Last data update: Nov 11, 2024. (Total: 48109 publications since 2009)
Records 1-13 (of 13 Records) |
Query Trace: Lacek K[original query] |
---|
Influenza A(H5N1) virus infection in two dairy farm workers in Michigan
Morse J , Coyle J , Mikesell L , Stoddard B , Eckel S , Weinberg M , Kuo J , Riner D , Margulieux K , Stricklen J , Dover M , Kniss KL , Jang Y , Kirby MK , Frederick JC , Lacek KA , Davis CT , Uyeki TM , Lyon-Callo S , Bagdasarian N . N Engl J Med 2024 |
Antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S. Throughout the Delta to Omicron waves
Di H , Pusch EA , Jones J , Kovacs NA , Hassell N , Sheth M , Lynn KS , Keller MW , Wilson MM , Keong LM , Cui D , Park SH , Chau R , Lacek KA , Liddell JD , Kirby MK , Yang G , Johnson M , Thor S , Zanders N , Feng C , Surie D , DeCuir J , Lester SN , Atherton L , Hicks H , Tamin A , Harcourt JL , Coughlin MM , Self WH , Rhoads JP , Gibbs KW , Hager DN , Shapiro NI , Exline MC , Lauring AS , Rambo-Martin B , Paden CR , Kondor RJ , Lee JS , Barnes JR , Thornburg NJ , Zhou B , Wentworth DE , Davis CT . Vaccines (Basel) 2024 12 (5) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates. |
Targeted amplification and genetic sequencing of the severe acute respiratory syndrome coronavirus 2 surface glycoprotein
Keller MW , Keong LM , Rambo-Martin BL , Hassell N , Lacek KA , Wilson MM , Kirby MK , Liddell J , Owuor DC , Sheth M , Madden J , Lee JS , Kondor RJ , Wentworth DE , Barnes JR . Microbiol Spectr 2023 e0298223 The COVID-19 pandemic was accompanied by an unprecedented surveillance effort. The resulting data were and will continue to be critical for surveillance and control of SARS-CoV-2. However, some genomic surveillance methods experienced challenges as the virus evolved, resulting in incomplete and poor quality data. Complete and quality coverage, especially of the S-gene, is important for supporting the selection of vaccine candidates. As such, we developed a robust method to target the S-gene for amplification and sequencing. By focusing on the S-gene and imposing strict coverage and quality metrics, we hope to increase the quality of surveillance data for this continually evolving gene. Our technique is currently being deployed globally to partner laboratories, and public health representatives from 79 countries have received hands-on training and support. Expanding access to quality surveillance methods will undoubtedly lead to earlier detection of novel variants and better inform vaccine strain selection. |
Bivalent mRNA vaccine improves antibody-mediated neutralization of many SARS-CoV-2 Omicron lineage variants (preprint)
Jiang N , Wang L , Hatta M , Feng C , Currier M , Lin X , Hossain J , Cui D , Mann BR , Kovacs NA , Wang W , Atteberry G , Wilson M , Chau R , Lacek KA , Paden CR , Hassell N , Rambo-Martin B , Barnes JR , Kondor RJ , Self WH , Rhoads JP , Baughman A , Chappell JD , Shapiro NI , Gibbs KW , Hager DN , Lauring AS , Surie D , McMorrow ML , Thornburg NJ , Wentworth DE , Zhou B . bioRxiv 2023 09 The early Omicron lineage variants evolved and gave rise to diverging lineages that fueled the COVID-19 pandemic in 2022. Bivalent mRNA vaccines, designed to broaden protection against circulating and future variants, were authorized by the U.S. Food and Drug Administration (FDA) in August 2022 and recommended by the U.S. Centers for Disease Control and Prevention (CDC) in September 2022. The impact of bivalent vaccination on eliciting neutralizing antibodies against homologous BA.4/BA.5 viruses as well as emerging heterologous viruses needs to be analyzed. In this study, we analyze the neutralizing activity of sera collected after a third dose of vaccination (2-6 weeks post monovalent booster) or a fourth dose of vaccination (2-7 weeks post bivalent booster) against 10 predominant/recent Omicron lineage viruses including BA.1, BA.2, BA.5, BA.2.75, BA.2.75.2, BN.1, BQ.1, BQ.1.1, XBB, and XBB.1. The bivalent booster vaccination enhanced neutralizing antibody titers against all Omicron lineage viruses tested, including a 10-fold increase in neutralization of BQ.1 and BQ.1.1 viruses that predominated in the U.S. during the last two months of 2022. Overall, the data indicate the bivalent vaccine booster strengthens protection against Omicron lineage variants that evolved from BA.5 and BA.2 progenitors. Copyright The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Effectiveness of 2 and 3 mRNA COVID-19 Vaccines Doses against Omicron and Delta-Related Outpatient Illness among Adults, October 2021 - February 2022 (preprint)
Kim SS , Chung JR , Talbot HK , Grijalva CG , Wernli KJ , Martin ET , Monto AS , Belongia EA , McLean HQ , Gaglani M , Mamawala M , Nowalk MP , Geffel KM , Tartof SY , Florea A , Lee JS , Tenforde MW , Patel MM , Flannery B , Bentz ML , Burgin A , Burroughs M , Davis ML , Howard D , Lacek K , Madden JC , Nobles S , Padilla J , Sheth M , Arroliga A , Beeram M , Dunnigan K , Ettlinger J , Graves A , Hoffman E , Jatla M , McKillop A , Murthy K , Mutnal M , Priest E , Raiyani C , Rao A , Requenez L , Settele N , Smith M , Stone K , Thomas J , Volz M , Walker K , Zayed M , Annan E , Daley P , Kniss K , Merced-Morales A , Ayala E , Amundsen B , Aragones M , Calderon R , Hong V , Jimenez G , Kim J , Ku J , Lewin B , McDaniel A , Reyes A , Shaw S , Takhar H , Torres A , Burganowski R , Kiniry E , Moser KA , Nguyen M , Park S , Wellwood S , Wickersham B , Alvarado-Batres J , Benz S , Berger H , Bissonnette A , Blake J , Boese K , Botten E , Boyer J , Braun M , Breu B , Burbey G , Cravillion C , Delgadillo C , Donnerbauer A , Dziedzic T , Eddy J , Edgren H , Ermeling A , Ewert K , Fehrenbach C , Fernandez R , Frome W , Guzinski S , Heeren L , Herda D , Hertel M , Heuer G , Higdon E , Ivacic L , Jepsen L , Kaiser S , Karl J , Keffer B , King J , Koepel TK , Kohl S , Kohn S , Kohnhorst D , Kronholm E , Le T , Lemieux A , Marcis C , Maronde M , McCready I , McGreevey K , Meece J , Mehta N , Miesbauer D , Moon V , Moran J , Nikolai C , Olson B , Olstadt J , Ott L , Pan N , Pike C , Polacek D , Presson M , Price N , Rayburn C , Reardon C , Rotar M , Rottscheit C , Salzwedel J , Saucedo J , Scheffen K , Schug C , Seyfert K , Shrestha R , Slenczka A , Stefanski E , Strupp M , Tichenor M , Watkins L , Zachow A , Zimmerman B , Bauer S , Beney K , Cheng CK , Faraj N , Getz A , Grissom M , Groesbeck M , Harrison S , Henson K , Jermanus K , Johnson E , Kaniclides A , Kimberly A , Lamerato LE , Lauring A , Lehmann-Wandell R , McSpadden EJ , Nabors L , Truscon R , Balasubramani GK , Bear T , Bobeck J , Bowser E , Clarke K , Clarke LG , Dauer K , Deluca C , Dierks B , Haynes L , Hickey R , Johnson M , Jonsson A , Luosang N , McKown L , Peterson A , Phaturos D , Rectenwald A , Sax TM , Stiegler M , Susick M , Suyama J , Taylor L , Walters S , Weissman A , Williams JV , Blair M , Carter J , Chappell J , Copen E , Denney M , Graes K , Halasa N , Lindsell C , Liu Z , Longmire S , McHenry R , Short L , Tan HN , Vargas D , Wrenn J , Wyatt D , Zhu Y . medRxiv 2022 10 Background: We estimated SARS-CoV-2 Delta and Omicron-specific effectiveness of 2 and 3 mRNA COVID-19 vaccine doses in adults against symptomatic illness in US outpatient settings. Method(s): Between October 1, 2021, and February 12, 2022, research staff consented and enrolled eligible participants who had fever, cough, or loss of taste or smell and sought outpatient medical care or clinical SARS-CoV-2 testing within 10 days of illness onset. Using the test-negative design, we compared the odds of receiving 2 or 3 mRNA COVID-19 vaccine doses among SARS-CoV-2 cases versus controls using logistic regression. Regression models were adjusted for study site, age, onset week, and prior SARS-CoV-2 infection. Vaccine effectiveness (VE) was calculated as (1 - adjusted odds ratio) x 100%. Result(s): Among 3847 participants included for analysis, 574 (32%) of 1775 tested positive for SARS-CoV-2 during the Delta predominant period and 1006 (56%) of 1794 participants tested positive during the Omicron predominant period. When Delta predominated, VE against symptomatic illness in outpatient settings was 63% (95% CI: 51% to 72%) among mRNA 2-dose recipients and 96% (95% CI: 93% to 98%) for 3-dose recipients. When Omicron predominated, VE was 21% (95% CI: -6% to 41%) among 2-dose recipients and 62% (95% CI: 48% to 72%) among 3-dose recipients. Conclusion(s): In this adult population, 3 mRNA COVID-19 vaccine doses provided substantial protection against symptomatic illness in outpatient settings when the Omicron variant became the predominant cause of COVID-19 in the U.S. These findings support the recommendation for a 3rd mRNA COVID-19 vaccine dose. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Identification of a Novel SARS-CoV-2 Delta-Omicron Recombinant Virus in the United States (preprint)
Lacek KA , Rambo-Martin BL , Batra D , Zheng XY , Sakaguchi H , Peacock T , Keller M , Wilson MM , Sheth M , Davis ML , Borroughs M , Gerhart J , Hassell N , Shepard SS , Cook PW , Lee J , Wentworth DE , Barnes JR , Kondor R , Paden CR . bioRxiv 2022 21 Recombination between SARS-CoV-2 virus variants can result in different viral properties (e.g., infectiousness or pathogenicity). In this report, we describe viruses with recombinant genomes containing signature mutations from Delta and Omicron variants. These genomes are the first evidence for a Delta-Omicron hybrid Spike protein in the United States. Copyright The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines (preprint)
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Hossain J , Lin X , Lester S , Pusch E , Jones J , Cui D , Chatterjee P , Jenks HM , Morantz E , Larson G , Hatta M , Harcourt J , Tamin A , Li Y , Tao Y , Zhao K , Burroughs A , Wong T , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Laufer Halpin AS , Lee JS , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan V , Wentworth DE , Zhou B , Batra D , Beck A , Caravas J , Cintron-Moret R , Cook PW , Gerhart J , Gulvik C , Hassell N , Howard D , Knipe K , Kondor RJ , Kovacs N , Lacek K , Mann BR , McMullan LK , Moser K , Paden CR , Martin BR , Schmerer M , Shepard S , Stanton R , Stark T , Sula E , Tymeckia K , Unoarumhi Y . bioRxiv 2021 30 The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of many new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccines. To ascertain and rank the risk of VOCs and VOIs, we analyzed their ability to escape from vaccine-induced antibodies. The variants showed differential reductions in neutralization and replication titers by post-vaccination sera. Although the Omicron variant showed the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retained moderate neutralizing activity against that variant. Therefore, vaccination remains the most effective strategy to combat the COVID-19 pandemic. |
Genomic surveillance for SARS-CoV-2 variants: Circulation of Omicron lineages - United States, January 2022-May 2023
Ma KC , Shirk P , Lambrou AS , Hassell N , Zheng XY , Payne AB , Ali AR , Batra D , Caravas J , Chau R , Cook PW , Howard D , Kovacs NA , Lacek KA , Lee JS , MacCannell DR , Malapati L , Mathew S , Mittal N , Nagilla RR , Parikh R , Paul P , Rambo-Martin BL , Shepard SS , Sheth M , Wentworth DE , Winn A , Hall AJ , Silk BJ , Thornburg N , Kondor R , Scobie HM , Paden CR . MMWR Morb Mortal Wkly Rep 2023 72 (24) 651-656 CDC has used national genomic surveillance since December 2020 to monitor SARS-CoV-2 variants that have emerged throughout the COVID-19 pandemic, including the Omicron variant. This report summarizes U.S. trends in variant proportions from national genomic surveillance during January 2022-May 2023. During this period, the Omicron variant remained predominant, with various descendant lineages reaching national predominance (>50% prevalence). During the first half of 2022, BA.1.1 reached predominance by the week ending January 8, 2022, followed by BA.2 (March 26), BA.2.12.1 (May 14), and BA.5 (July 2); the predominance of each variant coincided with surges in COVID-19 cases. The latter half of 2022 was characterized by the circulation of sublineages of BA.2, BA.4, and BA.5 (e.g., BQ.1 and BQ.1.1), some of which independently acquired similar spike protein substitutions associated with immune evasion. By the end of January 2023, XBB.1.5 became predominant. As of May 13, 2023, the most common circulating lineages were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and XBB.1.16 (9.4%); XBB.1.16 and XBB.1.16.1 (2.4%), containing the K478R substitution, and XBB.2.3 (3.2%), containing the P521S substitution, had the fastest doubling times at that point. Analytic methods for estimating variant proportions have been updated as the availability of sequencing specimens has declined. The continued evolution of Omicron lineages highlights the importance of genomic surveillance to monitor emerging variants and help guide vaccine development and use of therapeutics. |
Erratum: Vol. 71, No. 6.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (14) 528 The report “Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants — United States, June 2021–January 2022” contained several errors. |
SARS-CoV-2 Delta-Omicron Recombinant Viruses, United States.
Lacek KA , Rambo-Martin BL , Batra D , Zheng XY , Hassell N , Sakaguchi H , Peacock T , Groves N , Keller M , Wilson MM , Sheth M , Davis ML , Borroughs M , Gerhart J , Shepard SS , Cook PW , Lee J , Wentworth DE , Barnes JR , Kondor R , Paden CR . Emerg Infect Dis 2022 28 (7) 1442-1445 To detect new and changing SARS-CoV-2 variants, we investigated candidate Delta-Omicron recombinant genomes from Centers for Disease Control and Prevention national genomic surveillance. Laboratory and bioinformatic investigations identified and validated 9 genetically related SARS-CoV-2 viruses with a hybrid Delta-Omicron spike protein. |
Effectiveness of two and three mRNA COVID-19 vaccine doses against Omicron- and Delta-Related outpatient illness among adults, October 2021-February 2022.
Kim SS , Chung JR , Talbot HK , Grijalva CG , Wernli KJ , Kiniry E , Martin ET , Monto AS , Belongia EA , McLean HQ , Gaglani M , Mamawala M , Nowalk MP , Moehling Geffel K , Tartof SY , Florea A , Lee JS , Tenforde MW , Patel MM , Flannery B , Bentz ML , Burgin A , Burroughs M , Davis ML , Howard D , Lacek K , Madden JC , Nobles S , Padilla J , Sheth M . Influenza Other Respir Viruses 2022 16 (6) 975-985 Background: We estimated SARS-CoV-2 Delta- and Omicron-specific effectiveness of two and three mRNA COVID-19 vaccine doses in adults against symptomatic illness in US outpatient settings. Methods: Between October 1, 2021, and February 12, 2022, research staff consented and enrolled eligible participants who had fever, cough, or loss of taste or smell and sought outpatient medical care or clinical SARS-CoV-2 testing within 10 days of illness onset. Using the test-negative design, we compared the odds of receiving two or three mRNA COVID-19 vaccine doses among SARS-CoV-2 cases versus controls using logistic regression. Regression models were adjusted for study site, age, onset week, and prior SARS-CoV-2 infection. Vaccine effectiveness (VE) was calculated as (1 − adjusted odds ratio) × 100%. Results: Among 3847 participants included for analysis, 574 (32%) of 1775 tested positive for SARS-CoV-2 during the Delta predominant period and 1006 (56%) of 1794 participants tested positive during the Omicron predominant period. When Delta predominated, VE against symptomatic illness in outpatient settings was 63% (95% CI: 51% to 72%) among mRNA two-dose recipients and 96% (95% CI: 93% to 98%) for three-dose recipients. When Omicron predominated, VE was 21% (95% CI: −6% to 41%) among two-dose recipients and 62% (95% CI: 48% to 72%) among three-dose recipients. Conclusions: In this adult population, three mRNA COVID-19 vaccine doses provided substantial protection against symptomatic illness in outpatient settings when the Omicron variant became the predominant cause of COVID-19 in the United States. These findings support the recommendation for a third mRNA COVID-19 vaccine dose. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Influenza and Other Respiratory Viruses published by John Wiley & Sons Ltd. |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines.
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Mann BR , Hossain J , Lin X , Lester S , Pusch EA , Jones J , Cui D , Chatterjee P , Jenks MH , Morantz EK , Larson GP , Hatta M , Harcourt JL , Tamin A , Li Y , Tao Y , Zhao K , Lacek K , Burroughs A , Wang W , Wilson M , Wong T , Park SH , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Halpin AL , McMullan LK , Lee JS , Xia H , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan VG , Wentworth DE , Zhou B . Nat Commun 2022 13 (1) 4350 The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic. |
Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants - United States, June 2021-January 2022.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (6) 206-211 Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.(†) The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 11, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure