Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-24 (of 24 Records) |
Query Trace: Kenney JL[original query] |
---|
Field-collected ticks from Benton County, Arkansas, and prevalence of associated pathogens
Panella NA , Nicholson WL , Komar N , Burkhalter KL , Hughes HR , Theuret DP , Blocher BH , Sexton C , Connelly R , Rothfeldt L , Kenney JL . J Med Entomol 2024 The recovery of a Haemaphysalis longicornis Neumann (Acari: Ixodidae) tick from a dog in Benton County, Arkansas, in 2018 triggered a significant environmental sampling effort in Hobbs State Park Conservation Area. The objective of the investigation was to assess the tick population density and diversity, as well as identify potential tick-borne pathogens that could pose a risk to public health. During a week-long sampling period in August of 2018, a total of 6,154 ticks were collected, with the majority identified as Amblyomma americanum (L), (Acari: Ixodidae) commonly known as the lone star tick. No H. longicornis ticks were found despite the initial detection of this species in the area. This discrepancy highlights the importance of continued monitoring efforts to understand the dynamics of tick populations and their movements. The investigation also focused on pathogen detection, with ticks being pooled by species, age, and sex before being processed with various bioassays. The results revealed the presence of several tick-borne pathogens, including agents associated with ehrlichiosis (n = 12), tularemia (n = 2), and Bourbon virus (BRBV) disease (n = 1), as well as nonpathogenic rickettsial and anaplasmosis organisms. These findings emphasize the importance of public health messaging to raise awareness of the risks associated with exposure to tick-borne pathogens. Prevention measures, such as wearing protective clothing, using insect repellent, and conducting regular tick checks, should be emphasized to reduce the risk of tick-borne diseases. Continued surveillance efforts and research are also essential to improve our understanding of tick-borne disease epidemiology and develop effective control strategies. |
Identification of the flavivirus conserved residues in the envelope protein hinge region for the rational design of a candidate West Nile live-attenuated vaccine
Maloney BE , Carpio KL , Bilyeu AN , Saunders DRD , Park SL , Pohl AE , Ball NC , Raetz JL , Huang CY , Higgs S , Barrett ADT , Roman-Sosa G , Kenney JL , Vanlandingham DL , Huang YS . NPJ Vaccines 2023 8 (1) 172 The flavivirus envelope protein is a class II fusion protein that drives flavivirus-cell membrane fusion. The membrane fusion process is triggered by the conformational change of the E protein from dimer in the virion to trimer, which involves the rearrangement of three domains, EDI, EDII, and EDIII. The movement between EDI and EDII initiates the formation of the E protein trimer. The EDI-EDII hinge region utilizes four motifs to exert the hinge effect at the interdomain region and is crucial for the membrane fusion activity of the E protein. Using West Nile virus (WNV) NY99 strain derived from an infectious clone, we investigated the role of eight flavivirus-conserved hydrophobic residues in the EDI-EDII hinge region in the conformational change of E protein from dimer to trimer and viral entry. Single mutations of the E-A54, E-I130, E-I135, E-I196, and E-Y201 residues affected infectivity. Importantly, the E-A54I and E-Y201P mutations fully attenuated the mouse neuroinvasive phenotype of WNV. The results suggest that multiple flavivirus-conserved hydrophobic residues in the EDI-EDII hinge region play a critical role in the structure-function of the E protein and some contribute to the virulence phenotype of flaviviruses as demonstrated by the attenuation of the mouse neuroinvasive phenotype of WNV. Thus, as a proof of concept, residues in the EDI-EDII hinge region are proposed targets to engineer attenuating mutations for inclusion in the rational design of candidate live-attenuated flavivirus vaccines. |
Cache Valley virus: an emerging arbovirus of public and veterinary health importance
Hughes HR , Kenney JL , Calvert AE . J Med Entomol 2023 60 (6) 1230-1241 Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus (Bunyavirales: Peribunyaviridae) that has been identified as a teratogen in ruminants causing fetal death and severe malformations during epizootics in the U.S. CVV has recently emerged as a viral pathogen causing severe disease in humans. Despite its emergence as a public health and agricultural concern, CVV has yet to be significantly studied by the scientific community. Limited information exists on CVV's geographic distribution, ecological cycle, seroprevalence in humans and animals, and spectrum of disease, including its potential as a human teratogen. Here, we present what is known of CVV's virology, ecology, and clinical disease in ruminants and humans. We discuss the current diagnostic techniques available and highlight gaps in our current knowledge and considerations for future research. |
Laboratory Validation of a Real-Time RT-PCR Assay for the Detection of Jamestown Canyon Virus.
Hughes HR , Kenney JL , Russell BJ , Lambert AJ . Pathogens 2022 11 (5) The neuroinvasive disease caused by Jamestown Canyon virus (JCV) infection is rare. However, increasing incidence and widespread occurrence of the infection make JCV a growing public health concern. Presently, clinical diagnosis is achieved through serological testing, and mosquito pool surveillance requires virus isolation and identification. A rapid molecular detection test, such as real-time RT-PCR, for diagnosis and surveillance of JCV has not been widely utilized. To enhance testing and surveillance, here, we describe the development and validation of a real-time RT-PCR test for the detection of JCV RNA. Three primer and probe sets were evaluated for analytical sensitivity and specificity. One probe set, JCV132FAM, was found to be the most sensitive test detecting 7.2 genomic equivalents/µL. While less sensitive, a second probe set JCV231cFAM was the most specific test with limited detection of Keystone virus at high RNA loads. Taken together, these data indicate both probe sets can be utilized for a primary sensitive screening assay and a secondary specific confirmatory assay. While both primer and probe sets detected high viral loads of Keystone virus, these assays did not detect any virus in the California encephalitis virus clade, including negative detection of the medically important La Crosse virus (LACV) and snowshoe hare virus (SSHV). The real-time RT-PCR assay described herein could be utilized in diagnosis and surveillance in regions with co-circulation of JCV and LACV or SSHV to inform public health action. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
The effect of fluctuating incubation temperatures on West Nile virus infection in Culex mosquitoes
McGregor BL , Kenney JL , Connelly CR . Viruses 2021 13 (9) Temperature plays a significant role in the vector competence, extrinsic incubation period, and intensity of infection of arboviruses within mosquito vectors. Most laboratory infection studies use static incubation temperatures that may not accurately reflect daily temperature ranges (DTR) to which mosquitoes are exposed. This could potentially compromise the application of results to real world scenarios. We evaluated the effect of fluctuating DTR versus static temperature treatments on the infection, dissemination, and transmission rates and viral titers of Culex tarsalis and Culex quinquefasciatus mosquitoes for West Nile virus. Two DTR regimens were tested including an 11 and 15◦C range, both fluctuating around an average temperature of 28◦C. Overall, no significant differences were found between DTR and static treatments for infection, dissemination, or transmission rates for either species. However, significant treatment differences were identified for both Cx. tarsalis and Cx. quinquefasciatus viral titers. These effects were species-specific and most prominent later in the infection. These results indicate that future studies on WNV infections in Culex mosquitoes should consider employing realistic DTRs to reflect interactions most accurately between the virus, vector, and environment. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
Infection, dissemination, and transmission potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for oropouche virus
McGregor BL , Connelly CR , Kenney JL . Viruses 2021 13 (2) Oropouche virus (OROV), a vector-borne Orthobunyavirus circulating in South and Central America, causes a febrile illness with high rates of morbidity but with no documented fatalities. Oropouche virus is transmitted by numerous vectors, including multiple genera of mosquitoes and Culicoides biting midges in South America. This study investigated the vector competence of three North American vectors, Culex tarsalis, Culex quinquefasciatus, and Culicoides sonorensis, for OROV. Cohorts of each species were fed an infectious blood meal containing 6.5 log(10) PFU/mL OROV and incubated for 10 or 14 days. Culex tarsalis demonstrated infection (3.13%) but not dissemination or transmission potential at 10 days post infection (DPI). At 10 and 14 DPI, Cx. quinquefasciatus demonstrated 9.71% and 19.3% infection, 2.91% and 1.23% dissemination, and 0.97% and 0.82% transmission potential, respectively. Culicoides sonorensis demonstrated 86.63% infection, 83.14% dissemination, and 19.77% transmission potential at 14 DPI. Based on these data, Cx. tarsalis is unlikely to be a competent vector for OROV. Culex quinquefasciatus demonstrated infection, dissemination, and transmission potential, although at relatively low rates. Culicoides sonorensis demonstrated high infection and dissemination but may have a salivary gland barrier to the virus. These data have implications for the spread of OROV in the event of a North American introduction. |
Short Report: Eastern equine encephalitis virus seroprevalence in Maine cervids, 2012-2017
Kenney JL , Henderson E , Mutebi JP , Saxton-Shaw K , Bosco-Lauth A , Elias SP , Robinson S , Smith RP , Lubelczyk C . Am J Trop Med Hyg 2020 103 (6) 2438-2441 Eastern equine encephalitis virus (EEEV) first emerged in Maine in the early 2000s and resulted in an epizootic outbreak in 2009. Since 2009, serum samples from cervids throughout Maine have been collected and assessed for the presence of neutralizing antibodies to EEEV to assess EEEV activity throughout the state. We tested 1,119 Odocoileus virginianus (white-tailed deer) and 982 Alces americanus (moose) serum samples collected at tagging stations during the hunting seasons from 2012 to 2017 throughout the state of Maine. Odocoileus virginianus from all 16 counties were EEEV seropositive, whereas A. americanus were seropositive in the northwestern counties of Aroostook, Somerset, Piscataquis, and Franklin counties. Seroprevalence in O. virginianus ranged from 6.6% to 21.2% and in A. americanus from 6.6% to 10.1%. Data from this report in conjunction with findings previously reported from 2009 to 2011 indicate that EEEV is endemic throughout Maine. |
Mosquito control activities during local transmission of Zika virus, Miami-Dade County, Florida, USA, 2016
McAllister JC , Porcelli M , Medina JM , Delorey MJ , Connelly CR , Godsey MS , Panella NA , Dzuris N , Boegler KA , Kenney JL , Kothera L , Vizcaino L , Lenhart AE , Mutebi JP , Vasquez C . Emerg Infect Dis 2020 26 (5) 881-890 In 2016, four clusters of local mosquitoborne Zika virus transmission were identified in Miami-Dade County, Florida, USA, generating "red zones" (areas into which pregnant women were advised against traveling). The Miami-Dade County Mosquito Control Division initiated intensive control activities, including property inspections, community education, and handheld sprayer applications of larvicides and adulticides. For the first time, the Mosquito Control Division used a combination of areawide ultralow-volume adulticide and low-volume larvicide spraying to effectively control Aedes aegypti mosquitoes, the primary Zika virus vector within the county. The number of mosquitoes rapidly decreased, and Zika virus transmission was interrupted within the red zones immediately after the combination of adulticide and larvicide spraying. |
Rapid screening of Aedes aegypti mosquitoes for susceptibility to insecticides as part of Zika emergency response, Puerto Rico
Hemme RR , Vizcaino L , Harris AF , Felix G , Kavanaugh M , Kenney JL , Nazario NM , Godsey MS , Barrera R , Miranda J , Lenhart A . Emerg Infect Dis 2019 25 (10) 1959-1961 In response to the 2016 Zika outbreak, Aedes aegypti mosquitoes from 38 locations across Puerto Rico were screened using Centers for Disease Control and Prevention bottle bioassays for sensitivity to insecticides used for mosquito control. All populations were resistant to pyrethroids. Naled, an organophosphate, was the most effective insecticide, killing all mosquitoes tested. |
Bloodmeal, Host Selection, and Genetic Admixture Analyses of Culex pipiens Complex (Diptera: Culicidae) Mosquitoes in Chicago, IL.
Kothera L , Mutebi JP , Kenney JL , Saxton-Shaw K , Ward MP , Savage HM . J Med Entomol 2019 57 (1) 78-87 The area in and around Chicago, IL, is a hotspot of West Nile virus activity. The discovery of a Culex pipiens form molestus Forskl population in Chicago in 2009 added to speculation that offspring from hybridization between Cx. pipiens f. pipiens L. and f. molestus could show a preference for feeding on humans. We collected blood-fed female mosquitoes (N = 1,023) from eight residential sites and one public park site in Chicago in July and August 2012. Bloodmeal analysis using the COI (cytochrome c oxidase subunit I) gene was performed to ascertain host choice. Almost all (99%) bloodmeals came from birds, with American Robins (Turdus migratorius L.) and House Sparrows (Passer domesticus L.) making up the largest percentage (74% combined). A forage ratio analysis comparing bird species fed upon and available bird species based on point count surveys indicated Northern Cardinals (Cardinalis cardinalis) and American Robins (Turdus migratorius) appeared to be over-utilized, whereas several species were under-utilized. Two human bloodmeals came from Culex pipiens complex mosquitoes. Admixture and population genetic analyses were conducted with 15 microsatellite loci on head and thorax DNA from the collected blood-fed mosquitoes. A modest amount of hybridization was detected between Cx. pipiens f. pipiens and f. molestus, as well as between f. pipiens and Cx. quinquefasciatus Say. Several pure Cx. quinquefasciatus individuals were noted at the two Trumbull Park sites. Our data suggest that Cx. pipiens complex mosquitoes in the Chicago area are not highly introgressed with f. molestus and appear to utilize avian hosts. |
Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus
Romo H , Kenney JL , Blitvich BJ , Brault AC . Emerg Microbes Infect 2018 7 (1) 181 Previous studies demonstrated an insect-specific flavivirus, Nhumirim virus (NHUV), can suppress growth of West Nile virus (WNV) and decrease transmission rates in NHUV/WNV co-inoculated Culex quinquefasciatus. To assess whether NHUV might interfere with transmission of other medically important flaviviruses, the ability of NHUV to suppress viral growth of Zika virus (ZIKV) and dengue-2 virus (DENV-2) was assessed in Aedes albopictus cells. Significant reductions in ZIKV (100,000-fold) and DENV-2 (10,000-fold) were observed in either cells concurrently inoculated with NHUV or pre-inoculated with NHUV. In contrast, only a transient 10-fold titer reduction was observed with an alphavirus, chikungunya virus. Additionally, restricted in vitro mosquito growth of ZIKV was associated with lowered levels of intracellular ZIKV RNA in NHUV co-inoculated cultures. To assess whether NHUV could modulate vector competence for ZIKV, NHUV-inoculated Aedes aegypti were orally exposed to ZIKV. NHUV-inoculated mosquitoes demonstrated significantly lower ZIKV infection rates (18%) compared to NHUV unexposed mosquitoes (51%) (p < 0.002). Similarly, lower ZIKV transmission rates were observed for NHUV/ZIKV dually intrathoracically inoculated mosquitoes (41%) compared to ZIKV only inoculated mosquitoes (78%) (p < 0.0001), suggesting that NHUV can interfere with both midgut infection and salivary gland infection of ZIKV in Ae. aegypti. These results indicate NHUV could be utilized to model superinfection exclusion mechanism(s) and to study the potential for the mosquito virome to impact transmission of medically important flaviviruses. |
Susceptibility and vectorial capacity of American Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to American Zika virus strains
Lozano-Fuentes S , Kenney JL , Varnado W , Byrd BD , Burkhalter KL , Savage HM . J Med Entomol 2018 56 (1) 233-240 The rapid expansion of Zika virus (ZIKV), following the recent outbreaks of Chikungunya virus, overwhelmed the public health infrastructure in many countries and alarmed many in the scientific community. Aedes aegypti (L.) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) have previously been incriminated as the vectors of these pathogens in addition to dengue virus. In our study, we challenged low generation Ae. aegypti (Chiapas, Mexico) and Ae. albopictus (North Carolina, Mississippi), with three strains of ZIKV, Puerto Rico (GenBank: KU501215), Honduras (GenBank: KX694534), and Miami (GenBank: MF988743). Following an oral challenge with 107.5 PFU/ml of the Puerto Rico strain, we observed high infection and dissemination rates in both species (95%). We report estimated transmission rates for both species (74 and 33%, for Ae. aegypti (L.) (Diptera: Culicidae) and Ae. albopictus (Skuse) (Diptera: Culicidae), respectively), and the presence of a probable salivary gland barrier in Ae. albopictus to Zika virus. Finally, we calculated vectorial capacity for both species and found that Ae. albopictus had a slightly lower vectorial capacity when compared with Ae. aegypti.Second Language La rapida expansion del virus Zika, poco despues de las epidemias de chikungunya, rebaso la infraestructura de salud publica en muchos paises y sorprendio a muchos en la comunidad cientifica. Notablemente, Aedes aegypti y Aedes albopictus transmiten estos patogenos ademas del virus del dengue. En este estudio se expusieron con tres cepas americanas de virus Zika a grupos de Aedes aegypti y Aedes albopictus de generacion reciente. Encontramos altos porcentajes de infeccion y diseminacion en ambas especies (95%). Se reporta, la transmision viral en ambas especies (74 y 33%, para Aedes aegypti and Aedes albopictus, respectivamente) y una probable barrera a nivel de glandulas salivarias. Finalmente, calculamos la capacidad vectorial para ambas especies. |
Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence.
Kenney JL , Anishchenko M , Hermance M , Romo H , Chen CI , Thangamani S , Brault AC . Vector Borne Zoonotic Dis 2018 18 (7) 371-381 The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses. |
Zika virus MB16-23 in mosquitoes, Miami-Dade County, Florida, USA, 2016
Mutebi JP , Hughes HR , Burkhalter KL , Kothera L , Vasquez C , Kenney JL . Emerg Infect Dis 2018 24 (4) 808-10 We isolated a strain of Zika virus, MB16-23, from Aedes aegypti mosquitoes collected in Miami Beach, Florida, USA, on September 2, 2016. Phylogenetic analysis suggests that MB16-23 most likely originated from the Caribbean region. |
Entomological investigations during early stages of a chikungunya outbreak in the United States Virgin Islands, 2014
Kenney JL , Burkhalter KL , Scott ML , McAllister J , Lang FE , Webster S , Maduro DJ , Johannes J , Liburd A , Mutebi JP . J Am Mosq Control Assoc 2017 33 (1) 8-15 During the 2014 chikungunya (CHIK) outbreak in the Caribbean, we performed entomological surveys on 3 United States Virgin Islands (USVI): St. Croix, St. Thomas, and St. John. We aimed to evaluate the potential for chikungunya virus (CHIKV) transmission in the USVI. The surveys took place between June 19, 2014, and June 29, 2014, during the dry season in USVI. A total of 1,929 adult mosquitoes belonging to 4 species - Culex quinquefasciatus (68.4%), Aedes aegypti (29.7%), Ae. mediovittatus (1.3%), and Ae. sollicitans (<1%) - were detected. Environmental investigations showed that between 73% and 87% of the homes had containers that could serve as mosquito larval habitats. In addition, 47% of the homes did not have air conditioning and between 69% and 79% of homes showed evidence of frequent outdoor activity exhibited by residents. Taken together, these observations suggest a high potential for CHIKV transmission in USVI. The relative abundance of Ae. aegypti on St. John's, St. Thomas, and St. Croix was 21.0, 11.0, and 3.0 mosquitoes/trap per day, respectively, suggesting that the former 2 islands were at the highest risk of CHIKV outbreaks. Insecticide resistance testing detected high levels of resistance to malathion and permethrin in several local populations of Ae. aegypti on St. Croix Island, which suggested that these 2 insecticides should not be used during CHIK outbreaks. |
Transmission incompetence of Culex quinquefasciatus and Culex pipiens pipiens from North America for Zika virus
Kenney JL , Romo H , Duggal NK , Tzeng WP , Burkhalter KL , Brault AC , Savage HM . Am J Trop Med Hyg 2017 96 (5) 1235-1240 AbstractIn late 2014, Zika virus (ZIKV; Flaviviridae, Flavivirus) emerged as a significant arboviral disease threat in the Western hemisphere. Aedes aegypti and Aedes albopictus have been considered the principal vectors of ZIKV in the New World due to viral isolation frequency and vector competence assessments. Limited reports of Culex transmission potential have highlighted the need for additional vector competence assessments of North American Culex species. Accordingly, North American Culex pipiens and Culex quinquefasciatus were orally exposed and intrathoracically inoculated with the African prototype ZIKV strain and currently circulating Asian lineage ZIKV strains to assess infection, dissemination, and transmission potential. Results indicated that these two North American Culex mosquito species were highly refractory to oral infection with no dissemination or transmission observed with any ZIKV strains assessed. Furthermore, both Culex mosquito species intrathoracically inoculated with either Asian or African lineage ZIKVs failed to expectorate virus in saliva. These in vivo results were further supported by the observation that multiple mosquito cell lines of Culex species origin demonstrated significant growth restriction of ZIKV strains compared with Aedes-derived cell lines. In summation, no evidence for the potential of Cx. pipiens or Cx. quinquefasciatus to serve as a competent vector for ZIKV transmission in North America was observed. |
Seasonal patterns in eastern equine encephalitis virus antibody in songbirds in southern Maine
Elias SP , Keenan P , Kenney JL , Morris SR , Covino KM , Robinson S , Foss KA , Rand PW , Lubelczyk C , Lacombe EH , Mutebi JP , Evers D , Smith RP Jr . Vector Borne Zoonotic Dis 2017 17 (5) 325-330 The intent of this study was to assess passerine eastern equine encephalitis virus (EEEv) seroprevalence during the breeding season in southern Maine by testing songbird species identified in the literature as amplifying hosts of this virus. In 2013 and 2014, we collected serum samples from songbirds at a mainland site and an offshore island migratory stopover site, and screened samples for EEEv antibodies using plaque reduction neutralization tests. We compared seasonal changes in EEEv antibody seroprevalence in young (hatched in year of capture) and adult birds at the mainland site, and also compared early season seroprevalence in mainland versus offshore adult birds. EEEv seroprevalence did not differ significantly between years at either site. During the early season (May), EEEv antibody seroprevalence was substantially lower (9.6%) in the island migrant adults than in mainland adults (42.9%), 2013-2014. On the mainland, EEEv antibody seroprevalence in young birds increased from 12.9% in midseason (June-August) to 45.6% in late season (September/October), 2013-2014. Seroprevalence in adult birds did not differ between seasons (48.8% vs. 53.3%). EEEv activity in Maine has increased in the past decade as measured by increased virus detection in mosquitoes and veterinary cases. High EEEv seroprevalence in young birds-as compared to that of young birds in other studies-corresponded with two consecutive active EEEv years in Maine. We suggest that young, locally hatched songbirds be sampled as a part of long-term EEEv surveillance, and provide a list of suggested species to sample, including EEEv "superspreaders." |
MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice
Brostoff T , Pesavento PA , Barker CM , Kenney JL , Dietrich EA , Duggal NK , Bosco-Lauth AM , Brault AC . Vaccine 2016 34 (44) 5366-5375 West Nile virus (WNV) is an important agent of human encephalitis that has quickly become endemic across much of the United States since its identification in North America in 1999. While the majority ( approximately 75%) of infections are subclinical, neurologic disease can occur in a subset of cases, with outcomes including permanent neurologic damage and death. Currently, there are no WNV vaccines approved for use in humans. This study introduces a novel vaccine platform for WNV to reduce viral replication in the central nervous system while maintaining peripheral replication to elicit strong neutralizing antibody titers. Vaccine candidates were engineered to incorporate microRNA (miRNA) target sequences for a cognate miRNA expressed only in neurons, allowing the host miRNAs to target viral transcription through endogenous RNA silencing. To maintain stability, these targets were incorporated in multiple locations within the 3'-untranslated region, flanking sequences essential for viral replication without affecting the viral open reading frame. All candidates replicated comparably to wild type WNV in vitro within cells that did not express the cognate miRNA. Insertional control viruses were also capable of neuroinvasion and neurovirulence in vivo in CD-1 mice. Vaccine viruses were safe at all doses tested and did not demonstrate mutations associated with a reversion to virulence when serially passaged in mice. All vaccine constructs were protective from lethal challenge in mice, producing 93-100% protection at the highest dose tested. Overall, this is a safe and effective attenuation strategy with broad potential application for vaccine development. |
Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes
Goenaga S , Kenney JL , Duggal NK , Delorey M , Ebel GD , Zhang B , Levis SC , Enria DA , Brault AC . Viruses 2015 7 (11) 5801-12 Nhumirim virus (NHUV) is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV). This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M) mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUVandWNV, or solely withWNVas a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi), while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease. |
The first outbreak of eastern equine encephalitis in Vermont: outbreak description and phylogenetic relationships of the virus isolate
Saxton-Shaw KD , Ledermann JP , Kenney JL , Berl E , Graham AC , Russo JM , Powers AM , Mutebi JP . PLoS One 2015 10 (6) e0128712 The first known outbreak of eastern equine encephalitis (EEE) in Vermont occurred on an emu farm in Rutland County in 2011. The first isolation of EEE virus (EEEV) in Vermont (VT11) was during this outbreak. Phylogenetic analysis revealed that VT11 was most closely related to FL01, a strain from Florida isolated in 2001, which is both geographically and temporally distinct from VT11. EEEV RNA was not detected in any of the 3,905 mosquito specimens tested, and the specific vectors associated with this outbreak are undetermined. |
Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses
Kenney JL , Solberg OD , Langevin SA , Brault AC . J Gen Virol 2014 95 2796-2808 In the past decade there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated "Nhumirim virus"; NHUV) (Pauvolid-Correa et al., in review) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential, 3' UTR sequence homology with alternative flaviviruses, and evaluated the virus's capacity to suppress replication of representative Culex spp. vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines such as C6/36, C710, and Culex quinquefasciatus cells, were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicate NHUV to be most similar to viruses within the yellow fever serogroup, Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. Interestingly, NHUV was found to share the fewest conserved sequence elements when compared to traditional insect-specific flaviviruses. This suggests that, despite being apparently insect-specific, this virus likely diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in significant reduction in viral production of West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Japanese encephalitis virus (JEV). The inhibitory effect was most effective against WNV and SLEV with over a million-fold and 10,000-fold reduction in peak titers, respectively. These data indicate the potential modulatory effect of flaviviral mosquito co-infections in the field and serve to identify a potential target for blocking mosquito infection with medically important flaviviruses. |
Host competence and helicase activity differences exhibited by West Nile viral variants expressing NS3-249 amino acid polymorphisms
Langevin SA , Bowen RA , Reisen WK , Andrade CC , Ramey WN , Maharaj PD , Anishchenko M , Kenney JL , Duggal NK , Romo H , Bera AK , Sanders TA , Bosco-Lauth A , Smith JL , Kuhn R , Brault AC . PLoS One 2014 9 (6) e100802 A single helicase amino acid substitution, NS3-T249P, has been shown to increase viremia magnitude/mortality in American crows (AMCRs) following West Nile virus (WNV) infection. Lineage/intra-lineage geographic variants exhibit consistent amino acid polymorphisms at this locus; however, the majority of WNV isolates associated with recent outbreaks reported worldwide have a proline at the NS3-249 residue. In order to evaluate the impact of NS3-249 variants on avian and mammalian virulence, multiple amino acid substitutions were engineered into a WNV infectious cDNA (NY99; NS3-249P) and the resulting viruses inoculated into AMCRs, house sparrows (HOSPs) and mice. Differential viremia profiles were observed between mutant viruses in the two bird species; however, the NS3-249P virus produced the highest mean peak viral loads in both avian models. In contrast, this avian modulating virulence determinant had no effect on LD50 or the neurovirulence phenotype in the murine model. Recombinant helicase proteins demonstrated variable helicase and ATPase activities; however, differences did not correlate with avian or murine viremia phenotypes. These in vitro and in vivo data indicate that avian-specific phenotypes are modulated by critical viral-host protein interactions involving the NS3-249 residue that directly influence transmission efficiency and therefore the magnitude of WNV epizootics in nature. |
Ilheus virus isolation in the Pantanal, west-central Brazil
Pauvolid-Correa A , Kenney JL , Couto-Lima D , Campos ZM , Schatzmayr HG , Nogueira RM , Brault AC , Komar N . PLoS Negl Trop Dis 2013 7 (7) e2318 The wetlands of the Brazilian Pantanal host large concentrations of diverse wildlife species and hematophagous arthropods, conditions that favor the circulation of zoonotic arboviruses. A recent study from the Nhecolandia sub-region of Pantanal reported serological evidence of various flaviviruses, including West Nile virus and Ilheus virus (ILHV). According to the age of seropositive horses, at least three flaviviruses, including ILHV, circulated in the Brazilian Pantanal between 2005 and 2009. To extend this study, we collected 3,234 adult mosquitoes of 16 species during 2009 and 2010 in the same sub-region. Mosquito pool homogenates were assayed for infectious virus on C6/36 and Vero cell monolayers and also tested for flaviviral RNA by a group-specific real-time RT-PCR. One pool containing 50 non-engorged female specimens of Aedes scapularis tested positive for ILHV by culture and for ILHV RNA by real-time RT-PCR, indicating a minimum infection rate of 2.5 per 1000. Full-length genomic sequence exhibited 95% identity to the only full genome sequence available for ILHV. The present data confirm the circulation of ILHV in the Brazilian Pantanal. |
Genetic and anatomic determinants of enzootic Venezuelan equine encephalitis virus infection of Culex (Melanoconion) taeniopus.
Kenney JL , Adams AP , Gorchakov R , Leal G , Weaver SC . PLoS Negl Trop Dis 2012 6 (4) e1606 Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV). The majority of work examining the viral determinants of vector infection has been performed in the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. Based on the fundamental differences between the epizootic and enzootic cycles, we hypothesized that the virus-vector interaction of the enzootic cycle is fundamentally different from that of the epizootic model. We therefore examined the determinants for VEEV IE infection in the enzootic vector, Culex (Melanoconion) taeniopus, and determined the number and susceptibility of midgut epithelial cells initially infected and their distribution compared to the epizootic virus-vector interaction. Using chimeric viruses, we demonstrated that the determinants of infection for the enzootic vector are different than those observed for the epizootic vector. Similarly, we showed that, unlike A. taeniorhynchus infection with subtype IC VEEV, C. taeniopus does not have a limited subpopulation of midgut cells susceptible to subtype IE VEEV. These findings support the hypothesis that the enzootic VEEV relationship with C. taeniopus differs from the epizootic virus-vector interaction in that the determinants appear to be found in both the nonstructural and structural regions, and initial midgut infection is not limited to a small population of susceptible cells. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure