Last data update: Oct 28, 2024. (Total: 48004 publications since 2009)
Records 1-30 (of 148 Records) |
Query Trace: Kosoy O[original query] |
---|
Molecular detection of Bartonella species in ticks from Peru.
Billeter SA , Cáceres AG , Gonzales-Hidalgo J , Luna-Caypo D , Kosoy MY . J Med Entomol 2011 48 (6) 1257-60 A total of 103 ticks, collected from canines, horses, donkeys, and snakes from Peru, were screened for the presence of Bartonella DNA by polymerase chain reaction analysis. Bartonella DNA was detected in two ticks using Bartonella 16S-23S intergenic spacer region primers and in an additional two ticks using Bartonella NADH dehydrogenase gamma subunit gene (nuoG) primers. Bartonella rochalimae Eremeeva et al., B. quintana Schmincke, and B. elizabethae Daly et al. DNA was detected in a Rhipicephalus sanguineus Latreille (Acari: Ixodidae) female tick removed from a dog and B. quintana DNA was present in a Dermacentor nitens Neumann (Acari: Ixodidae) pool of five larvae, one nymph, and one adult male tick collected from donkeys. This is the first study to report the detection of B. rochalimae, B. quintana, and B. elizabethae DNA in ticks from Peru. Further investigations must be performed to decipher the role ticks may play in the transmission of Bartonella species. |
Bats are key hosts in the radiation of mammal-associated Bartonella bacteria (preprint)
McKee CD , Bai Y , Webb CT , Kosoy MY . bioRxiv 2020 2020.04.03.024521 Bats are notorious reservoirs of several zoonotic diseases and may be uniquely tolerant of infection among mammals. Broad sampling has revealed the importance of bats in the diversification and spread of viruses and eukaryotes to other animal hosts. Vector-borne bacteria of the genus Bartonella are prevalent and diverse in mammals globally and recent surveys have revealed numerous Bartonella lineages in bats. We assembled a sequence database of Bartonella strains, consisting of nine genetic loci from 209 previously characterized lineages and 121 new cultured strains from bats, and used these data to perform the most comprehensive phylogenetic analysis of Bartonella to date. This analysis included estimation of divergence dates using a molecular clock and ancestral reconstruction of host associations and geography. We estimate that Bartonella began infecting mammals 62 million years ago near the Cretaceous-Paleogene boundary. Additionally, the radiation of particular Bartonella clades correlate strongly to the timing of diversification and biogeography of mammalian hosts. Bats were inferred to be the ancestral hosts of all mammal-associated Bartonella and appear to be responsible for the early geographic expansion of the genus. We conclude that bats have had a deep influence on the evolutionary radiation of Bartonella bacteria and their spread to other mammalian orders. These results support a ‘bat seeding’ hypothesis that could explain similar evolutionary patterns in other mammalian parasite taxa. Application of such phylogenetic tools as we have used to other taxa may reveal the general importance of bats in the ancient diversification of mammalian parasites.Significance statement Discovering the evolutionary history of infectious agents in animals is important for understanding the process of host adaptation and the origins of human diseases. To clarify the evolution of the Bartonella genus, which contains important human pathogens, we performed phylogenetic analysis on a broad diversity of Bartonella strains, including novel strains from bats. Our results indicate that Bartonella clades diversified along with their mammal hosts over millions of years. Bats appear to be especially important in the early radiation and geographic dispersal of Bartonella lineages. These patterns are consistent with research indicating a chiropteran origin of important human viruses and eukaryotic parasites, suggesting that bats may play a unique role as historical sources of infections to other hosts. |
Molecular characterization of a novel relapsing fever Borrelia species from the desert cottontail (Sylvilagus audubonii) in New Mexico, USA.
Goodrich I , McKee C , Margos G , Kosoy M . J Wildl Dis 2022 58 (3) 646-651 The Borrelia genus comprises vector-borne, spirochete bacteria infecting vertebrates worldwide. We characterized a novel relapsing fever Borrelia species from a desert cottontail (Syvilagus audubonii) from New Mexico, United States, using an established multilocus sequence analysis approach. Phylogenetic analysis of the flagellin gene (flaB) and four other protein-coding loci (clpX, pepX, recG, rplB) grouped the novel Borrelia species with hard tick relapsing fever borreliae Borrelia lonestari, Borrelia theileri, and Borrelia miyamotoi. The identity of the vectors and other vertebrate hosts, geographic distribution, and zoonotic potential of this novel Borrelia species deserve further investigation. |
Tick-borne encephalitis among US travellers, 2010-20
Hills SL , Broussard KR , Broyhill JC , Shastry LG , Cossaboom CM , White JL , Machesky KD , Kosoy O , Girone K , Klena JD , Backenson BP , Gould CV , Lind L , Hieronimus A , Gaines DN , Wong SJ , Choi MJ , Laven JJ , Staples JE , Fischer M . J Travel Med 2021 29 (2) BACKGROUND: Tick-borne encephalitis (TBE) is an arboviral disease that is focally endemic in parts of Europe and Asia. TBE cases among US travellers are rare, with previous reports of only six cases among civilian travellers through 2009 and nine military-related cases through 2020. A TBE vaccine was licenced in the USA in August 2021. Understanding TBE epidemiology and risks among US travellers can help with the counselling of travellers going to TBE-endemic areas. METHODS: Diagnostic testing for TBE in the USA is typically performed at the Centers for Disease Control and Prevention (CDC) because no commercial testing is available. Diagnostic testing for TBE at CDC since 2010 was reviewed. For individuals with evidence of TBE virus infection, information was gathered on demographics, clinical presentations and risk factors for infection. RESULTS: From 2010-20, six patients with TBE were identified. Cases occurred among both paediatric and adult travellers and all were male. Patients were diagnosed with meningitis (n = 2) or encephalitis (n = 4); none died. Cases had travelled to various countries in Europe or Russia. Three cases reported visiting friends or relatives. Activities reported included hiking, camping, trail running, or working outdoors, and two cases had a recognized tick bite. CONCLUSIONS: TBE cases among US travellers are uncommon, with these six cases being the only known TBE cases among civilian travellers during this 11-year period. Nonetheless, given potential disease severity, pre-travel counselling for travellers to TBE-endemic areas should include information on measures to reduce the risk for TBE and other tick-borne diseases, including possible TBE vaccine use if a traveller's itinerary puts them at higher risk for infection. Clinicians should consider the diagnosis of TBE in a patient with a neurologic or febrile illness recently returned from a TBE-endemic country, particularly if a tick bite or possible tick exposure is reported. |
Frequency of Zika Virus Immunoglobulin M Antibody in Persons with West Nile Virus Infection
Hills SL , Laven J , Biggerstaff BJ , Kosoy O , Staples JE , Panella A . Vector Borne Zoonotic Dis 2021 21 (10) 817-821 West Nile virus (WNV) and Zika virus (ZIKV) are mosquito-borne viruses in the family Flaviviridae. Residents in, and travelers to, areas where the viruses are circulating are at risk for infection, and both viruses can cause an acute febrile illness. Given known cross-reactivity in flavivirus serologic assays, it is possible a patient with acute WNV infection could be misdiagnosed as having ZIKV infection if appropriate testing is not conducted. To understand how frequently persons with WNV infection have detectable cross-reactive ZIKV immunoglobulin M (IgM) antibody, we used archived serum samples from patients in the United States with recent WNV infection confirmed by a microsphere-based immunoassay test for IgM antibody and neutralizing antibody testing. Samples were tested for ZIKV IgM antibody with the Centers for Disease Control and Prevention (CDC) ZIKV IgM antibody capture enzyme-linked immunosorbent assay. Among 153 sera from patients with acute WNV infection, the ZIKV IgM antibody result was positive in 56 (37%; 95% confidence interval [CI] 29-44%) and equivocal in 28 (18%; 95% CI 13-25%). With 55% of samples having cross-reactive antibodies, it is important for health care providers to request appropriate testing based on the most likely cause of a patient's possible arboviral infection considering their clinical symptoms and signs, travel history, and place of residence. For cases where the epidemiology does not support the preliminary IgM findings, confirmatory neutralizing antibody testing should be performed. These measures will avoid an incorrect diagnosis of ZIKV infection, based on cross-reactive antibodies, in a person truly infected with WNV. |
Exposure of Domestic Cats to Three Zoonotic Bartonella Species in the United States
Osikowicz LM , Horiuchi K , Goodrich I , Breitschwerdt EB , Chomel B , Biggerstaff BJ , Kosoy M . Pathogens 2021 10 (3) Cat-associated Bartonella species, which include B. henselae, B. koehlerae, and B. clarridgeiae, can cause mild to severe illness in humans. In the present study, we evaluated 1362 serum samples obtained from domestic cats across the U.S. for seroreactivity against three species and two strain types of Bartonella associated with cats (B. henselae type 1, B. henselae type 2, B. koehlerae, and B. clarridgeiae) using an indirect immunofluorescent assay (IFA). Overall, the seroprevalence at the cutoff titer level of ≥1:64 was 23.1%. Seroreactivity was 11.1% and 3.7% at the titer level cutoff of ≥1:128 and at the cutoff of ≥1:256, respectively. The highest observation of seroreactivity occurred in the East South-Central, South Atlantic, West North-Central, and West South-Central regions. The lowest seroreactivity was detected in the East North-Central, Middle Atlantic, Mountain, New England, and Pacific regions. We observed reactivity against all four Bartonella spp. antigens in samples from eight out of the nine U.S. geographic regions. |
Experimental Infection of Amblyomma americanum (Acari: Ixodidae) With Bourbon Virus (Orthomyxoviridae: Thogotovirus)
Godsey MS , Rose D , Burkhalter KL , Breuner N , Bosco-Lauth AM , Kosoy OI , Savage HM . J Med Entomol 2021 58 (2) 873-879 Following the recent discovery of Bourbon virus (BRBV) as a human pathogen, and the isolation of the virus from Amblyomma americanum (L.) collected near the location of a fatal human case, we undertook a series of experiments to assess the laboratory vector competence of this tick species for BRBV. Larval ticks were infected using an immersion technique, and transstadial transmission of virus to the nymphal and then to the adult stages was demonstrated. Transstadially infected nymphs transmitted virus to adult ticks at very high rates during cofeeding, indicating the presence of infectious virus in the saliva of engorging ticks. Vertical transmission by transstadially infected females to their progeny occurred, but at a low rate. Rabbits fed on by infected ticks of all active life stages developed high titers of antibody to the virus, demonstrating host exposure to BRBV antigens/live virus during tick blood feeding. These results demonstrate that A. americanum is a competent vector of BRBV and indicate that cofeeding could be critical for enzootic maintenance. |
Reassortant Cache Valley virus associated with acute febrile, non-neurologic illness, Missouri.
Baker M , Hughes HR , Naqvi SH , Yates K , Velez JO , McGuirk S , Schroder B , Lambert AJ , Kosoy OI , Pue H , Turabelidze G , Staples JE . Clin Infect Dis 2021 73 (9) 1700-1702 An adult male from Missouri sought care for fever, fatigue, and gastrointestinal symptoms. He had leukopenia and thrombocytopenia and was treated for a presumed tickborne illness. His condition deteriorated with respiratory and renal failure, lactic acidosis, and hypotension. Next-generation sequencing and phylogenetic analysis identified a reassortant Cache Valley virus. |
Bats are key hosts in the radiation of mammal-associated Bartonella bacteria.
McKee CD , Bai Y , Webb CT , Kosoy MY . Infect Genet Evol 2021 89 104719 Bats are notorious reservoirs of several zoonotic diseases and may be uniquely tolerant of infection among mammals. Broad sampling has revealed the importance of bats in the diversification and spread of viruses and eukaryotes to other animal hosts. Vector-borne bacteria of the genus Bartonella are prevalent and diverse in mammals globally and recent surveys have revealed numerous Bartonella lineages in bats. We assembled a sequence database of Bartonella strains, consisting of nine genetic loci from 209 previously characterized Bartonella lineages and 121 new cultured isolates from bats, and used these data to perform a comprehensive phylogenetic analysis of the Bartonella genus. This analysis included estimation of divergence dates using a molecular clock and ancestral reconstruction of host associations and geography. We estimate that Bartonella began infecting mammals 62 million years ago near the Cretaceous-Paleogene boundary. Additionally, the radiation of particular Bartonella clades correlate strongly to the timing of diversification and biogeography of mammalian hosts. Bats were inferred to be the ancestral hosts of all mammal-associated Bartonella and appear to be responsible for the early geographic expansion of the genus. We conclude that bats have had a deep influence on the evolutionary radiation of Bartonella bacteria and their spread to other mammalian orders. These results support a 'bat seeding' hypothesis that could explain similar evolutionary patterns in other mammalian parasite taxa. Application of such phylogenetic tools as we have used to other taxa may reveal the general importance of bats in the ancient diversification of mammalian parasites. |
Trypanosoma (Herpetosoma) diversity in rodents and lagomorphs of New Mexico with a focus on epizootological aspects of infection in Southern Plains woodrats (Neotoma micropus).
Goodrich I , McKee C , Kosoy M . PLoS One 2020 15 (12) e0244803 Protozoan parasites of the genus Trypanosoma infect a broad diversity of vertebrates and several species cause significant illness in humans. However, understanding of the phylogenetic diversity, host associations, and infection dynamics of Trypanosoma species in naturally infected animals is incomplete. This study investigated the presence of Trypanosoma spp. in wild rodents and lagomorphs in northern New Mexico, United States, as well as phylogenetic relationships among these parasites. A total of 458 samples from 13 rodent and one lagomorph species collected between November 2002 and July 2004 were tested by nested PCR targeting the 18S ribosomal RNA gene (18S rRNA). Trypanosoma DNA was detected in 25.1% of all samples, with the highest rates of 50% in Sylvilagus audubonii, 33.1% in Neotoma micropus, and 32% in Peromyscus leucopus. Phylogenetic analysis of Trypanosoma sequences revealed five haplotypes within the subgenus Herpetosoma (T. lewisi clade). Focused analysis on the large number of samples from N. micropus showed that Trypanosoma infection varied by age class and that the same Trypanosoma haplotype could be detected in recaptured individuals over multiple months. This is the first report of Trypanosoma infections in Dipodomys ordii and Otospermophilus variegatus, and the first detection of a haplotype phylogenetically related to T. nabiasi in North America in S. audubonii. This study lends important new insight into the diversity of Trypanosoma species, their geographic ranges and host associations, and the dynamics of infection in natural populations. |
Development of diagnostic microsphere-based immunoassays for Heartland virus
Basile AJ , Horiuchi K , Goodman CH , Kosoy O , Panella AJ , Velez JO , Pastula DM , Brault AC , Staples JE , Calvert AE . J Clin Virol 2020 134 104693 BACKGROUND: Heartland virus (HRTV), a recently reclassified member of the genus Bandavirus, family Phenuiviridae, was first isolated in 2009 from a Missouri farmer exhibiting leukopenia and thrombocytopenia with suspected ehrlichiosis. Since then, more HRTV cases have been diagnosed, and firstline laboratory diagnostic assays are needed to identify future infections Objectives. We sought to develop rapid and reliable IgM and IgG microsphere immunoassays (MIAs) to test sera of patients suspected of having HRTV infection, and to distinguish between recent and past infections. STUDY DESIGN: Heartland virus antigen was captured by an anti-HRTV monoclonal antibody covalently bound to microspheres. Antibodies in human sera from confirmed HRTV-positive and negative cases were reacted with the microsphere complexes and detected using a BioPlex® 200 instrument. Assay cutoffs were determined by receiver operator characteristic analysis of the normalized test output values, equivocal zones for each assay were defined, and sensitivities, specificities, accuracies, and imprecision values were calculated. RESULTS: Sensitivities, specificities and accuracies of the IgM and IgG MIAs were all >95 %. Both tests were precise within and between assay plates, and cross-reactivity with other arboviruses was not observed. CONCLUSIONS: HRTV IgM and IgG MIAs are accurate and rapid first-line methods to serologically identify recent and past HRTV infections. |
Flea presence and abundance are not predictors of Bartonella tribocorum carriage in Norway rats (Rattus norvegicus) from an underserved neighborhood of Vancouver, Canada
Himsworth CG , Byers KA , Whelan T , Bai Y , Kosoy MY . Vector Borne Zoonotic Dis 2020 21 (2) 121-124 Urban Norway rats (Rattus norvegicus) carry pathogenic Bartonella spp. that are transmitted among rats and from rats to people through arthropod vectors, particularly fleas. There is marked temporospatial variation in Bartonella spp. carriage among Norway rats in Vancouver, Canada, and we investigated whether this variation is associated with flea presence or abundance. Bartonella triborocum was isolated from 96/370 (35%) rats and 211 (57%) rats had fleas with an average of one flea per rat. All fleas were identified as Nosopsyllus fasciatus. There was no significant relationship between B. tribocorum carriage and flea presence or abundance, suggesting that, in contrast to other rat-associated zoonoses transmitted by fleas (e.g., Yersinia pestis) flea indices may not be informative for understanding the ecology of Bartonella spp. in rats, particularly for N. fasciatus. |
Duration of seropositivity following yellow fever vaccination in U.S. military service members
Lindsey NP , Perry L , Fischer M , Woolpert T , Biggerstaff BJ , Brice G , Fitzpatrick K , Kosoy OI , Laven JJ , Myers CA , Hollis EM , Staples JE . Vaccine 2020 38 (52) 8286-8291 BACKGROUND: The United States military regularly deploys thousands of service members throughout areas of South America and Africa that are endemic for yellow fever (YF) virus. To determine if booster doses might be needed for service members who are repetitively or continually deployed to YF endemic areas, we evaluated seropositivity among US military personnel receiving a single dose of YF vaccine based on time post-vaccination. METHODS: Serum antibodies were measured using a plaque reduction neutralization test with 50% cutoff in 682 military personnel at 5-39 years post-vaccination. We determined noninferiority of immune response by comparing the proportion seropositive among those vaccinated 10-14 years previously with those vaccinated 5-9 years previously. Noninferiority was supported if the lower-bound of the 2-tailed 95% CI for p(10-14years) - p(5-9years) was ≥-0.10. Additionally, the geometric mean antibody titer (GMT) at various timepoints following vaccination were compared to the GMT at 5-9 years. RESULTS: The proportion of military service members with detectable neutralizing antibodies 10-14 years after a single dose of YF vaccine (95.8%, 95% CI 91.2-98.1%) was non-inferior to the proportion 5-9 years after vaccination (97.8%, 95% CI 93.7-99.3%). Additionally, GMT among vaccine recipients at 10-14 years post vaccination (99, 95% CI 82-121) was non-inferior to GMT in YF vaccine recipients at 5-9 years post vaccination (115, 95% CI 96-139). The proportion of vaccinees with neutralizing antibodies remained high, and non-inferior, among those vaccinated 15-19 years prior (98.5%, 95%CI 95.5-99.7%). Although the proportion seropositive decreased among vaccinees ≥ 20 years post vaccination, >90% remained seropositive. CONCLUSIONS: Neutralizing antibodies were present in > 95% of vaccine recipients for at least 19 years after vaccination, suggesting that booster doses every 10 years are not essential for most U.S. military personnel. |
Transmission of eastern equine encephalitis virus from an organ donor to 3 transplant recipients
Pouch SM , Katugaha SB , Shieh WJ , Annambhotla P , Walker WL , Basavaraju SV , Jones J , Huynh T , Reagan-Steiner S , Bhatnagar J , Grimm K , Stramer SL , Gabel J , Lyon GM , Mehta AK , Kandiah P , Neujahr DC , Javidfar J , Subramanian RM , Parekh SM , Shah P , Cooper L , Psotka MA , Radcliffe R , Williams C , Zaki SR , Staples JE , Fischer M , Panella AJ , Lanciotti RS , Laven JJ , Kosoy O , Rabe IB , Gould CV . Clin Infect Dis 2019 69 (3) 450-458 BACKGROUND: In fall 2017, 3 solid organ transplant (SOT) recipients from a common donor developed encephalitis within 1 week of transplantation, prompting suspicion of transplant-transmitted infection. Eastern equine encephalitis virus (EEEV) infection was identified during testing of endomyocardial tissue from the heart recipient. METHODS: We reviewed medical records of the organ donor and transplant recipients and tested serum, whole blood, cerebrospinal fluid, and tissue from the donor and recipients for evidence of EEEV infection by multiple assays. We investigated blood transfusion as a possible source of organ donor infection by testing remaining components and serum specimens from blood donors. We reviewed data from the pretransplant organ donor evaluation and local EEEV surveillance. RESULTS: We found laboratory evidence of recent EEEV infection in all organ recipients and the common donor. Serum collected from the organ donor upon hospital admission tested negative, but subsequent samples obtained prior to organ recovery were positive for EEEV RNA. There was no evidence of EEEV infection among donors of the 8 blood products transfused into the organ donor or in products derived from these donations. Veterinary and mosquito surveillance showed recent EEEV activity in counties nearby the organ donor's county of residence. Neuroinvasive EEEV infection directly contributed to the death of 1 organ recipient and likely contributed to death in another. CONCLUSIONS: Our investigation demonstrated EEEV transmission through SOT. Mosquito-borne transmission of EEEV to the organ donor was the likely source of infection. Clinicians should be aware of EEEV as a cause of transplant-associated encephalitis. |
Pentaplex real-time PCR for differential detection of Yersinia pestis and Y. pseudotuberculosis and application for testing fleas collected during plague epizootics.
Bai Y , Motin V , Enscore RE , Osikowicz L , Rosales Rizzo M , Hojgaard A , Kosoy M , Eisen RJ . Microbiologyopen 2020 9 (10) e1105 Upon acquiring two unique plasmids (pMT1 and pPCP1) and genome rearrangement during the evolution from Yersinia pseudotuberculosis, the plague causative agent Y. pestis is closely related to Y. pseudotuberculosis genetically but became highly virulent. We developed a pentaplex real-time PCR assay that not only detects both Yersinia species but also differentiates Y. pestis strains regarding their plasmid profiles. The five targets used were Y. pestis-specific ypo2088, caf1, and pst located on the chromosome, plasmids pMT1 and pPCP1, respectively; Y. pseudotuberculosis-specific chromosomal gene opgG; and 18S ribosomal RNA gene as an internal control for flea DNA. All targets showed 100% specificity and high sensitivity with limits of detection ranging from 1 fg to 100 fg, with Y. pestis-specific pst as the most sensitive target. Using the assay, Y. pestis strains were differentiated 100% by their known plasmid profiles. Testing Y. pestis and Y. pseudotuberculosis-spiked flea DNA showed there is no interference from flea DNA on the amplification of targeted genes. Finally, we applied the assay for testing 102 fleas collected from prairie dog burrows where prairie dog die-off was reported months before flea collection. All flea DNA was amplified by 18S rRNA; no Y. pseudotuberculosis was detected; one flea was positive for all Y. pestis-specific targets, confirming local Y. pestis transmission. Our results indicated the assay is sensitive and specific for the detection and differentiation of Y. pestis and Y. pseudotuberculosis. The assay can be used in field investigations for the rapid identification of the plague causative agent. |
Powassan virus infection likely acquired through blood transfusion presenting as encephalitis in a kidney transplant recipient
Taylor L , Stevens T , Destrampe EM , Brown JA , McGavic J , Gould CV , Chambers TV , Kosoy OI , Burkhalter KL , Annambhotla P , Basavaraju SV , Groves J , Osborn RA , Weiss J , Stramer SL , Misch EA . Clin Infect Dis 2020 72 (6) 1051-1054 A kidney transplant patient without known tick exposure developed encephalitis three weeks after transplantation. During the transplant hospitalization, the patient had received a blood transfusion from an asymptomatic donor later discovered to have been infected with Powassan virus. This report describes a probable instance of transfusion-transmitted Powassan virus infection. |
Bartonella species in medically important mosquitoes, Central Europe.
Rudolf I , Blazejova H , Mendel J , Strakova P , Sebesta O , Rettich F , Cabanova V , Miterpakova M , Betasova L , Pesko J , Barbusinova E , McKee C , Osikowicz L , Sikutova S , Hubalek Z , Kosoy M . Parasitol Res 2020 119 (8) 2713-2717 Here, we provide the first mass molecular screening of medically important mosquitoes for Bartonella species using multiple genetic markers. We examined a total of 72,115 mosquito specimens, morphologically attributed to Aedes vexans (61,050 individuals), Culex pipiens (10,484 individuals) and species of the Anopheles maculipennis complex (581 individuals) for Bartonella spp. The initial screening yielded 63 Bartonella-positive A. vexans mosquitoes (mean prevalence 0.1%), 34 Bartonella-positive C. pipiens mosquitoes (mean prevalence 0.3%) and 158 Bartonella-positive A. maculipennis group mosquitoes (mean prevalence 27.2%). Several different Bartonella ITS sequences were recovered. This study highlights the need for molecular screening of mosquitoes, the most important vectors of arthropod-borne pathogens, for potential bacterial agents. |
Investigation of Heartland Virus Disease throughout the United States, 2013-2017
Staples JE , Pastula DM , Panella AJ , Rabe IB , Kosoy OI , Walker WL , Velez JO , Lambert AJ , Fischer M . Open Forum Infect Dis 2020 7 (5) ofaa125 Background: Heartland virus (HRTV) was first described as a human pathogen in 2012. From 2013 to 2017, the Centers for Disease Control and Prevention (CDC) implemented a national protocol to evaluate patients for HRTV disease, better define its geographic distribution, epidemiology, and clinical characteristics, and develop diagnostic assays for this novel virus. Methods: Individuals aged >/=12 years whose clinicians contacted state health departments or the CDC about testing for HRTV infections were screened for recent onset of fever with leukopenia and thrombocytopenia. A questionnaire was administered to collect data on demographics, risk factors, and signs and symptoms; blood samples were tested for the presence of HRTV RNA and neutralizing antibodies. Results: Of 85 individuals enrolled and tested, 16 (19%) had evidence of acute HRTV infection, 1 (1%) had past infection, and 68 (80%) had no infection. Patients with acute HRTV disease were residents of 7 states, 12 (75%) were male, and the median age (range) was 71 (43-80) years. Illness onset occurred from April to September. The majority reported fatigue, anorexia, nausea, headache, confusion, arthralgia, or myalgia. Fourteen (88%) cases were hospitalized; 2 (13%) died. Fourteen (88%) participants reported finding a tick on themselves in the 2 weeks before illness onset. HRTV-infected individuals were significantly older (P < .001) and more likely to report an attached tick (P = .03) than uninfected individuals. Conclusions: Health care providers should consider HRTV disease testing in patients with an acute febrile illness with either leukopenia or thrombocytopenia not explained by another condition or who were suspected to have a tickborne disease but did not improve following appropriate treatment. |
Assessment of immunoglobulin M enzyme-linked immunosorbent assay ratios to identify West Nile Virus and St. Louis Encephalitis virus infections during concurrent outbreaks of West Nile Virus and St. Louis encephalitis virus diseases, Arizona 2015
Curren EJ , Venkat H , Sunenshine R , Fitzpatrick K , Kosoy O , Krow-Lucal E , Zabel K , Adams L , Kretschmer M , Fischer M , Hills SL . Vector Borne Zoonotic Dis 2020 20 (8) 619-623 West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related mosquito-borne flaviviruses that cause clinical disease ranging from febrile illness to encephalitis. The standard for serological diagnosis is immunoglobulin M (IgM) testing followed by confirmatory plaque reduction neutralization test (PRNT) to differentiate the infecting virus. However, the PRNT is time-consuming and requires manipulation of live virus. During concurrent WNV and SLEV outbreaks in Arizona in 2015, we assessed use of a diagnostic algorithm to simplify testing. It incorporated WNV and SLEV ratios based on positive-to-negative (P/N) values derived from the IgM antibody-capture enzyme-linked immunosorbent assay. We compared each sample's ratio-based result with the confirmed WNV or SLEV sample result indicated by PRNT or PCR testing. We analyzed data from 70 patients with 77 serum and cerebrospinal fluid samples, including 53 patients with confirmed WNV infection and 17 patients with confirmed SLEV infection. Both WNV and SLEV ratios had specificity >/=95%, indicating a high likelihood that each ratio was correctly identifying the infecting virus. The SLEV ratio sensitivity of 30% was much lower than the WNV ratio sensitivity of 91%, likely because of higher cross-reactivity of SLEV antibodies and generation of lower P/N values. The standard for serological diagnosis of WNV and SLEV infections remains IgM testing followed by PRNT. However, these results suggest the ratios could potentially be used as part of a diagnostic algorithm in outbreaks to substantially reduce the need for PRNTs. |
Comparison of characteristics of patients with West Nile virus or St. Louis encephalitis virus neuroinvasive disease during concurrent outbreaks, Maricopa County, Arizona, 2015
Venkat H , Krow-Lucal E , Kretschmer M , Sylvester T , Levy C , Adams L , Fitzpatrick K , Laven J , Kosoy O , Sunenshine R , Smith K , Townsend J , Chevinsky J , Hennessey M , Jones J , Komatsu K , Fischer M , Hills S . Vector Borne Zoonotic Dis 2020 20 (8) 624-629 West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related mosquito-borne flaviviruses that can cause neuroinvasive disease. No concurrent WNV and SLEV disease outbreaks have previously been identified. When concurrent outbreaks occurred in 2015 in Maricopa County, Arizona, we collected data to describe the epidemiology, and to compare features of patients with WNV and SLEV neuroinvasive disease. We performed enhanced case finding, and gathered information from medical records and patient interviews. A case was defined as a clinically compatible illness and laboratory evidence of WNV, SLEV, or unspecified flavivirus infection in a person residing in Maricopa County in 2015. We compared demographic and clinical features of WNV and SLEV neuroinvasive cases; for this analysis, a case was defined as physician-documented encephalitis or meningitis and a white blood cell count >5 cells/mm(3) in cerebrospinal fluid. In total, we identified 82 cases, including 39 WNV, 21 SLEV, and 22 unspecified flavivirus cases. The comparative analysis included 21 WNV and 14 SLEV neuroinvasive cases. Among neuroinvasive cases, the median age of patients with SLEV (63 years) was higher than WNV (52 years). Patients had similar symptoms; rash was identified more frequently in WNV (33%) neuroinvasive cases than in SLEV (7%) cases, but this difference was not statistically significant (p = 0.11). In summary, during the first known concurrent WNV and SLEV disease outbreaks, no specific clinical features were identified that could differentiate between WNV and SLEV neuroinvasive cases. Health care providers should consider both infections in patients with aseptic meningitis or encephalitis. |
Longitudinal study of bacterial infectious agents in a community of small mammals in New Mexico
Goodrich I , McKee C , Kosoy M . Vector Borne Zoonotic Dis 2020 20 (7) 496-508 Background and Objectives: Vector-borne bacterial diseases represent a substantial public health burden and rodents have been recognized as important reservoir hosts for many zoonotic pathogens. This study investigates bacterial pathogens in a small mammal community of the southwestern United States of America. Methods: A total of 473 samples from 13 wild rodent and 1 lagomorph species were tested for pathogens of public health significance: Bartonella, Brucella, Yersinia, Borrelia, Rickettsia spp., and Anaplasma phagocytophilum. Results: Three animals were positive for Yersinia pestis, and one Sylvilagus audubonii had a novel Borrelia sp. of the relapsing fever group. No Brucella, Rickettsia, or A. phagocytophilum infections were detected. Bartonella prevalence ranged between 0% and 87.5% by animal species, with 74.3% in the predominant Neotoma micropus and 78% in the second most abundant N. albigula. The mean duration of Bartonella bacteremia in mark-recaptured N. micropus and N. albigula was 4.4 months, ranging from <1 to 18 months, and differed among Bartonella genogroups. Phylogenetic analysis of the Bartonella citrate synthase gene (gltA) revealed 9 genogroups and 13 subgroups. Seven genogroups clustered with known or previously reported Bartonella species and strains while two were distant enough to represent new Bartonella species. We report, for the first time, the detection of Bartonella alsatica in North America in Sylvilagus audubonii and expand the known host range of Bartonella washoensis to include Otospermophilus variegatus. Interpretation and Conclusion: This work broadens our knowledge of the hosts and geographic range of bacterial pathogens that could guide future surveillance efforts and improves our understanding of the dynamics of Bartonella infection in wild small mammals. |
Zika virus IgM 25 months after symptom onset, Miami-Dade County, Florida, USA
Griffin I , Martin SW , Fischer M , Chambers TV , Kosoy OL , Goldberg C , Falise A , Villamil V , Ponomareva O , Gillis LD , Blackmore C , Jean R . Emerg Infect Dis 2019 25 (12) 2264-2265 We assessed IgM detection in Zika patients from the 2016 outbreak in Miami-Dade County, Florida, USA. Of those with positive or equivocal IgM after 12-19 months, 87% (26/30) had IgM 6 months later. In a survival analysis, approximately 76% had IgM at 25 months. Zika virus IgM persists for years, complicating serologic diagnosis. |
Identification of Bartonella rochalimae in Guinea pigs (Cavia porcellus) and fleas collected from rural Peruvian households
Rizzo MF , Osikowicz L , Caceres AG , LunaCaipo VD , Suarez-Puyen SM , Bai Y , Kosoy M . Am J Trop Med Hyg 2019 101 (6) 1276-1281 In the present study, we tested 391 fleas collected from guinea pigs (Cavia porcellus) (241 Pulex species, 110 Ctenocephalides felis, and 40 Tiamastus cavicola) and 194 fleas collected from human bedding and clothing (142 Pulex species, 43 C. felis, five T. cavicola, and four Ctenocephalides canis) for the presence of Bartonella DNA. We also tested 83 blood spots collected on FTA cards from guinea pigs inhabiting 338 Peruvian households. Bartonella DNA was detected in 81 (20.7%) of 391 guinea pig fleas, in five (2.6%) of 194 human fleas, and in 16 (19.3%) of 83 guinea pig blood spots. Among identified Bartonella species, B. rochalimae was the most prevalent in fleas (89.5%) and the only species found in the blood spots from guinea pigs. Other Bartonella species detected in fleas included B. henselae (3.5%), B. clarridgeiae (2.3%), and an undescribed Bartonella species (4.7%). Our results demonstrated a high prevalence of zoonotic B. rochalimae in households in rural areas where the research was conducted and suggested a potential role of guinea pigs as a reservoir of this bacterium. |
Janibacter species with evidence of genomic polymorphism isolated from resected heart valve in a patient with aortic stenosis.
Malania L , Bai Y , Khanipov K , Tsereteli M , Metreveli M , Tsereteli D , Sidamonidze K , Imnadze P , Fofanov Y , Kosoy M . Infect Dis Rep 2019 11 (2) 8132 The authors report isolation and identification of two strains of bacteria belonging to the genus Janibacter from a human patient with aortic stenosis from a rural area of the country of Georgia. The microorganisms were isolated from aortic heart valve. Two isolates with slightly distinct colony morphologies were harvested after sub-culturing from an original agar plate. Preliminary identification of the isolates is based on amplification and sequencing of a fragment of 16SrRNA. Whole genome sequencing was performed using the Illumina MiSeq instrument. Both isolates were identified as undistinguished strains of the genus Janibacter. Characterization of whole genome sequences of each culture has revealed a 15% difference in gene profile between the cultures and confirmed that both strains belong to the genus Janibacter with the closest match to J. terrae. Genomic comparison of cultures of Janibacter obtained from human cases and from environmental sources presents a promising direction for evaluating a role of these bacteria as human pathogens. |
Immunogenicity of fractional-dose vaccine during a yellow fever outbreak - final report
Casey RM , Harris JB , Ahuka-Mundeke S , Dixon MG , Kizito GM , Nsele PM , Umutesi G , Laven J , Kosoy O , Paluku G , Gueye AS , Hyde TB , Ewetola R , Sheria GKM , Muyembe-Tamfum JJ , Staples JE . N Engl J Med 2019 381 (5) 444-454 BACKGROUND: In 2016, the response to a yellow fever outbreak in Angola and the Democratic Republic of Congo led to a global shortage of yellow fever vaccine. As a result, a fractional dose of the 17DD yellow fever vaccine (containing one fifth [0.1 ml] of the standard dose) was offered to 7.6 million children 2 years of age or older and nonpregnant adults in a preemptive campaign in Kinshasa. The goal of this study was to assess the immune response to the fractional dose in a large-scale campaign. METHODS: We recruited participants in four age strata at six vaccination sites. We assessed neutralizing antibody titers against yellow fever virus in blood samples obtained before vaccination and at 1 month and 1 year after vaccination, using a plaque reduction neutralization test with a 50% cutoff (PRNT50). Participants with a PRNT50 titer of 10 or higher were considered to be seropositive. Those with a baseline titer of less than 10 who became seropositive at follow-up were classified as having undergone seroconversion. Participants who were seropositive at baseline and who had an increase in the titer by a factor of 4 or more at follow-up were classified as having an immune response. RESULTS: Among 716 participants who completed the 1-month follow-up, 705 (98%; 95% confidence interval [CI], 97 to 99) were seropositive after vaccination. Among 493 participants who were seronegative at baseline, 482 (98%; 95% CI, 96 to 99) underwent seroconversion. Among 223 participants who were seropositive at baseline, 148 (66%; 95% CI, 60 to 72) had an immune response. Lower baseline titers were associated with a higher probability of having an immune response (P<0.001). Among 684 participants who completed the 1-year follow-up, 666 (97%; 95% CI, 96 to 98) were seropositive for yellow fever antibody. The distribution of titers among the participants who were seronegative for yellow fever antibody at baseline varied significantly among age groups at 1 month and at 1 year (P<0.001 for both comparisons). CONCLUSIONS: A fractional dose of the 17DD yellow fever vaccine was effective at inducing seroconversion in participants who were seronegative at baseline. Titers remained above the threshold for seropositivity at 1 year after vaccination in nearly all participants who were seropositive at 1 month after vaccination. These findings support the use of fractional-dose vaccination for outbreak control. (Funded by the U.S. Agency for International Development and the Centers for Disease Control and Prevention.). |
Marmots and Yersinia pestis Strains in Two Plague Endemic Areas of Tien Shan Mountains
Sariyeva G , Bazarkanova G , Maimulov R , Abdikarimov S , Kurmanov B , Abdirassilova A , Shabunin A , Sagiyev Z , Dzhaparova A , Abdel Z , Mussagaliyeva R , Morand S , Motin V , Kosoy M . Front Vet Sci 2019 6 207 The main purpose of this study was to clarify the role of gray marmots (Marmota baibacina) in the long-term maintenance of highly virulent strains of Yersinia pestis in two plague endemic foci of the Tien Shan Mountains in Kyrgyzstan. We present data from regular observations of populations of M. baibacina and small rodents cohabiting with marmots in the mountainous grasslands of the Sari-Dzhas (east of Issyk-Kul Lake) and the Upper-Naryn (south of Issyk-Kul Lake) natural foci. During 2012-2017, an abundance of marmots and their ectoparasites (fleas and ticks) was significantly higher in Upper-Naryn comparing to Sari-Dzhas, although there were no differences in a number and diversity of small rodents cohabiting with marmots. The plague bacterium was detected either in marmots or in their ectoparasites collected during 4 of 6 years of observation in Sari-Dzhas and during 2 of 4 years of observation in Upper-Naryn. Plague was found in three sectors situated closely to each other in Sari-Dzhas and in 1 of 8 repeatedly surveyed sectors in Upper-Naryn. During 6 years, we isolated 9 strains of Y. pestis from marmots, two from their fleas Oropsylla silantiewi, one from an unidentified tick, and one from the gray hamster (Cricetulus migratorius). All plague strains isolated from the rodents and their ectoparasites in this study were similar to Antiqua biovar specific for marmots. The results indicate that plague can circulate continuously in the Tien Shan Mountains in populations of gray marmots and their ectoparasites with a facultative involvement of other rodent species after significant changes in rodent communities that happened in Kyrgyzstan during the previous two decades. The simultaneous field survey of two natural foci of plague, Sari-Dzhas, and Upper-Naryn, would be important for further analysis of circulation of Y. pestis strains belonging to Antiqua biovar in the Tien Shan Mountains. |
Host phylogeny, geographic overlap, and roost sharing shape parasite communities in European bats
McKee CD , Krawczyk AI , Sandor AD , Gorfol T , Foldvari M , Foldvari G , Dekeukeleire D , Haarsma AJ , Kosoy MY , Webb CT , Sprong H . Front Ecol Evol 2019 7 How multitrophic relationships between wildlife communities and their ectoparasitic vectors interact to shape the diversity of vector-borne microorganisms is poorly understood. Nested levels of dependence among microbes, vectors, and vertebrate hosts may have complicated effects on both microbial community assembly and evolution. We examined Bartonella sequences from European bats and their ectoparasites with a combination of network analysis, Bayesian phylogenetics, tip-association and cophylogeny tests, and linear regression to understand the ecological and evolutionary processes that shape parasite communities. We detected seven bat-ectoparasite-Bartonella communities that can be differentiated based on bat families and roosting patterns. Tips of the Bartonella tree were significantly clustered by host taxonomy and geography. We also found significant evidence of evolutionary congruence between bat host and Bartonella phylogenies, indicating that bacterial species have evolved to infect related bat species. Exploring these ecological and evolutionary associations further, we found that sharing of Bartonella species among bat hosts was strongly associated with host phylogenetic distance and roost sharing and less strongly with geographic range overlap. Ectoparasite sharing between hosts was strongly predicted by host phylogenetic distance, roost sharing, and geographic overlap but had no additive effect on Bartonella sharing. Finally, historical Bartonella host-switching was more frequent for closely related bats after accounting for sampling bias among bat species. This study helps to disentangle the complex ecology and evolution of Bartonella bacteria in bat species and their arthropod vectors. Our work provides insight into the important mechanisms that partition parasite communities among hosts, particularly the effect of host phylogeny and roost sharing, and could help to elucidate the evolutionary patterns of other diverse vector-borne microorganisms. |
Heartland virus infection in a heart transplant recipient from the Heartland
Hevey MA , O'Halloran JA , Jagger BW , Staples JE , Lambert AJ , Panella AJ , Kosoy OI , Turabelidze G , Raymer DS , Ewald GA , Kwon JH . Transpl Infect Dis 2019 21 (4) e13098 Tick-borne infections represent a significant health risk each year in the United States. Immunocompromised patients are typically at risk of more severe disease manifestations than their immunocompetent counterparts. Here we report a case of a newly emerging phlebovirus, Heartland virus, in a heart transplant recipient. This article is protected by copyright. All rights reserved. |
Notes from the Field: Investigation of Colorado tick fever virus disease cases - Oregon, 2018
McDonald E , George D , Rekant S , Curren E , DeBess E , Hedberg K , Lutz J , Faith J , Kaisner H , Fawcett R , Sherer R , Kanyuch R , Gudmundsson A , Gardner N , Salt M , Kosoy O , Velez J , Staples E , Fischer M , Gould C . MMWR Morb Mortal Wkly Rep 2019 68 (12) 289-290 In early summer 2018, four cases of Colorado tick fever (CTF) were reported in residents of central Oregon; CTF virus infection was confirmed using CDC’s reverse transcription–polymerase chain reaction (RT-PCR) assay (1). CTF is caused by a coltivirus that is transmitted by infected Rocky Mountain wood ticks (Dermacentor andersoni) (2). The tick is found throughout the western United States and Canada, typically at 4,000–10,000 feet (1,219–3,048 meters) above sea level in grassy areas near sage brush (3). CTF virus causes an acute febrile illness with nonspecific symptoms, and although fatal cases are rare, up to 30% of persons with CTF virus disease require hospitalization (4). Because there is no definitive treatment for CTF virus disease, clinical management is supportive. Biphasic illness pattern, leukopenia, absence of rash, and place of exposure can help distinguish CTF from other arthropod-borne infections (2,5). CTF is a reportable condition in six states, including Oregon, but is not nationally notifiable. Over the past decade, the Oregon Health Authority has reported an average of less than one case of CTF per year. |
Zika virus IgM detection and neutralizing antibody profiles 12-19 months after illness onset
Griffin I , Martin SW , Fischer M , Chambers TV , Kosoy O , Falise A , Ponomareva O , Gillis LD , Blackmore C , Jean R . Emerg Infect Dis 2019 25 (2) 299-303 Data on the duration of detectable Zika virus-specific IgM in infected persons are limited. Neutralizing antibody cross-reactivity occurs between Zika virus and related flaviviruses, but the degree to which this confounds diagnosis is uncertain. We tested serum specimens collected 12-19 months after illness onset from patients with confirmed Zika virus disease for Zika virus IgM and Zika virus and dengue virus neutralizing antibodies. Among 62 participants, 45 (73%) had detectable Zika virus IgM and 12 (19%) had an equivocal result. Although all patients tested had Zika virus neutralizing antibodies, 39 (63%) also had neutralizing antibodies against dengue virus; of those, 12 (19%) had <4-fold difference between Zika virus and dengue virus titers, and 5 (8%) had dengue virus titer >4-fold higher than Zika virus titer. Prolonged detection of IgM and neutralizing antibody cross-reactivity make it difficult to determine the timing of Zika virus infection and differentiate between related flaviviruses. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 28, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure