa 栁澤広宣 H , Yang 杨彩霞 C , Yang 杨作坤 Z , Zerbini FM , Zhai 翟立峰 L , Zhang 张永振 YZ , Zhang 张松 S , Zhang 张靖国 J , Zhang 张哲 Z , Zhou 周雪平 X . Arch Virol 2021 166 (12) 3513-3566 ![]() In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
Clinically Important Phleboviruses and Their Detection in Human Samples.
Lambert AJ , Hughes HR . Viruses 2021 13 (8) ![]() The detection of phleboviruses (family: Phenuiviridae) in human samples is challenged by the overall diversity and genetic complexity of clinically relevant strains, their predominantly nondescript clinical associations, and a related lack of awareness among some clinicians and lab-oratorians. Here, we seek to inform the detection of human phlebovirus infections by providing a brief introduction to clinically relevant phleboviruses, as well as key targets and approaches for their detection. Given the diversity of pathogens within the genus, this report focuses on diagnostic attributes that are generally shared among these agents and should be used as a complement to, rather than a replacement of, more detailed discussions on the detection of phleboviruses at the individual virus level. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
Fatal Human Infection with Evidence of Intrahost Variation of Eastern Equine Encephalitis Virus, Alabama, USA, 2019.
Hughes HR , Velez JO , Davis EH , Laven J , Gould CV , Panella AJ , Lambert AJ , Staples JE , Brault AC . Emerg Infect Dis 2021 27 (7) 1886-1892 ![]() ![]() Eastern equine encephalitis virus (EEEV) is an arbovirus in the family Togaviridae, genus Alphavirus, found in North America and associated with freshwater/hardwood swamps in the Atlantic, Gulf Coast, and Great Lakes regions. EEEV disease in humans is rare but causes substantial illness and death. To investigate the molecular epidemiology and microevolution of EEEV from a fatal case in Alabama, USA, in 2019, we used next-generation sequencing of serum and cerebrospinal fluid (CSF). Phylogenetic inference indicated that the infecting strain may be closely related to isolates from Florida detected during 2010-2014, suggesting potential seeding from Florida. EEEV detected in serum displayed a higher degree of variability with more single-nucleotide variants than that detected in the CSF. These data refine our knowledge of EEEV molecular epidemiologic dynamics in the Gulf Coast region and demonstrate potential quasispecies bottlenecking within the central nervous system of a human host. |
Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021).
Walker PJ , Siddell SG , Lefkowitz EJ , Mushegian AR , Adriaenssens EM , Alfenas-Zerbini P , Davison AJ , Dempsey DM , Dutilh BE , García ML , Harrach B , Harrison RL , Hendrickson RC , Junglen S , Knowles NJ , Krupovic M , Kuhn JH , Lambert AJ , Łobocka M , Nibert ML , Oksanen HM , Orton RJ , Robertson DL , Rubino L , Sabanadzovic S , Simmonds P , Smith DB , Suzuki N , Van Dooerslaer K , Vandamme AM , Varsani A , Zerbini FM . Arch Virol 2021 166 (9) 2633-2648 ![]() ![]() This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2021. The entire ICTV was invited to vote on 290 taxonomic proposals approved by the ICTV Executive Committee at its meeting in October 2020, as well as on the proposed revision of the International Code of Virus Classification and Nomenclature (ICVCN). All proposals and the revision were ratified by an absolute majority of the ICTV members. Of note, ICTV mandated a uniform rule for virus species naming, which will follow the binomial 'genus-species' format with or without Latinized species epithets. The Study Groups are requested to convert all previously established species names to the new format. ICTV has also abolished the notion of a type species, i.e., a species chosen to serve as a name-bearing type of a virus genus. The remit of ICTV has been clarified through an official definition of 'virus' and several other types of mobile genetic elements. The ICVCN and ICTV Statutes have been amended to reflect these changes. |
Reassortant Cache Valley virus associated with acute febrile, non-neurologic illness, Missouri.
Baker M , Hughes HR , Naqvi SH , Yates K , Velez JO , McGuirk S , Schroder B , Lambert AJ , Kosoy OI , Pue H , Turabelidze G , Staples JE . Clin Infect Dis 2021 73 (9) 1700-1702 ![]() ![]() An adult male from Missouri sought care for fever, fatigue, and gastrointestinal symptoms. He had leukopenia and thrombocytopenia and was treated for a presumed tickborne illness. His condition deteriorated with respiratory and renal failure, lactic acidosis, and hypotension. Next-generation sequencing and phylogenetic analysis identified a reassortant Cache Valley virus. |
2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Kuhn JH , Adkins S , Alioto D , Alkhovsky SV , Amarasinghe GK , Anthony SJ , Avšič-Županc T , Ayllón MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Bartonička T , Basler C , Bavari S , Beer M , Bente DA , Bergeron É , Bird BH , Blair C , Blasdell KR , Bradfute SB , Breyta R , Briese T , Brown PA , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Buzkan N , Calisher CH , Cao M , Casas I , Chamberlain J , Chandran K , Charrel RN , Chen B , Chiumenti M , Choi IR , Clegg JCS , Crozier I , da Graça JV , Dal Bó E , Dávila AMR , de la Torre JC , de Lamballerie X , de Swart RL , Di Bello PL , Di Paola N , Di Serio F , Dietzgen RG , Digiaro M , Dolja VV , Dolnik O , Drebot MA , Drexler JF , Dürrwald R , Dufkova L , Dundon WG , Duprex WP , Dye JM , Easton AJ , Ebihara H , Elbeaino T , Ergünay K , Fernandes J , Fooks AR , Formenty PBH , Forth LF , Fouchier RAM , Freitas-Astúa J , Gago-Zachert S , Gāo GF , García ML , García-Sastre A , Garrison AR , Gbakima A , Goldstein T , Gonzalez JJ , Griffiths A , Groschup MH , Günther S , Guterres A , Hall RA , Hammond J , Hassan M , Hepojoki J , Hepojoki S , Hetzel U , Hewson R , Hoffmann B , Hongo S , Höper D , Horie M , Hughes HR , Hyndman TH , Jambai A , Jardim R , Jiāng D , Jin Q , Jonson GB , Junglen S , Karadağ S , Keller KE , Klempa B , Klingström J , Kobinger G , Kondō H , Koonin EV , Krupovic M , Kurath G , Kuzmin IV , Laenen L , Lamb RA , Lambert AJ , Langevin SL , Lee B , Lemos ERS , Leroy EM , Li D , Lǐ J , Liang M , Liú W , Liú Y , Lukashevich IS , Maes P , Marciel de Souza W , Marklewitz M , Marshall SH , Martelli GP , Martin RR , Marzano SL , Massart S , McCauley JW , Mielke-Ehret N , Minafra A , Minutolo M , Mirazimi A , Mühlbach HP , Mühlberger E , Naidu R , Natsuaki T , Navarro B , Navarro JA , Netesov SV , Neumann G , Nowotny N , Nunes MRT , Nylund A , Økland AL , Oliveira RC , Palacios G , Pallas V , Pályi B , Papa A , Parrish CR , Pauvolid-Corrêa A , Pawęska JT , Payne S , Pérez DR , Pfaff F , Radoshitzky SR , Rahman AU , Ramos-González PL , Resende RO , Reyes CA , Rima BK , Romanowski V , Robles Luna G , Rota P , Rubbenstroth D , Runstadler JA , Ruzek D , Sabanadzovic S , Salát J , Sall AA , Salvato MS , Sarpkaya K , Sasaya T , Schwemmle M , Shabbir MZ , Shí X , Shí Z , Shirako Y , Simmonds P , Širmarová J , Sironi M , Smither S , Smura T , Song JW , Spann KM , Spengler JR , Stenglein MD , Stone DM , Straková P , Takada A , Tesh RB , Thornburg NJ , Tomonaga K , Tordo N , Towner JS , Turina M , Tzanetakis I , Ulrich RG , Vaira AM , van den Hoogen B , Varsani A , Vasilakis N , Verbeek M , Wahl V , Walker PJ , Wang H , Wang J , Wang X , Wang LF , Wèi T , Wells H , Whitfield AE , Williams JV , Wolf YI , Wú Z , Yang X , Yáng X , Yu X , Yutin N , Zerbini FM , Zhang T , Zhang YZ , Zhou G , Zhou X . Arch Virol 2020 165 (12) 3023-3072 ![]() In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
Investigation of Heartland Virus Disease throughout the United States, 2013-2017
Staples JE , Pastula DM , Panella AJ , Rabe IB , Kosoy OI , Walker WL , Velez JO , Lambert AJ , Fischer M . Open Forum Infect Dis 2020 7 (5) ofaa125 Background: Heartland virus (HRTV) was first described as a human pathogen in 2012. From 2013 to 2017, the Centers for Disease Control and Prevention (CDC) implemented a national protocol to evaluate patients for HRTV disease, better define its geographic distribution, epidemiology, and clinical characteristics, and develop diagnostic assays for this novel virus. Methods: Individuals aged >/=12 years whose clinicians contacted state health departments or the CDC about testing for HRTV infections were screened for recent onset of fever with leukopenia and thrombocytopenia. A questionnaire was administered to collect data on demographics, risk factors, and signs and symptoms; blood samples were tested for the presence of HRTV RNA and neutralizing antibodies. Results: Of 85 individuals enrolled and tested, 16 (19%) had evidence of acute HRTV infection, 1 (1%) had past infection, and 68 (80%) had no infection. Patients with acute HRTV disease were residents of 7 states, 12 (75%) were male, and the median age (range) was 71 (43-80) years. Illness onset occurred from April to September. The majority reported fatigue, anorexia, nausea, headache, confusion, arthralgia, or myalgia. Fourteen (88%) cases were hospitalized; 2 (13%) died. Fourteen (88%) participants reported finding a tick on themselves in the 2 weeks before illness onset. HRTV-infected individuals were significantly older (P < .001) and more likely to report an attached tick (P = .03) than uninfected individuals. Conclusions: Health care providers should consider HRTV disease testing in patients with an acute febrile illness with either leukopenia or thrombocytopenia not explained by another condition or who were suspected to have a tickborne disease but did not improve following appropriate treatment. |
ICTV virus taxonomy profile: Peribunyaviridae
Hughes HR , Adkins S , Alkhovskiy S , Beer M , Blair C , Calisher CH , Drebot M , Lambert AJ , de Souza WM , Marklewitz M , Nunes MRT , Shi X . J Gen Virol 2019 101 (1) 1-2 Peribunyaviruses are enveloped and possess three distinct, single-stranded, negative-sense RNA segments comprising 11.2-12.5 kb in total. The family includes globally distributed viruses in the genera Orthobunyavirus, Herbevirus, Pacuvirus and Shangavirus. Most viruses are maintained in geographically-restricted vertebrate-arthropod transmission cycles that can include transovarial transmission from arthropod dam to offspring. Others are arthropod-specific. Arthropods can be persistently infected. Human infection occurs through blood feeding by an infected vector arthropod. Infections can result in a diversity of human and veterinary clinical outcomes in a strain-specific manner. Segment reassortment is evident between some peribunyaviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Peribunyaviridae, which is available at ictv.global/report/peribunyaviridae. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure