Last data update: Jul 11, 2025. (Total: 49561 publications since 2009)
Records 1-30 (of 144 Records) |
Query Trace: Klena J[original query] |
---|
Laboratory evaluation of antigen rapid diagnostic tests to detect Ebola and Sudan viruses
Emperador DM , Sayyad L , Brady M , Rowland J , Krapiunaya I , Eckerle I , Agogo E , Bausch DG , Montgomery JM , Klena JD . J Clin Virol 2025 179 105830 ![]() BACKGROUND: Nucleic acid-based assays are the diagnostic gold standard for filoviruses, including Ebola (EBOV) and Sudan (SUDV) viruses. However, outbreaks in areas with limited laboratory infrastructure highlight the need for simpler diagnostic tests that can be rapidly and safely used in the field. METHODS: We evaluated eight antigen rapid diagnostic tests (Ag-RDTs) for their ability to detect EBOV and SUDV. Analytical panels using virus cell slurries were used to assess limit of detection, and clinical samples were tested to determine sensitivity and specificity. RESULTS: Five Ag-RDTs detected EBOV and three detected SUDV, although clinical sensitivity was low (20-40 % for EBOV, 33 % for SUDV), improving only with higher viral loads. All assays demonstrated 100 % clinical specificity with no cross-reactivity. DISCUSSION: Although none of the evaluated Ag-RDTs are suitable for routine diagnosis, some may be useful in high viral load contexts such as cadaver testing. Our findings highlight the need to improve Ag-RDT sensitivity or develop high-sensitivity point-of-care molecular diagnostics. |
Detection of Nipah Virus in Human Milk: A Novel Finding
Rahman DI , Muntasir I , Noman MZI , Rahman MJ , Islam MF , Ema FA , Alam MR , Islam M , Sharif AR , Aquib WR , Siddika A , Rahman MM , Niloy N , Nazneen A , Hassan MR , Qayum MO , Hossain ME , Chowdhury KIA , Islam A , Rahman M , Sultana S , Klena JD , Rahman MZ , Banu S , Epstein JH , Montgomery JM , Shirin T , Satter SM . J Med Virol 2025 97 (7) e70445 ![]() Nipah virus (NiV) causes severe diseases in humans with a high case fatality rate. The primary risk factors for NiV infection in Bangladesh are drinking raw date palm sap (DPS) contaminated with Pteropus fruit bat secretions/excretions or close contact with or exposure to the body fluid of an individual with NiV infection. During the 2023 NiV outbreak investigation in Bangladesh, the breast milk of a NiV-infected nursing mother was tested by real-time reverse transcriptase polymerase chain reaction (RT-PCR) for detection of NiV-RNA. The newborn was also tested as a suspected NiV-infected subject. NiV, specifically NiV RNA, was detected in the breast milk sample. Through the investigation, it was determined that the mother consumed raw DPS 9 days before the delivery. The newborn was also confirmed as NiV positive and had exposure to maternal bodily fluid while breastfeeding, and was in prolonged maternal contact during caregiving. Although the detection of NiV RNA in breast milk does not equate to viability and transmissibility of the virus, this finding provides preliminary evidence that warrants further investigation into the potential role of breast milk in postnatal transmission of NiV. Our findings advocate incorporating breast milk testing into NiV diagnostic protocols for symptomatic mothers. This advancement will broaden our understanding of postnatal transmission of NiV and pave the way for more effective containment strategies. |
DC-SIGN (CD209)-mediated interactions between bacteria, lung cancer tissues, and macrophages promote cancer metastasis
Li Q , Hasan N , Zhao F , Xue Y , Zhu S , Lv Y , Jiang LY , Yang K , Li W , Zhang Y , He Y , Cai H , Ding H , Klena JD , Anisimov AP , Wang SG , Chen H , Ye C , Yuan J , Chen T . Infect Agent Cancer 2025 20 (1) 40 One of the hallmarks of lung cancers is the earlier metastasis resulting from the dissemination of cancer cells. Although accumulating evidence suggests that bacterial infection may be involved in the development of the metastasis of lung cancer, few studies have explored the molecular mechanisms of bacterial infection in the dissemination of lung cancer cells. A series of studies have indicated that certain Gram-negative bacteria are able to hijack antigen-presenting cells (APCs) via interaction with DC-SIGN (CD209) receptors to facilitate the dissemination of pathogens, including viruses, bacteria, fungi, and parasites. Therefore, in the present work, it was hypothesized that bacterial infection may promote the dissemination of cancer cells via the utilization of a similar mechanism. It was first discovered that human lung cancer tissues contain a very high diversity of bacterial DNAs, indicating the co-existence of lung cancer tissues and microbial organisms. It was then found that lung cancer tissues express DC-SIGN, leading to binding with a Gram-negative bacterium, Shigella sonnei. Further, this bacterium was found to be able not only to induce the expression of DC-SIGN on macrophages but also to enhance the migration ability of lung cancer cells in vitro. The in vivo experiments supported these observations, showing that in wild-type (WT) mice, Shigella sonnei infection significantly increased tumor size, weight, and metastatic nodules compared to SIGNR1 knockout (KO) mice. These observations were associated with increasing DC-SIGN expression in WT mice. Finally, these results suggest that bacterial infections could play a significant role in promoting lung cancer progression and metastasis via DC-SIGN-mediated mechanisms. |
Case series of patients with laboratory confirmed Marburg virus disease, 2023 Equatorial Guinea
Ndoho FAO , Fontana L , Avomo COO , Mikue LEN , Eyemam DÑ F , Nguere MA , Mometolo IE , Nzang RNB , Maye DMN , Hernandez Suarez Y , Esono SE , Miko Ayang JA , Giuliani R , Jacquerioz F , Lang HJ , Kojan R , Chaillon A , Ngai S , de Waroux OLP , Silenzi A , Di Marco M , Legand A , Formenty P , Negron ME , Klena JD , Choi MJ , Mayer O , Scholte FEM , Welch SR , Gutierrez EZ , Diaz J . Clin Infect Dis 2025 BACKGROUND: Marburg virus disease (MVD) is a severe viral infection caused by the Marburg marburgvirus species. In February 2023, Equatorial Guinea declared its first outbreak. This case series describes the natural history of MVD in five laboratory confirmed patients. METHODS: Patients with confirmed MVD admitted to the national treatment center in Bata, Equatorial Guinea, were monitored for vital signs and symptoms. Comprehensive clinical data was collected to understand the progression and outcome of the disease. RESULTS: Five patients were confirmed to have MVD. Three male healthcare workers were diagnosed early in their disease and subsequently survived. The other two patients, both females, were admitted later in their disease progression and died within 24 hours of admission. Four patients received remdesivir under a protocol for the Monitored Emergency Use of Unregistered and Experimental Interventions. The early symptoms were non-specific, with rapid progression to more severe conditions in the later stages of the disease. Early treatment with remdesivir showed the drug to be well tolerated. CONCLUSIONS: Contrary to some reports and the recommended case definition for MVD, our patients presented with a rash but did not exhibit vomiting or diarrhea. Hemorrhagic signs were solely observed in the terminal stage, preceding demise. Despite the limited sample size, these findings emphasize the importance of tailoring the case definition to the specific outbreak. Further evidence on the efficacy and safety of therapeutics for MVD, including remdesivir, should be gathered through well-designed trials during future epidemic responses. |
Use of the Chainchecker application: Uganda's experience during the 2022 Sudan Virus Disease outbreak
Akunzirwe R , Whitmer S , Stewart M , Harris JR , Wanyana MW , Ahirirwe SR , Ario AR , Kadobera D , Kwesiga B , Migisha R , Rajan A , Stock N , Eng J , Klena JD , Shoemaker T , Montgomery J , Choi M . PLOS Glob Public Health 2025 5 (4) e0004352 ![]() ![]() On September 20, 2022, the Uganda Ministry of Health declared an outbreak of Sudan Virus Disease (SVD). As the outbreak grew, it became imperative to quickly visualize and analyze chains of disease transmission. Determining epidemiological links between cases is critical for outbreak control as incorrect linkages may result in missed case detection and undetected disease transmission. We describe the Uganda Ministry of Health's experience using Chainchecker, a computer application designed to visualize and verify transmission chain data. To use Chainchecker, a line list documenting the epidemiological details associated with individual cases is uploaded to the application. To verify epidemiologic linkages, the application calculates the exposure windows for each case based on user-defined incubation periods and dates of symptom onset. If genetic sequencing data is available, Chainchecker can overlay genetic distance data on top of the epidemiologic data. Chainchecker can also provide visualizations of hospitalization data, which can highlight potential instances of nosocomial disease transmission. Using the Chainchecker application, the case investigation team was able to connect 11 previously unlinked cases to the larger chain of disease transmission. The use of the application also led to the identification and correction of transmission chain errors for 13 SVD cases and the identification of 5 potential instances of nosocomial transmission. The use of the Chainchecker application in Uganda during the 2022 SVD outbreak allowed the response teams to rectify critical errors in transmission chains. Countries prone to Ebola Disease (EBOD) outbreaks should consider incorporating Chainchecker as an element of EBOD preparedness and response. |
Corrigendum to "Knowledge, attitudes, and practices and long-term immune response after rVSVΔG-ZEBOV-GP Ebola vaccination in healthcare workers in high-risk districts in Uganda" [Vaccine 24 (22) (2024) 126031]
Waltenburg MA , Kainulainen MH , Whitesell A , Nyakarahuka L , Baluku J , Kyondo J , Twongyeirwe S , Harmon J , Mulei S , Tumusiime A , Bergeron E , Haberling D , Klena JD , Spiropoulou C , Montgomery JM , Lutwama JJ , Makumbi I , Driwale A , Muruta A , Balinandi S , Shoemaker T , Cossaboom CM . Vaccine 2025 54 127119 |
Development of a culture-independent whole-genome sequencing of Nipah virus using the MinION Oxford Nanopore platform
Rahman MM , Miah M , Hossain ME , Rahim S , Sultana S , Satter SM , Islam A , Whitmer SLM , Epstein JH , Spiropoulou CF , Klena JD , Shirin T , Montgomery JM , Kaczmarek ME , Rahman MZ , Jahid IK . Microbiol Spectr 2025 e0249224 ![]() ![]() Nipah virus (NiV) is a deadly zoonotic pathogen in Southeast Asia causing severe respiratory and encephalitis symptoms with a high fatality rate. Whole-genome sequencing (WGS) is crucial for tracking transmission, conducting epidemiological analyses, and understanding NiV's adaptive evolution. WGS is essential for analyzing genomes, particularly in understanding pathogen nature, and pathogenesis and aiding in the development of therapeutics. However, sequencing this highly contagious virus directly from samples is challenging in low- and middle-income countries lacking BSL-4 facilities. This study developed and optimized a culture-independent, high-throughput multiplex PCR-based third-generation sequencing protocol for NiV using the Oxford Nanopore Technology platform and a proposed bioinformatics pipeline to generate consensus genome sequences directly from environmental and clinical specimens. We amplified 12 NiV RT-PCR-positive specimens (11 clinical, one environmental) to produce 60 amplicons, each approximately 400 bp, covering the entire ~18.2 kb genome. Using a two-step reverse transcriptase PCR approach, libraries were prepared with a ligation sequencing kit. Raw sequence data were then analyzed using bioinformatics tools. A minimum of 10,000 total reads per sample provided a nearly complete coverage (>95%) of the NiV genome, even with low virus concentrations (Ct ≤ 32), with an average quality score of 10.2. The WGS of 12 NiV-positive samples achieved coverage between 95.71% (Ct 29.54) and 99.3% (Ct 22.34). The entire process, from RNA extraction to finished sequences, took only 24 h. We developed a portable, culture-independent, high-throughput sequencing workflow suitable for resource-limited settings, aiding in real-time monitoring, outbreak investigation, and detection of new NiV strains and genetic evolution. IMPORTANCE: The development of a culture-independent, high-throughput whole-genome sequencing (WGS) protocol for Nipah virus (NiV) using the Oxford Nanopore MinION technology marks a significant advancement in outbreak response, surveillance, and genomic analysis of NiV. NiV is an RG4 category C pathogen; working with the NiV virus is a deep concern of biosafety and biosecurity. It demands the development of biologically safe procedures to get genetic information. This protocol utilizes biologically safe samples that were collected into recommended lysis solution, multiplex PCR, and third-generation sequencing, effectively addressing challenges in sequencing NiV. This optimized workflow achieved over 95% genome coverage without the need for virus culture. It is a cost-effective, rapid, and efficient approach to the WGS of NiV, making it suitable for resource-limited settings like Bangladesh. The method enhances the capacity for outbreak investigations, epidemiological analyses, and monitoring virus, aiding in detecting emerging strains. This work contributes significantly to global pandemic preparedness and response efforts. |
Metagenomic Identification of Fusarium solani Strain as Cause of US Fungal Meningitis Outbreak Associated with Surgical Procedures in Mexico, 2023
Chiu CY , Servellita V , de Lorenzi-Tognon M , Benoit P , Sumimoto N , Foresythe A , Cerqueira FM , Williams-Bouyer N , Ren P , Herrera LNS , Gaston DC , Sayyad L , Whitmer SL , Klena J , Vikram HR , Gold JAW , Gade L , Parnell L , Misas E , Chiller TM , Griffin IS , Basavaraju SV , Smith DJ , Litvintseva AP , Chow NA . Emerg Infect Dis 2025 31 (5) ![]() ![]() We used metagenomic next-generation sequencing (mNGS) to investigate an outbreak of Fusarium solani meningitis in US patients who had surgical procedures under spinal anesthesia in Matamoros, Mexico, during 2023. Using a novel method called metaMELT (metagenomic multiple extended locus typing), we performed phylogenetic analysis of concatenated mNGS reads from 4 patients (P1-P4) in parallel with reads from 28 fungal reference genomes. Fungal strains from the 4 patients were most closely related to each other and to 2 cultured isolates from P1 and an additional case (P5), suggesting that all cases arose from a point source exposure. Our findings support epidemiologic data implicating a contaminated drug or device used for epidural anesthesia as the likely cause of the outbreak. In addition, our findings show that the benefits of mNGS extend beyond diagnosis of infections to public health outbreak investigation. |
Outbreak of Marburg Virus Disease, Equatorial Guinea, 2023
Ngai S , Evers ES , Seoane AKL , Ameh G , Anoko JN , Barnadas C , Choi MJ , Diaz J , Fontana L , Formenty P , Nezu IH , Jacquerioz F , Klena J , Laurenson-Schafer H , de Waroux OLP , Legand A , Carrera RM , Metcalf T , Montgomery J , Morreale S , Negrón ME , Nvé JO , Ayekaba MO , Pavlin BI , Shoemaker T , Hernandez YT , Venta MV , Gutierrez EZ , Ndoho FAO . Emerg Infect Dis 2025 31 (5) ![]() ![]() In February 2023, the government of Equatorial Guinea declared an outbreak of Marburg virus disease. We describe the response structure and epidemiologic characteristics, including case-patient demographics, clinical manifestations, risk factors, and the serial interval and timing of symptom onset, treatment seeking, and recovery or death. We identified 16 laboratory-confirmed and 23 probable cases of Marburg virus disease in 5 districts and noted several unlinked chains of transmission and a case-fatality ratio of 90% (35/39 cases). Transmission was concentrated in family clusters and healthcare settings. The median serial interval was 18.5 days; most transmission occurred during late-stage disease. Rapid isolation of symptomatic case-patients is critical in preventing transmission and improving patient outcomes; community engagement and surveillance strengthening should be prioritized in emerging outbreaks. Further analysis of this outbreak and a One Health surveillance approach can help prevent and prepare for future potential spillover events. |
Bayou hantavirus cardiopulmonary syndrome, Louisiana, USA, 2022-2023
Ortega E , Simonson S , Shedroff E , Whitmer S , Whitesell A , Choi MJ , Shoemaker T , Montgomery JM , Klena JD , Hennig J , Sokol T . Emerg Infect Dis 2025 31 (2) 401-403 ![]() During 2020-2023, we sequenced Bayou virus from 2 patients in Louisiana, USA, with hantavirus cardiopulmonary syndrome. Direct virus sequencing demonstrated an inferred evolutionary relationship to previous cases. Our findings demonstrate that separate virus spillovers cause isolated cases and probable wide distribution of Bayou hantavirus in rodents across Louisiana. |
Ebola outbreak control in the Democratic Republic of the Congo
Garfield R , Fonjungo P , Soke G , Baggett H , Montgomery J , Luce R , Klena J , Mbala-Kingebeni P , Ahuka S , Mwamba D , Muyembe-Tamfam JJ , Agolory S . Disaster Med Public Health Prep 2024 18 e287 Health Security is a major concern for the Democratic Republic of the Congo (DRC). It is the second largest country in Africa, borders nine other countries, has more than 80 million inhabitants, and has suffered from decades of neglect and conflicts together with multiple recurrent disease outbreaks, including Ebola. |
Epidemiologic and genomic characterization of an outbreak of Rift Valley fever among humans and dairy cattle in northern Tanzania
Madut DB , Rubach MP , Allan KJ , Thomas KM , de Glanville WA , Halliday JEB , Costales C , Carugati M , Rolfe RJ , Bonnewell JP , Maze MJ , Mremi AR , Amsi PT , Kalengo NH , Lyamuya F , Kinabo GD , Mbwasi R , Kilonzo KG , Maro VP , Mmbaga BT , Lwezaula B , Mosha C , Marandu A , Kibona TJ , Zhu F , Chawla T , Chia WN , Anderson DE , Wang LF , Liu J , Houpt ER , Martines RB , Zaki SR , Leach A , Gibbons A , Chiang CF , Patel K , Klena JD , Cleaveland S , Crump JA . J Infect Dis 2024 ![]() ![]() BACKGROUND: A peri-urban outbreak of Rift Valley fever virus (RVFV) among dairy cattle from May through August 2018 in northern Tanzania was detected through testing samples from prospective livestock abortion surveillance. We sought to identify concurrent human infections, their phylogeny, and epidemiologic characteristics in a cohort of febrile patients enrolled from 2016-2019 at hospitals serving the epizootic area. METHODS: From September 2016 through May 2019, we conducted a prospective cohort study that enrolled febrile patients hospitalized at two hospitals in Moshi, Tanzania. Archived serum, plasma, or whole blood samples were retrospectively tested for RVFV by PCR. Human samples positive for RVFV were sequenced and compared to RVFV sequences obtained from cattle through a prospective livestock abortion study. Phylogenetic analysis was performed on complete RVFV genomes. RESULTS: Among 656 human participants, we detected RVFV RNA in four (0.6%), including one death with hepatic necrosis and other end-organ damage at autopsy. Humans infected with RVFV were enrolled from June through August 2018, and all resided in or near urban areas. Phylogenetic analysis of human and cattle RVFV sequences demonstrated that most clustered to lineage B, a lineage previously described in East Africa. A lineage E strain clustering with lineages in Angola was also identified in cattle. CONCLUSION: We provide evidence that an apparently small RVFV outbreak among dairy cattle in northern Tanzania was associated with concurrent severe and fatal infections among humans. Our findings highlight the unidentified scale and diversity of inter-epizootic RVFV transmission, including near and within an urban area. |
Completed genome segments of Maciel, Lechiguanas, and Laguna Negra orthohantaviruses
Shedroff E , Whitmer SLM , Mobley M , Morales-Betoulle M , Martin ML , Brignone J , Sen C , Nazar Y , Montgomery JM , Klena JD . Microbiol Resour Announc 2024 e0044124 ![]() ![]() New World orthohantaviruses are rodent-borne tri-segmented viruses that cause hantavirus cardiopulmonary syndrome in humans in the Americas. Molecular diagnostics for orthohantaviruses can be improved with more sequence data. Reported here are completed genomes for Lechiguanas, Maciel, and Laguna Negra viruses. |
Crimean-Congo hemorrhagic fever cases diagnosed during an outbreak of Sudan virus disease in Uganda, 2022-23
Balinandi S , Mulei S , Whitmer S , Nyakarahuka L , Cossaboom CM , Shedroff E , Morales-Betoulle M , Krapiunaya I , Tumusiime A , Kyondo J , Baluku J , Namanya D , Torach CR , Mutesi J , Kiconco J , Pimundu G , Muyigi T , Rowland J , Nsawotebba A , Ssewanyana I , Muwanguzi D , Kadobera D , Harris JR , Ario AR , Atek K , Kyobe HB , Nabadda S , Kaleebu P , Mwebesa HG , Montgomery JM , Shoemaker TR , Lutwama JJ , Klena JD . PLoS Negl Trop Dis 2024 18 (10) e0012595 ![]() ![]() BACKGROUND: In September 2022, Uganda experienced an outbreak of Sudan virus disease (SVD), mainly in central Uganda. As a result of enhanced surveillance activities for Ebola disease, samples from several patients with suspected viral hemorrhagic fever (VHF) were sent to the VHF Program at Uganda Virus Research Institute (UVRI), Entebbe, Uganda, and identified with infections caused by other viral etiologies. Herein, we report the epidemiologic and laboratory findings of Crimean-Congo hemorrhagic fever (CCHF) cases that were detected during the SVD outbreak response. METHODOLOGY: Whole blood samples from VHF suspected cases were tested for Sudan virus (SUDV) by real-time reverse transcription-polymerase chain reaction (RT-PCR); and if negative, were tested for CCHF virus (CCHFV) by RT-PCR. CCHFV genomic sequences generated by metagenomic next generation sequencing were analyzed to ascertain strain relationships. PRINCIPAL FINDINGS: Between September 2022 and January 2023, a total of 2,626 samples were submitted for VHF testing at UVRI. Overall, 13 CCHF cases (including 7 deaths; case fatality rate of 53.8%), aged 4 to 60 years, were identified from 10 districts, including several districts affected by the SVD outbreak. Four cases were identified within the Ebola Treatment Unit (ETU) at Mubende Hospital. Most CCHF cases were males engaged in livestock farming or had exposure to wildlife (n = 8; 61.5%). Among confirmed cases, the most common clinical symptoms were hemorrhage (n = 12; 92.3%), fever (n = 11; 84.6%), anorexia (n = 10; 76.9%), fatigue (n = 9; 69.2%), abdominal pain (n = 9; 69.2%) and vomiting (n = 9; 69.2%). Sequencing analysis showed that the majority of identified CCHFV strains belonged to the Africa II clade previously identified in Uganda. Two samples, however, were identified with greater similarity to a CCHFV strain that was last reported in Uganda in 1958, suggesting possible reemergence. CONCLUSIONS/SIGNIFICANCE: Identifying CCHFV from individuals initially suspected to be infected with SUDV emphasizes the need for comprehensive VHF testing during filovirus outbreak responses in VHF endemic countries. Without expanded testing, CCHFV-infected patients would have posed a risk to health care workers and others while receiving treatment after a negative filovirus diagnosis, thereby complicating response dynamics. Additionally, CCHFV-infected cases could acquire an Ebola infection while in the ETU, and upon release because of a negative Ebola virus result, have the potential to spread these infections in the community. |
Fatal meningoencephalitis associated with Ebola virus persistence in two survivors of Ebola virus disease in the Democratic Republic of the Congo: a case report study
Mukadi-Bamuleka D , Edidi-Atani F , Morales-Betoulle ME , Legand A , Nkuba-Ndaye A , Bulabula-Penge J , Mbala-Kingebeni P , Crozier I , Mambu-Mbika F , Whitmer S , Tshiani Mbaya O , Hensley LE , Kitenge-Omasumbu R , Davey R , Mulangu S , Fonjungo PN , Wiley MR , Klena JD , Peeters M , Delaporte E , van Griensven J , Ariën KK , Pratt C , Montgomery JM , Formenty P , Muyembe-Tamfum JJ , Ahuka-Mundeke S . Lancet Microbe 2024 100905 ![]() ![]() BACKGROUND: During the 2018-20 Ebola virus disease outbreak in the Democratic Republic of the Congo, thousands of patients received unprecedented vaccination, monoclonal antibody (mAb) therapy, or both, leading to a large number of survivors. We aimed to report the clinical, virological, viral genomic, and immunological features of two previously vaccinated and mAb-treated survivors of Ebola virus disease in the Democratic Republic of the Congo who developed second episodes of disease months after initial discharge, ultimately complicated by fatal meningoencephalitis associated with viral persistence. METHODS: In this case report study, we describe the presentation, management, and subsequent investigations of two patients who developed recrudescent Ebola virus disease and subsequent fatal meningoencephalitis. We obtained data from epidemiological databases, Ebola treatment units, survivor programme databases, laboratory datasets, and hospital records. Following national protocols established during the 2018-20 outbreak in the Democratic Republic of the Congo, blood, plasma, and cerebrospinal fluid (CSF) samples were collected during the first and second episodes of Ebola virus disease from both individuals and were analysed by molecular (quantitative RT-PCR and next-generation sequencing) and serological (IgG and IgM ELISA and Luminex assays) techniques. FINDINGS: The total time between the end of the first Ebola virus episode and the onset of the second episode was 342 days for patient 1 and 137 days for patient 2. In both patients, Ebola virus RNA was detected in blood and CSF samples during the second episode of disease. Complete genomes from CSF samples from this relapse episode showed phylogenetic relatedness to the genome sequenced from blood samples collected from the initial infection, confirming in-host persistence of Ebola virus. Serological analysis showed an antigen-specific humoral response with typical IgM and IgG kinetics in patient 1, but an absence of an endogenous adaptive immune response in patient 2. INTERPRETATION: We report the first two cases of fatal meningoencephalitis associated with Ebola virus persistence in two survivors of Ebola virus disease who had received vaccination and mAb-based treatment in the Democratic Republic of the Congo. Our findings highlight the importance of long-term monitoring of survivors, including continued clinical, virological, and immunological profiling, as well as the urgent need for novel therapeutic strategies to prevent and mitigate the individual and public health consequences of Ebola virus persistence. FUNDING: Ministry of Health of the Democratic Republic of the Congo, Institut National de Recherche Biomédicale, Infectious Disease Rapid Response Reserve Fund, US Centers for Disease Control and Prevention, French National Research Institute for Development, and WHO. |
Streamlined detection of Nipah virus antibodies using a split nanoluc biosensor
Bergeron É , Chiang CF , Lo MK , Karaaslan E , Satter SM , Rahman MZ , Hossain ME , Aquib WR , Rahman DI , Sarwar SB , Montgomery JM , Klena JD , Spiropoulou CF . Emerg Microbes Infect 2024 2398640 ABSTRACTNipah virus (NiV) is an emerging zoonotic RNA virus that can cause fatal respiratory and neurological disease in animals and humans. Accurate NiV diagnostics and surveillance tools are crucial for the identification of acute and resolved infections and to improve our understanding of NiV transmission and circulation. Here, we have developed and validated a split NanoLuc luciferase NiV glycoprotein (G) biosensor for detecting antibodies in clinical and animal samples. This assay is performed by simply mixing reagents and measuring luminescence, which depends on the complementation of the split NanoLuc luciferase G biosensor following its binding to antibodies. This anti-NiV-G "mix-and-read" assay was validated using the WHO's first international standard for anti-NiV antibodies and more than 700 serum samples from the NiV-endemic country of Bangladesh. Anti-NiV antibodies from survivors persisted for at least 8 years according to both ⍺NiV-G mix-and-read and NiV neutralization assays. The ⍺NiV-G mix-and-read assay sensitivity (98.6%) and specificity (100%) were comparable to anti-NiV IgG ELISA performance but failed to detect anti-NiV antibodies in samples collected less than a week following the appearance of symptoms. Overall, the anti-NiV-G biosensor represents a simple, fast, and reliable tool that could support the expansion of NiV surveillance and retrospective outbreak investigations. |
Continuous community engagement is needed to improve adherence to ebola response activities and survivorship during ebola outbreaks
Soke GN , Fonjungo P , Mbuyi G , Luce R , Klena J , Choi M , Kombe J , Makaya G , Mbuyi F , Bulambo H , Mossoko M , Mwanzembe C , Ikomo B , Adikey P , Montgomery J , Shoemaker T , Mbala P , Earle-Richardson G , Mwamba D , Tamfum JM . Glob Health Sci Pract 2024 |
Sudan Virus Disease among health care workers, Uganda, 2022
Wailagala A , Blair PW , Kobba K , Mubaraka K , Aanyu-Tumukahebwa H , Kiiza D , Sekikongo MT , Klena JD , Waitt P , Bahatungire RR , Kyobe HS , Atwine D , Adaku A , Bongomin B , Kirenga B , Boore A , Clark DV , Kaggwa D , Gregory M , Kabweru W , Kayondo W , Mbabazi SK , Kibuuka H , Kimuli I , Mulei S , Mutegeki M , Emmanuel B , Mwebesa H , Naluyima P , Okello S , Tumusiime A , Montgomery J , Vasireddy V , Olaro C , Wayengera M , Lamorde M . N Engl J Med 2024 391 (3) 285-287 |
Case series of patients with Marburg Virus Disease, Equatorial Guinea, 2023
Fontana L , Ondo Avomo CO , Ngomo Mikue LE , Fuga Eyemam DÑ , Nguere MA , Mometolo IE , Bibang Nzang RN , Nguema Maye DM , Giuliani R , Jacquerioz F , Lang HJ , Kojan R , Chaillon A , Ngai S , le Polain de Waroux O , Silenzi A , Di Marco M , Negrón ME , Klena JD , Choi MJ , Mayer O , Scholte FEM , Welch SR , Zielinski-Gutierrez E , Diaz J . N Engl J Med 2024 391 (3) 283-285 |
Human Orthohantavirus disease prevalence and genotype distribution in the U.S., 2008–2020: a retrospective observational study
Whitmer SLM , Whitesell A , Mobley M , Talundzic E , Shedroff E , Cossaboom CM , Messenger S , Deldari M , Bhatnagar J , Estetter L , Zufan S , Cannon D , Chiang CF , Gibbons A , Krapiunaya I , Morales-Betoulle M , Choi M , Knust B , Amman B , Montgomery JM , Shoemaker T , Klena JD . Lancet Reg Health - Am 2024 37 ![]() ![]() Background: In the United States (U.S.), hantavirus pulmonary syndrome (HPS) and non-HPS hantavirus infection are nationally notifiable diseases. Criteria for identifying human cases are based on clinical symptoms (HPS or non-HPS) and acute diagnostic results (IgM+, rising IgG+ titers, RT-PCR+, or immunohistochemistry (IHC)+). Here we provide an overview of diagnostic testing and summarize human Hantavirus disease occurrence and genotype distribution in the U.S. from 2008 to 2020. Methods: Epidemiological data from the national hantavirus registry was merged with laboratory diagnostic testing results performed at the CDC. Residual hantavirus-positive specimens were sequenced, and the available epidemiological and genetic data sets were linked to conduct a genomic epidemiological study of hantavirus disease in the U.S. Findings: From 1993 to 2020, 833 human hantavirus cases have been identified, and from 2008 to 2020, 335 human cases have occurred. Among New World (NW) hantavirus cases detected at the CDC diagnostic laboratory (representing 29.2% of total cases), most (85.0%) were detected during acute disease, however, some convalescent cases were detected in states not traditionally associated with hantavirus infections (Connecticut, Missouri, New Jersey, Pennsylvania, Tennessee, and Vermont). From 1993 to 2020, 94.9% (745/785) of U.S. hantaviruses cases were detected west of the Mississippi with 45.7% (359/785) in the Four Corners region of the U.S. From 2008 to 2020, 67.7% of NW hantavirus cases were detected between the months of March and August. Sequencing of RT-PCR-positive cases demonstrates a geographic separation of Orthohantavirus sinnombreense species [Sin Nombre virus (SNV), New York virus, and Monongahela virus]; however, there is a large gap in viral sequence data from the Northwestern and Central U.S. Finally, these data indicate that commercial IgM assays are not concordant with CDC-developed assays, and that “concordant positive” (i.e., commercial IgM+ and CDC IgM+ results) specimens exhibit clinical characteristics of hantavirus disease. Interpretation: Hantaviral disease is broadly distributed in the contiguous U.S, viral variants are localised to specific geographic regions, and hantaviral disease infrequently detected in most Southeastern states. Discordant results between two diagnostic detection methods highlight the need for an improved standardised testing plan in the U.S. Hantavirus surveillance and detection will continue to improve with clearly defined, systematic reporting methods, as well as explicit guidelines for clinical characterization and diagnostic criteria. Funding: This work was funded by core funds provided to the Viral Special Pathogens Branch at CDC. © 2024 |
Knowledge, attitudes, and practices and long-term immune response after rVSVΔG-ZEBOV-GP Ebola vaccination in healthcare workers in high-risk districts in Uganda
Waltenburg MA , Kainulainen MH , Whitesell A , Nyakarahuka L , Baluku J , Kyondo J , Twongyeirwe S , Harmon J , Mulei S , Tumusiime A , Bergeron E , Haberling DL , Klena JD , Spiropoulou C , Montgomery JM , Lutwama JJ , Makumbi I , Driwale A , Muruta A , Balinandi S , Shoemaker T , Cossaboom CM . Vaccine 2024 BACKGROUND: The rVSVΔG-ZEBOV-GP Ebola vaccine (rVSV-ZEBOV) has been used in response to Ebola disease outbreaks caused by Ebola virus (EBOV). Understanding Ebola knowledge, attitudes, and practices (KAP) and the long-term immune response following rVSV-ZEBOV are critical to inform recommendations on future use. METHODS: We administered surveys and collected blood samples from healthcare workers (HCWs) from seven Ugandan healthcare facilities. Questionnaires collected information on demographic characteristics and KAP related to Ebola and vaccination. IgG ELISA, virus neutralization, and interferon gamma ELISpot measured immunological responses against EBOV glycoprotein (GP). RESULTS: Overall, 37 % (210/565) of HCWs reported receiving any Ebola vaccination. Knowledge that rVSV-ZEBOV only protects against EBOV was low among vaccinated (32 %; 62/192) and unvaccinated (7 %; 14/200) HCWs. Most vaccinated (91 %; 192/210) and unvaccinated (92 %; 326/355) HCWs wanted to receive a booster or initial dose of rVSV-ZEBOV, respectively. Median time from rVSV-ZEBOV vaccination to sample collection was 37.7 months (IQR: 30.5, 38.3). IgG antibodies against EBOV GP were detected in 95 % (61/64) of HCWs with vaccination cards and in 84 % (162/194) of HCWs who reported receiving a vaccination. Geometric mean titer among seropositive vaccinees was 0.066 IU/mL (95 % CI: 0.058-0.076). CONCLUSION: As Uganda has experienced outbreaks of Sudan virus and Bundibugyo virus, for which rVSV-ZEBOV does not protect against, our findings underscore the importance of continued education and risk communication to HCWs on Ebola and other viral hemorrhagic fevers. IgG antibodies against EBOV GP were detected in most vaccinated HCWs in Uganda 2─4 years after vaccination; however, the duration and correlates of protection warrant further investigation. |
Sudan virus disease super-spreading, Uganda, 2022
Komakech A , Whitmer S , Izudi J , Kizito C , Ninsiima M , Ahirirwe SR , Kabami Z , Ario AR , Kadobera D , Kwesiga B , Gidudu S , Migisha R , Makumbi I , Eurien D , Kayiwa J , Bulage L , Gonahasa DN , Kyamwine I , Okello PE , Nansikombi HT , Atuhaire I , Asio A , Elayeete S , Nsubuga EJ , Masanja V , Migamba SM , Mwine P , Nakamya P , Nampeera R , Kwiringira A , Akunzirwe R , Naiga HN , Namubiru SK , Agaba B , Zalwango JF , Zalwango MG , King P , Simbwa BN , Zavuga R , Wanyana MW , Kiggundu T , Oonyu L , Ndyabakira A , Komugisha M , Kibwika B , Ssemanda I , Nuwamanya Y , Kamukama A , Aanyu D , Kizza D , Ayen DO , Mulei S , Balinandi S , Nyakarahuka L , Baluku J , Kyondo J , Tumusiime A , Aliddeki D , Masiira B , Muwanguzi E , Kimuli I , Bulwadda D , Isabirye H , Aujo D , Kasambula A , Okware S , Ochien E , Komakech I , Okot C , Choi M , Cossaboom CM , Eggers C , Klena JD , Osinubi MO , Sadigh KS , Worrell MC , Boore AL , Shoemaker T , Montgomery JM , Nabadda SN , Mwanga M , Muruta AN , Harris JR . BMC Infect Dis 2024 24 (1) 520 ![]() ![]() BACKGROUND: On 20 September 2022, Uganda declared its fifth Sudan virus disease (SVD) outbreak, culminating in 142 confirmed and 22 probable cases. The reproductive rate (R) of this outbreak was 1.25. We described persons who were exposed to the virus, became infected, and they led to the infection of an unusually high number of cases during the outbreak. METHODS: In this descriptive cross-sectional study, we defined a super-spreader person (SSP) as any person with real-time polymerase chain reaction (RT-PCR) confirmed SVD linked to the infection of ≥ 13 other persons (10-fold the outbreak R). We reviewed illness narratives for SSPs collected through interviews. Whole-genome sequencing was used to support epidemiologic linkages between cases. RESULTS: Two SSPs (Patient A, a 33-year-old male, and Patient B, a 26-year-old male) were identified, and linked to the infection of one probable and 50 confirmed secondary cases. Both SSPs lived in the same parish and were likely infected by a single ill healthcare worker in early October while receiving healthcare. Both sought treatment at multiple health facilities, but neither was ever isolated at an Ebola Treatment Unit (ETU). In total, 18 secondary cases (17 confirmed, one probable), including three deaths (17%), were linked to Patient A; 33 secondary cases (all confirmed), including 14 (42%) deaths, were linked to Patient B. Secondary cases linked to Patient A included family members, neighbours, and contacts at health facilities, including healthcare workers. Those linked to Patient B included healthcare workers, friends, and family members who interacted with him throughout his illness, prayed over him while he was nearing death, or exhumed his body. Intensive community engagement and awareness-building were initiated based on narratives collected about patients A and B; 49 (96%) of the secondary cases were isolated in an ETU, a median of three days after onset. Only nine tertiary cases were linked to the 51 secondary cases. Sequencing suggested plausible direct transmission from the SSPs to 37 of 39 secondary cases with sequence data. CONCLUSION: Extended time in the community while ill, social interactions, cross-district travel for treatment, and religious practices contributed to SVD super-spreading. Intensive community engagement and awareness may have reduced the number of tertiary infections. Intensive follow-up of contacts of case-patients may help reduce the impact of super-spreading events. |
Case of human orthohantavirus infection, Michigan, USA, 2021
Goodfellow SM , Nofchissey RA , Arsnoe D , Ye C , Lee S , Park J , Kim WK , Chandran K , Whitmer SLM , Klena JD , Dyal JW , Shoemaker T , Riner D , Stobierski MG , Signs K , Bradfute SB . Emerg Infect Dis 2024 30 (4) 817-821 ![]() ![]() Orthohantaviruses cause hantavirus cardiopulmonary syndrome; most cases occur in the southwest region of the United States. We discuss a clinical case of orthohantavirus infection in a 65-year-old woman in Michigan and the phylogeographic link of partial viral fragments from the patient and rodents captured near the presumed site of infection. |
Crimean-Congo hemorrhagic fever virus diversity and reassortment, Pakistan, 2017-2020
Umair M , Rehman Z , Whitmer S , Mobley M , Fahim A , Ikram A , Salman M , Montgomery JM , Klena JD . Emerg Infect Dis 2024 30 (4) 654-664 ![]() ![]() Sporadic cases and outbreaks of Crimean-Congo hemorrhagic fever (CCHF) have been documented across Pakistan since 1976; however, data regarding the diversity of CCHF virus (CCHFV) in Pakistan is sparse. We whole-genome sequenced 36 CCHFV samples collected from persons infected in Pakistan during 2017-2020. Most CCHF cases were from Rawalpindi (n = 10), followed by Peshawar (n = 7) and Islamabad (n = 4). Phylogenetic analysis revealed the Asia-1 genotype was dominant, but 4 reassorted strains were identified. Strains with reassorted medium gene segments clustered with Asia-2 (n = 2) and Africa-2 (n = 1) genotypes; small segment reassortments clustered with the Asia-2 genotype (n = 2). Reassorted viruses showed close identity with isolates from India, Iran, and Tajikistan, suggesting potential crossborder movement of CCHFV. Improved and continuous human, tick, and animal surveillance is needed to define the diversity of circulating CCHFV strains in Pakistan and prevent transmission. |
Novel Oliveros-like Clade C mammarenaviruses from rodents in Argentina, 1990-2020
Shedroff E , Martin ML , Whitmer SLM , Brignone J , Garcia JB , Sen C , Nazar Y , Fabbri C , Morales-Betoulle M , Mendez J , Montgomery J , Morales MA , Klena JD . Viruses 2024 16 (3) ![]() ![]() Following an Argentine Hemorrhagic Fever (AHF) outbreak in the early 1990s, a rodent survey for Junín virus, a New World Clade B arenavirus, in endemic areas of Argentina was conducted. Since 1990, INEVH has been developing eco-epidemiological surveillance of rodents, inside and outside the Argentine Hemorrhagic Fever endemic area. Samples from rodents captured between 1993 and 2019 that were positive for Arenavirus infection underwent Sanger and unbiased, Illumina-based high-throughput sequencing, which yielded 5 complete and 88 partial Mammarenaviruses genomes. Previously, 11 genomes representing four species of New World arenavirus Clade C existed in public records. This work has generated 13 novel genomes, expanding the New World arenavirus Clade C to 24 total genomes. Additionally, two genomes exhibit sufficient genetic diversity to be considered a new species, as per ICTV guidelines (proposed name Mammarenavirus vellosense). The 13 novel genomes exhibited reassortment between the small and large segments in New World Mammarenaviruses. This work demonstrates that Clade C Mammarenavirus infections circulate broadly among Necromys species in the Argentine Hemorrhagic Fever endemic area; however, the risk for Clade C Mammarenavirus human infection is currently unknown. |
2020 Ebola virus disease outbreak in Équateur Province, Democratic Republic of the Congo: a retrospective genomic characterisation
Kinganda-Lusamaki E , Whitmer S , Lokilo-Lofiko E , Amuri-Aziza A , Muyembe-Mawete F , Makangara-Cigolo JC , Makaya G , Mbuyi F , Whitesell A , Kallay R , Choi M , Pratt C , Mukadi-Bamuleka D , Kavunga-Membo H , Matondo-Kuamfumu M , Mambu-Mbika F , Ekila-Ifinji R , Shoemaker T , Stewart M , Eng J , Rajan A , Soke GN , Fonjungo PN , Otshudiema JO , Folefack GLT , Pukuta-Simbu E , Talundzic E , Shedroff E , Bokete JL , Legand A , Formenty P , Mores CN , Porzucek AJ , Tritsch SR , Kombe J , Tshapenda G , Mulangu F , Ayouba A , Delaporte E , Peeters M , Wiley MR , Montgomery JM , Klena JD , Muyembe-Tamfum JJ , Ahuka-Mundeke S , Mbala-Kingebeni P . Lancet Microbe 2024 ![]() ![]() ![]() BACKGROUND: The Democratic Republic of the Congo has had 15 Ebola virus disease (EVD) outbreaks, from 1976 to 2023. On June 1, 2020, the Democratic Republic of the Congo declared an outbreak of EVD in the western Équateur Province (11th outbreak), proximal to the 2018 Tumba and Bikoro outbreak and concurrent with an outbreak in the eastern Nord Kivu Province. In this Article, we assessed whether the 11th outbreak was genetically related to previous or concurrent EVD outbreaks and connected available epidemiological and genetic data to identify sources of possible zoonotic spillover, uncover additional unreported cases of nosocomial transmission, and provide a deeper investigation into the 11th outbreak. METHODS: We analysed epidemiological factors from the 11th EVD outbreak to identify patient characteristics, epidemiological links, and transmission modes to explore virus spread through space, time, and age groups in the Équateur Province, Democratic Republic of the Congo. Trained field investigators and health professionals recorded data on suspected, probable, and confirmed cases, including demographic characteristics, possible exposures, symptom onset and signs and symptoms, and potentially exposed contacts. We used blood samples from individuals who were live suspected cases and oral swabs from individuals who were deceased to diagnose EVD. We applied whole-genome sequencing of 87 available Ebola virus genomes (from 130 individuals with EVD between May 19 and Sept 16, 2020), phylogenetic divergence versus time, and Bayesian reconstruction of phylogenetic trees to calculate viral substitution rates and study viral evolution. We linked the available epidemiological and genetic datasets to conduct a genomic and epidemiological study of the 11th EVD outbreak. FINDINGS: Between May 19 and Sept 16, 2020, 130 EVD (119 confirmed and 11 probable) cases were reported across 13 Équateur Province health zones. The individual identified as the index case reported frequent consumption of bat meat, suggesting the outbreak started due to zoonotic spillover. Sequencing revealed two circulating Ebola virus variants associated with this outbreak-a Mbandaka variant associated with the majority (97%) of cases and a Tumba-like variant with similarity to the ninth EVD outbreak in 2018. The Tumba-like variant exhibited a reduced substitution rate, suggesting transmission from a previous survivor of EVD. INTERPRETATION: Integrating genetic and epidemiological data allowed for investigative fact-checking and verified patient-reported sources of possible zoonotic spillover. These results demonstrate that rapid genetic sequencing combined with epidemiological data can inform responders of the mechanisms of viral spread, uncover novel transmission modes, and provide a deeper understanding of the outbreak, which is ultimately needed for infection prevention and control during outbreaks. FUNDING: WHO and US Centers for Disease Control and Prevention. |
HantaNet: A new microbetrace application for hantavirus classification, genomic surveillance, epidemiology and outbreak investigations
Cintron R , Whitmer SLM , Moscoso E , Campbell EM , Kelly R , Talundzic E , Mobley M , Chiu KW , Shedroff E , Shankar A , Montgomery JM , Klena JD , Switzer WM . Viruses 2023 15 (11) ![]() ![]() Hantaviruses zoonotically infect humans worldwide with pathogenic consequences and are mainly spread by rodents that shed aerosolized virus particles in urine and feces. Bioinformatics methods for hantavirus diagnostics, genomic surveillance and epidemiology are currently lacking a comprehensive approach for data sharing, integration, visualization, analytics and reporting. With the possibility of hantavirus cases going undetected and spreading over international borders, a significant reporting delay can miss linked transmission events and impedes timely, targeted public health interventions. To overcome these challenges, we built HantaNet, a standalone visualization engine for hantavirus genomes that facilitates viral surveillance and classification for early outbreak detection and response. HantaNet is powered by MicrobeTrace, a browser-based multitool originally developed at the Centers for Disease Control and Prevention (CDC) to visualize HIV clusters and transmission networks. HantaNet integrates coding gene sequences and standardized metadata from hantavirus reference genomes into three separate gene modules for dashboard visualization of phylogenetic trees, viral strain clusters for classification, epidemiological networks and spatiotemporal analysis. We used 85 hantavirus reference datasets from GenBank to validate HantaNet as a classification and enhanced visualization tool, and as a public repository to download standardized sequence data and metadata for building analytic datasets. HantaNet is a model on how to deploy MicrobeTrace-specific tools to advance pathogen surveillance, epidemiology and public health globally. |
Seroepidemiological investigation of Crimean Congo hemorrhagic fever virus in livestock in Uganda, 2017
Nyakarahuka L , Kyondo J , Telford C , Whitesell A , Tumusiime A , Mulei S , Baluku J , Cossaboom CM , Cannon DL , Montgomery JM , Lutwama JJ , Nichol ST , Balinandi SK , Klena JD , Shoemaker TR . PLoS One 2023 18 (11) e0288587 Crimean-Congo Hemorrhagic fever (CCHF) is an important zoonotic disease transmitted to humans both by tick vectors and contact with fluids from an infected animal or human. Although animals are not symptomatic when infected, they are the main source of human infection. Uganda has reported sporadic human outbreaks of CCHF in various parts of the country since 2013. We designed a nationwide epidemiological study to investigate the burden of CCHF in livestock. A total of 3181 animals were sampled; 1732 cattle (54.4%), 1091 goats (34.3%), and 358 sheep (11.3%) resulting in overall livestock seropositivity of IgG antibodies against CCHF virus (CCHFV) of 31.4% (999/3181). Seropositivity in cattle was 16.9% and in sheep and goats was 48.8%. Adult and juvenile animals had higher seropositivity compared to recently born animals, and seropositivity was higher in female animals (33.5%) compared to male animals (24.1%). Local breeds had higher (36.8%) compared to exotic (2.8%) and cross breeds (19.3%). Animals that had a history of abortion or stillbirth had higher seropositivity compared to those without a history of abortion or stillbirth. CCHFV seropositivity appeared to be generally higher in northern districts of the country, though spatial trends among sampled districts were not examined. A multivariate regression analysis using a generalized linear mixed model showed that animal species, age, sex, region, and elevation were all significantly associated with CCHFV seropositivity after adjusting for the effects of other model predictors. This study shows that CCHFV is actively circulating in Uganda, posing a serious risk for human infection. The results from this study can be used to help target surveillance efforts for early case detection in animals and limit subsequent spillover into humans. |
In silico prediction of interaction between Nipah virus attachment glycoprotein and host cell receptors Ephrin-B2 and Ephrin-B3 in domestic and peridomestic mammals
Hoque AF , Rahman MDM , Lamia AS , Islam A , Klena JD , Satter SM , Epstein JH , Montgomery JM , Hossain ME , Shirin T , Jahid IK , Rahman MZ . Infect Genet Evol 2023 116 105516 ![]() ![]() Nipah virus (NiV) is a lethal bat-borne zoonotic virus that causes mild to acute respiratory distress and neurological manifestations in humans with a high mortality rate. NiV transmission to humans occurs via consumption of bat-contaminated fruit and date palm sap (DPS), or through direct contact with infected individuals and livestock. Since NiV outbreaks were first reported in pigs from Malaysia and Singapore, non-neutralizing antibodies against NiV attachment Glycoprotein (G) have also been detected in a few domestic mammals. NiV infection is initiated after NiV G binds to the host cell receptors Ephrin-B2 and Ephrin-B3. In this study, we assessed the degree of NiV host tropism in domestic and peridomestic mammals commonly found in Bangladesh that may be crucial in the transmission of NiV by serving as intermediate hosts. We carried out a protein-protein docking analysis of NiV G complexes (n = 52) with Ephrin-B2 and B3 of 13 domestic and peridomestic species using bioinformatics tools. Protein models were generated by homology modelling and the structures were validated for model quality. The different protein-protein complexes in this study were stable, and their binding affinity (ΔG) scores ranged between -8.0 to -19.1 kcal/mol. NiV Bangladesh (NiV-B) strain displayed stronger binding to Ephrin receptors, especially with Ephrin-B3 than the NiV Malaysia (NiV-M) strain, correlating with the observed higher pathogenicity of NiV-B strains. From the docking result, we found that Ephrin receptors of domestic rat (R. norvegicus) had a higher binding affinity for NiV G, suggesting greater susceptibility to NiV infections compared to other study species. Investigations for NiV exposure to domestic/peridomestic animals will help us knowing more the possible role of rats and other animals as intermediate hosts of NiV and would improve future NiV outbreak control and prevention in humans and domestic animals. |
Molecular characterization of the 2022 Sudan virus disease outbreak in Uganda
Balinandi S , Whitmer S , Mulei S , Nassuna C , Pimundu G , Muyigi T , Kainulainen M , Shedroff E , Krapiunaya I , Scholte F , Nyakarahuka L , Tumusiime A , Kyondo J , Baluku J , Kiconco J , Harris JR , Ario AR , Kagirita A , Bosa HK , Ssewanyana I , Nabadda S , Mwebesa HG , Aceng JR , Atwine D , Lutwama JJ , Shoemaker TR , Montgomery JM , Kaleebu P , Klena JD . J Virol 2023 97 (10) e0059023 ![]() ![]() Uganda experienced five Ebola disease outbreaks caused by Bundibugyo virus (n = 1) and Sudan virus (SUDV) (n = 4) from 2000 to 2021. On 20 September 2022, Uganda declared a fifth Sudan virus disease outbreak in the Mubende district, resulting in 142 confirmed and 22 probable cases by the end of the outbreak declaration on 11 January 2023. The earliest identified cases, through retrospective case investigations, had onset in early August 2022. From the 142 confirmed cases, we performed unbiased (Illumina) and SUDV-amplicon-specific (Minion) high-throughput sequencing to obtain 120 SUDV genome-and coding-complete sequences, representing 95.4% (104/109) of SVD-confirmed individuals within a sequence-able range (Ct ≤30) and 10 genome sequences outside of this range and 6 duplicate genome sequences. A comparison of the nucleotide genetic relatedness for the newly emerged Mubende variant indicated that it was most closely related to the Nakisamata SUDV sequence from 2011, represented a likely new zoonotic spillover event, and exhibited an inter- and intra-outbreak substitution rate consistent with previous outbreaks. The most recent common ancestor for the Mubende variant was estimated to have occurred in October and November 2021. The Mubende variant glycoprotein amino acid sequences exhibited 99.7% similarity altogether and a maximum of 96.1% glycoprotein similarity compared to historical SUDV strains from 1976. Integrating the genetic sequence and epidemiological data into the response activities generated a broad overview of the outbreak, allowing for quick fact-checking of epidemiological connections between the identified patients. IMPORTANCE Ebola disease (EBOD) is a public health threat with a high case fatality rate. Most EBOD outbreaks have occurred in remote locations, but the 2013-2016 Western Africa outbreak demonstrated how devastating EBOD can be when it reaches an urban population. Here, the 2022 Sudan virus disease (SVD) outbreak in Mubende District, Uganda, is summarized, and the genetic relatedness of the new variant is evaluated. The Mubende variant exhibited 96% amino acid similarity with historic SUDV sequences from the 1970s and a high degree of conservation throughout the outbreak, which was important for ongoing diagnostics and highly promising for future therapy development. Genetic differences between viruses identified during the Mubende SVD outbreak were linked with epidemiological data to better interpret viral spread and contact tracing chains. This methodology should be used to better integrate discrete epidemiological and sequence data for future viral outbreaks. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jul 11, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure