Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: King WP[original query] |
---|
Comparison of ISO work of breathing and NIOSH breathing resistance measurements for air-purifying respirators
Xu SS , King WP , McClain C , Zhuang Z , Rottach DR . J Occup Environ Hyg 2021 18 (8) 1-9 The National Institute for Occupational Safety and Health's methods and requirements for air-purifying respirator breathing resistance in 42 CFR Part 84 do not include work of breathing. The International Organization for Standardization Technical Committee 94, Subcommittee 15 utilized work of breathing to evaluate airflow resistance for all classes of respiratory protective devices as part of their development of performance standards regarding respiratory protective devices. The objectives of this study were: (1) to evaluate the relationship between the International Organization for Standardization's work of breathing measurements and the National Institute for Occupational Safety and Health's breathing resistance test results; (2) to provide scientific bases for standard development organizations to decide if work of breathing should be adopted; and (3) to establish regression equations for manufacturers and test laboratories to estimate work of breathing measurements using breathing resistance data. A total of 43 respirators were tested for work of breathing at minute ventilation rates of 10, 35, 65, 105, and 135 liters per minute. Breathing resistance obtained at a constant flow rate of 85 liters per minute per National Institute of Occupational Safety and Health protocol was correlated to each of the parameters (total work of breathing, inhalation, and exhalation) obtained from the work of breathing tests. The ratio of work of breathing exhalation to work of breathing inhalation for all air-purifying respirators is similar to the ratio of exhalation to inhalation resistance when tested individually. The ratios were about 0.8 for filtering facepiece respirators, 0.5 for half-masks, and 0.25 for full-facepiece respirators. The National Institute for Occupational Safety and Health's breathing resistance is close to work of breathing's minute ventilation of 35 liters per minute, which represents the common walking/working pace in most workplaces. The work of breathing and the National Institute of Occupational Safety and Health's breathing resistance were found to be strongly and positively correlated (r values of 0.7-0.9) at each work rate for inhalation and exhalation. In addition, linear and multiple regression models (R-squared values of 0.5-0.8) were also established to estimate work of breathing using breathing resistance. Work of breathing was correlated higher to breathing resistance for full-facepiece and half-mask elastomeric respirators than filtering facepiece respirators for inhalation. For exhalation, filtering facepiece respirators were correlated much better than full-facepiece and half-mask elastomeric respirators. Therefore, the National Institute for Occupational Safety and Health's breathing resistance may reasonably be used to predict work of breathing for air-purifying respirators. The results could also be used by manufacturers for product development and evaluation. |
Work of breathing for respiratory protective devices; method implementation, intra-, inter-laboratory variability and repeatability
King WP , Sietsema M , McClain C , Xu S , Dhrimaj H . J Int Soc Respir Prot 2017 34 (2) 81-04 As part of development of performance standards, the International Organization for Standardization (ISO) technical committee, ISO/TC 94/SC 15 Respiratory protective devices (RPD), adopted work of breathing (WOB) to evaluate airflow resistance for all designs (classes) of respiratory protective devices. The interests of the National Institute for Occupational Safety and Health's (NIOSH) National Personal Protective Technology Laboratory (NPPTL) are to compare the proposed WOB method and results for current RPD with those for present resistance methods. The objectives here were to assemble a method to meet the ISO SC15 standards, validate operation and conformance, and assess repeatability of WOB measurements for RPD. WOB method implementation and use followed standards ISO 16900-5:2016 and ISO 16900-12:2016. Volume-averaged total work of breathing (WOBT/VT where VT is tidal volume) determined for standard orifices was analyzed for variation and bias. After fabrication and assembly, the method gave preliminary verification orifice results that met ISO requirements and were equivalent to those from other laboratories. Evaluation of additional results from RPD testing showed tidal volume and frequency determined compliance. Appropriate adjustments reduced average absolute bias to 1.7%. Average coefficient of variation for WOBT/VT was 2.3%. Over 97% of results obtained during significant use over time met specifications. WOBT/VT for as-received air-purifying and supplied-air RPD were repeatable (p<0.05). WOBT/VT for unsealed half mask air-purifying RPD was an average of 31% lower compared to sealed. When experimental parameters were appropriately adjusted, the ISO WOB method implemented by NIOSH NPPTL consistently provided ISO-compliant verification WOBT/VT. Results for appropriately sealed RPD were reproducible. |
Dispersion and exposure to a cough-generated aerosol in a simulated medical examination room
Lindsley WG , King WP , Thewlis RE , Reynolds JS , Panday K , Cao G , Szalajda JV . J Occup Environ Hyg 2012 9 (12) 681-90 Few studies have quantified the dispersion of potentially infectious bioaerosols produced by patients in the health care environment and the exposure of health care workers to these particles. Controlled studies are needed to assess the spread of bioaerosols and the efficacy of different types of respiratory personal protective equipment (PPE) in preventing airborne disease transmission. An environmental chamber was equipped to simulate a patient coughing aerosol particles into a medical examination room, and a health care worker breathing while exposed to these particles. The system has three main parts: (1) a coughing simulator that expels an aerosol-laden cough through a head form; (2) a breathing simulator with a second head form that can be fitted with respiratory PPE; and (3) aerosol particle counters to measure concentrations inside and outside the PPE and at locations throughout the room. Dispersion of aerosol particles with optical diameters from 0.3 to 7.5 mum was evaluated along with the influence of breathing rate, room ventilation, and the locations of the coughing and breathing simulators. Penetration of cough aerosol particles through nine models of surgical masks and respirators placed on the breathing simulator was measured at 32 and 85 L/min flow rates and compared with the results from a standard filter tester. Results show that cough-generated aerosol particles spread rapidly throughout the room, and that within 5 min, a worker anywhere in the room would be exposed to potentially hazardous aerosols. Aerosol exposure is highest with no personal protective equipment, followed by surgical masks, and the least exposure is seen with N95 FFRs. These differences are seen regardless of breathing rate and relative position of the coughing and breathing simulators. These results provide a better understanding of the exposure of workers to cough aerosols from patients and of the relative efficacy of different types of respiratory PPE, and they will assist investigators in providing research-based recommendations for effective respiratory protection strategies in health care settings. |
Detection of infectious influenza virus in cough aerosols generated in a simulated patient examination room
Noti JD , Lindsley WG , Blachere FM , Cao G , Kashon ML , Thewlis RE , McMillen CM , King WP , Szalajda JV , Beezhold DH . Clin Infect Dis 2012 54 (11) 1569-77 BACKGROUND: The potential for aerosol transmission of infectious influenza virus (ie, in healthcare facilities) is controversial. We constructed a simulated patient examination room that contained coughing and breathing manikins to determine whether coughed influenza was infectious and assessed the effectiveness of an N95 respirator and surgical mask in blocking transmission. METHODS: National Institute for Occupational Safety and Health aerosol samplers collected size-fractionated aerosols for 60 minutes at the mouth of the breathing manikin, beside the mouth, and at 3 other locations in the room. Total recovered virus was quantitated by quantitative polymerase chain reaction and infectivity was determined by the viral plaque assay and an enhanced infectivity assay. RESULTS: Infectious influenza was recovered in all aerosol fractions (5.0% in >4 mum aerodynamic diameter, 75.5% in 1-4 mum, and 19.5% in <1 mum; n = 5). Tightly sealing a mask to the face blocked entry of 94.5% of total virus and 94.8% of infectious virus (n = 3). A tightly sealed respirator blocked 99.8% of total virus and 99.6% of infectious virus (n = 3). A poorly fitted respirator blocked 64.5% of total virus and 66.5% of infectious virus (n = 3). A mask documented to be loosely fitting by a PortaCount fit tester, to simulate how masks are worn by healthcare workers, blocked entry of 68.5% of total virus and 56.6% of infectious virus (n = 2). CONCLUSIONS: These results support a role for aerosol transmission and represent the first reported laboratory study of the efficacy of masks and respirators in blocking inhalation of influenza in aerosols. The results indicate that a poorly fitted respirator performs no better than a loosely fitting mask. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure