Last data update: Jul 11, 2025. (Total: 49561 publications since 2009)
Records 1-30 (of 82 Records) |
Query Trace: Keller M[original query] |
---|
An influenza mRNA vaccine protects ferrets from lethal infection with highly pathogenic avian influenza A(H5N1) virus
Hatta M , Hatta Y , Choi A , Hossain J , Feng C , Keller MW , Ritter JM , Huang Y , Fang E , Pusch EA , Rowe T , De La Cruz JA , Johnson MC , Liddell J , Jiang N , Stadlbauer D , Liu L , Bhattacharjee AK , Rouse JR , Currier M , Wang L , Levine MZ , Kirby MK , Steel J , Di H , Barnes JR , Henry C , Davis CT , Nachbagauer R , Wentworth DE , Zhou B . Sci Transl Med 2024 16 (778) eads1273 ![]() The global spread of the highly pathogenic avian influenza (HPAI) A(H5N1) virus poses a serious pandemic threat, necessitating the swift development of effective vaccines. The success of messenger RNA (mRNA) vaccine technology in the COVID-19 pandemic, marked by its rapid development and scalability, demonstrates its potential for addressing other infectious threats, such as HPAI A(H5N1). We therefore evaluated mRNA vaccine candidates targeting panzootic influenza A(H5) clade 2.3.4.4b viruses, which have been shown to infect a range of mammalian species, including most recently being detected in dairy cattle. Ferrets were immunized with mRNA vaccines encoding either hemagglutinin alone or hemagglutinin and neuraminidase, derived from a 2.3.4.4b prototype vaccine virus recommended by the World Health Organization. Kinetics of the immune responses, as well as protection against a lethal challenge dose of A(H5N1) virus, were assessed. Two doses of mRNA vaccination elicited robust neutralizing antibody titers against a 2022 avian isolate and a 2024 human isolate. Further, mRNA vaccination conferred protection from lethal challenge, whereas all unvaccinated ferrets succumbed to infection. It also reduced viral titers in the upper and lower respiratory tracts of infected ferrets. These results underscore the effectiveness of mRNA vaccines against HPAI A(H5N1), showcasing their potential as a vaccine platform for future influenza pandemics. |
Recommendations for assessing commutability of a replacement batch of a secondary calibrator certified reference material
Deprez L , Johansen JV , Keller T , Budd J , Greenberg N , Weykamp C , Sandberg S , Panteghini M , Ceriotti F , Barczak E , Rej R , Fauskanger PK , MacKenzie F , Camara JE , Lyle AN , Miller WG , Delatour V . Clin Chim Acta 2024 120097 Commutable secondary certified reference materials (CRMs) play an essential role in the calibration hierarchy of many in-vitro diagnostic measurement procedures used in the medical laboratory. Therefore, sustainable availability of these CRMs is crucial to guarantee the long-term equivalence of results obtained for the clinical samples. The IFCC Working Group on Commutability in Metrological Traceability (WG-CMT) has published several recommendations for assessing the commutability of secondary calibrator CRMs. Performing a full commutability study according to these recommendations may present significant demands on the resources of CRM producers. This report provides recommendations for performing commutability equivalence assessments between existing CRMs of proven commutability and replacement batches of those CRMs. The approach evaluates the relationship of measurement results obtained with the relevant measurement procedures for the replacement batch versus the existing CRM batch. If this relationship is the same, the commutability properties of the replacement batch are considered equivalent to those of the existing CRM batch. Since the existing batch has a suitable commutability, the commutability of the replacement batch is also declared fit for purpose. Because this commutability equivalence assessment involves certain risks, a small number of representative clinical samples are included as safeguards. There are several prerequisites for performing the commutability equivalence assessment and producers of secondary CRMs will probably need to implement improvements before using this approach. However, once the improvements are implemented, the commutability equivalence assessment approach will significantly reduce the resources needed to maintain the supply of CRMs. |
Bartonella quintana endocarditis in persons experiencing homelessness, New York, New York, USA, 2020-2023
Keller M , Agladze M , Kupferman T , Rich SN , Marx GE , Gnanaprakasam R , Kodama R , Feldmesser M , Mitchell K , Wroblewski D , Juretschko S , Kleinman GM , Kuehnert MJ , Bhatnagar J , Carnes MD , Bullock H , Reagan-Steiner S , Corvese G , Ackelsberg J . Emerg Infect Dis 2024 30 (12) 2494-2501 ![]() Bartonella quintana infection can lead to bacillary angiomatosis, peliosis hepatis, chronic bacteremia, and culture-negative endocarditis. Transmitted by the human body louse (Pediculus humanus humanus), B. quintana infection has become an emerging disease in recent decades among persons experiencing homelessness. By using retrospective laboratory surveillance, we identified 5 cases of left-sided, culture-negative B. quintana endocarditis among persons in New York, New York, USA, during January 1, 2020-November 23, 2023. Identifications were made by using molecular assays. All patients experienced unsheltered homelessness in the year before hospitalization. Of those patients, 4 experienced heart failure, 3 renal failure, and 2 embolic strokes; 2 died. Aortic valve replacement occurred in 4 cases. A history of possible body louse infestation was found in 4 cases. Clinicians should consider housing status and history of lice exposure in patients with suspected bartonellosis and have a low threshold for diagnostic testing and empiric treatment in patients experiencing homelessness. |
Discriminating north American swine influenza viruses with a portable, one-step, triplex real-time RT-PCR assay, and portable sequencing
Kirby MK , Shu B , Keller MW , Wilson MM , Rambo-Martin BL , Jang Y , Liddell J , Salinas Duron E , Nolting JM , Bowman AS , Davis CT , Wentworth DE , Barnes JR . Viruses 2024 16 (10) ![]() ![]() Swine harbors a genetically diverse population of swine influenza A viruses (IAV-S), with demonstrated potential to transmit to the human population, causing outbreaks and pandemics. Here, we describe the development of a one-step, triplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay that detects and distinguishes the majority of the antigenically distinct influenza A virus hemagglutinin (HA) clades currently circulating in North American swine, including the IAV-S H1 1A.1 (α), 1A.2 (β), 1A.3 (γ), 1B.2.2 (δ1) and 1B.2.1 (δ2) clades, and the IAV-S H3 2010.1 clade. We performed an in-field test at an exhibition swine show using in-field viral concentration and RNA extraction methodologies and a portable real-time PCR instrument, and rapidly identified three distinct IAV-S clades circulating within the N.A. swine population. Portable sequencing is used to further confirm the results of the in-field test of the swine triplex assay. The IAV-S triplex rRT-PCR assay can be easily transported and used in-field to characterize circulating IAV-S clades in North America, allowing for surveillance and early detection of North American IAV-S with human outbreak and pandemic potential. |
Universal smoking machine adaptor for tobacco product testing
El-Hellani A , Watson CH , Huang M , Wilson CW , Fleshman CC , Petitti R , Pancake M , Bennett C , Keller-Hamilton BL , Jones J , Tran H , Bravo Cardenas R , Mays D , Ye W , Borthwick RP , Schaff J , Williamson RL , Wagener TL , Brinkman MC . Tob Control 2024 SIGNIFICANCE: Historically, tobacco product emissions testing using smoking machines has largely focused on combustible products, such as cigarettes and cigars. However, the popularity of newer products, such as electronic cigarettes (e-cigarettes), has complicated emissions testing because the products' mouth-end geometries do not readily seal with existing smoking and vaping machines. The demand for emissions data on popularly used products has led to inefficient and non-standardised solutions, such as laboratories making their geometry-specific custom adaptors and/or employing flexible tubing, for each unique mouth-end geometry tested. A user-friendly, validated, universal smoking machine adaptor (USMA) is needed for testing the variety of tobacco products reflecting consumer use, including e-cigarettes, heated tobacco products, cigarettes, plastic-tipped cigarillos and cigars. METHODS: A prototype USMA that is compatible with existing smoking/vaping machines was designed and fabricated. The quality of the seal between the USMA and different tobacco products, including e-cigarettes, cigars and cigarillos, was evaluated by examining the leak rate. RESULTS: Unlike commercial, product-specific adaptors, the USMA seals well with a wide range of tobacco product mouth-end geometries and masses. This includes e-cigarettes with non-cylindrical mouth ends and cigarillos with cuboid-like plastic tips. USMA leak rates were lower than or equivalent to commercial, product-specific adaptors. CONCLUSION: This report provides initial evidence that the USMA seals reliably with a variety of tobacco product mouth-end geometries and can be used with existing linear smoking/vaping machines to potentially improve the precision, repeatability and reproducibility of machine smoke yield data. Accurate and reproducible emissions testing is critical for regulating tobacco products. |
Benchmarking a universal smoking machine adaptor for tobacco product testing
El-Hellani A , Watson CH , Huang M , Wilson CW , Fleshman CC , Tran H , Chafin D , McGuigan M , Bravo Cardenas R , Petitti R , Pancake M , Bennett C , Mays D , Keller-Hamilton BL , Jones J , Ye W , Schaff J , Borthwick RP , Williamson RL , Wagener TL , Brinkman MC . Tob Control 2024 SIGNIFICANCE: Characterisation of tobacco product emissions is an important step in assessing their impact on public health. Accurate and repeatable emissions data require that a leak-tight seal be made between the smoking or vaping machine and the mouth-end of the tobacco product being tested. This requirement is challenging because of the variety of tobacco product mouth-end geometries being puffed on by consumers today. We developed and tested a prototype universal smoking machine adaptor (USMA) that interfaces with existing machines and reliably seals with a variety of tobacco product masses and geometries. METHODS: Emissions were machine-generated using the USMA and other available adaptors for a variety of electronic cigarettes (n=7 brands), cigars (n=4), cigarillos (n=2), a heated tobacco product, and a reference cigarette (1R6F), and mainstream total particulate matter (TPM) and nicotine were quantified. Data variability (precision, n≥10 replicates/brand) for all products and error (accuracy) from certified values (1R6F) were compared across adaptors. RESULTS: TPM and nicotine emissions generated using the USMA were accurate, precise and agreed with certified values for the 1R6F reference cigarette. Replicate data indicate that USMA repeatability across all tobacco products tested generally meets or exceeds that from the comparison adaptors and extant data. CONCLUSION: The USMA seals well with a variety of combustible tobacco products, e-cigarettes with differing geometries and plastic-tipped cigarillos. Variability for all measures was similar or smaller for the USMA compared with other adaptors. |
Antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S. Throughout the Delta to Omicron waves
Di H , Pusch EA , Jones J , Kovacs NA , Hassell N , Sheth M , Lynn KS , Keller MW , Wilson MM , Keong LM , Cui D , Park SH , Chau R , Lacek KA , Liddell JD , Kirby MK , Yang G , Johnson M , Thor S , Zanders N , Feng C , Surie D , DeCuir J , Lester SN , Atherton L , Hicks H , Tamin A , Harcourt JL , Coughlin MM , Self WH , Rhoads JP , Gibbs KW , Hager DN , Shapiro NI , Exline MC , Lauring AS , Rambo-Martin B , Paden CR , Kondor RJ , Lee JS , Barnes JR , Thornburg NJ , Zhou B , Wentworth DE , Davis CT . Vaccines (Basel) 2024 12 (5) ![]() ![]() Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates. |
Consensus guidelines for the monitoring and management of metachromatic leukodystrophy in the United States
Adang LA , Bonkowsky JL , Boelens JJ , Mallack E , Ahrens-Nicklas R , Bernat JA , Bley A , Burton B , Darling A , Eichler F , Eklund E , Emrick L , Escolar M , Fatemi A , Fraser JL , Gaviglio A , Keller S , Patterson MC , Orchard P , Orthmann-Murphy J , Santoro JD , Schöls L , Sevin C , Srivastava IN , Rajan D , Rubin JP , Van Haren K , Wasserstein M , Zerem A , Fumagalli F , Laugwitz L , Vanderver A . Cytotherapy 2024 ![]() Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care. |
In-field detection and characterization of B/Victoria lineage deletion variant viruses causing early influenza activity and an outbreak in Louisiana, 2019
Shu B , Wilson MM , Keller MW , Tran H , Sokol T , Lee G , Rambo-Martin BL , Kirby MK , Hassell N , Haydel D , Hand J , Wentworth DE , Barnes JR . Influenza Other Respir Viruses 2024 18 (1) e13246 ![]() ![]() BACKGROUND: In 2019, the Louisiana Department of Health reported an early influenza B/Victoria (B/VIC) virus outbreak. METHOD: As it was an atypically large outbreak, we deployed to Louisiana to investigate it using genomics and a triplex real-time RT-PCR assay to detect three antigenically distinct B/VIC lineage variant viruses. RESULTS: The investigation indicated that B/VIC V1A.3 subclade, containing a three amino acid deletion in the hemagglutinin and known to be antigenically distinct to the B/Colorado/06/2017 vaccine virus, was the most prevalent circulating virus within the specimens evaluated (86/88 in real-time RT-PCR). CONCLUSION: This work underscores the value of portable platforms for rapid, onsite pathogen characterization. |
Public health data applications using the CDC Tracking Network: Augmenting environmental hazard information with lower-latency NASA data
Amos HM , Skaff NK , Uz SS , Policelli FS , Slayback D , Macorps E , Jo MJ , Patel K , Keller CA , Abue P , Buchard V , Werner AK . Geohealth 2023 7 (12) e2023GH000971 Exposure to environmental hazards is an important determinant of health, and the frequency and severity of exposures is expected to be impacted by climate change. Through a partnership with the U.S. National Aeronautics and Space Administration, the U.S. Centers for Disease Control and Prevention's National Environmental Public Health Tracking Network is integrating timely observations and model data of priority environmental hazards into its publicly accessible Data Explorer (https://ephtracking.cdc.gov/DataExplorer/). Newly integrated data sets over the contiguous U.S. (CONUS) include: daily 5-day forecasts of air quality based on the Goddard Earth Observing System Composition Forecast, daily historical (1980-present) concentrations of speciated PM(2.5) based on the modern era retrospective analysis for research and applications, version 2, and Moderate Resolution Imaging Spectroradiometer (MODIS) daily near real-time maps of flooding (MCDWD). Data integrated into the CDC Tracking Network are broadly intended to improve community health through action by informing both research and early warning activities, including (a) describing temporal and spatial trends in disease and potential environmental exposures, (b) identifying populations most affected, (c) generating hypotheses about associations between health and environmental exposures, and (d) developing, guiding, and assessing environmental public health policies and interventions aimed at reducing or eliminating health outcomes associated with environmental factors. |
Targeted amplification and genetic sequencing of the severe acute respiratory syndrome coronavirus 2 surface glycoprotein
Keller MW , Keong LM , Rambo-Martin BL , Hassell N , Lacek KA , Wilson MM , Kirby MK , Liddell J , Owuor DC , Sheth M , Madden J , Lee JS , Kondor RJ , Wentworth DE , Barnes JR . Microbiol Spectr 2023 e0298223 ![]() ![]() The COVID-19 pandemic was accompanied by an unprecedented surveillance effort. The resulting data were and will continue to be critical for surveillance and control of SARS-CoV-2. However, some genomic surveillance methods experienced challenges as the virus evolved, resulting in incomplete and poor quality data. Complete and quality coverage, especially of the S-gene, is important for supporting the selection of vaccine candidates. As such, we developed a robust method to target the S-gene for amplification and sequencing. By focusing on the S-gene and imposing strict coverage and quality metrics, we hope to increase the quality of surveillance data for this continually evolving gene. Our technique is currently being deployed globally to partner laboratories, and public health representatives from 79 countries have received hands-on training and support. Expanding access to quality surveillance methods will undoubtedly lead to earlier detection of novel variants and better inform vaccine strain selection. |
Author Correction: Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants
Welch NL , Zhu M , Hua C , Weller J , Mirhashemi ME , Nguyen TG , Mantena S , Bauer MR , Shaw BM , Ackerman CM , Thakku SG , Tse MW , Kehe J , Uwera MM , Eversley JS , Bielwaski DA , McGrath G , Braidt J , Johnson J , Cerrato F , Moreno GK , Krasilnikova LA , Petros BA , Gionet GL , King E , Huard RC , Jalbert SK , Cleary ML , Fitzgerald NA , Gabriel SB , Gallagher GR , Smole SC , Madoff LC , Brown CM , Keller MW , Wilson MM , Kirby MK , Barnes JR , Park DJ , Siddle KJ , Happi CT , Hung DT , Springer M , MacInnis BL , Lemieux JE , Rosenberg E , Branda JA , Blainey PC , Sabeti PC , Myhrvold C . Nat Med 2023 ![]() In the version of the article originally published, some of the oligonucleotide sequences in Supplementary Table 4, on the “21 viruses” and “RVP” tabs, were mislabeled. The Supplementary Tables file has now been corrected. |
Notes from the field: Severe bartonella quintana infections among persons experiencing unsheltered homelessness - New York City, January 2020-December 2022
Rich SN , Beeson A , Seifu L , Mitchell K , Wroblewski D , Juretschko S , Keller M , Gnanaprakasam R , Agladze M , Kodama R , Kupferman T , Bhatnagar J , Martines RB , Reagan-Steiner S , Slavinski S , Kuehnert MJ , Bergeron-Parent C , Corvese G , Marx GE , Ackelsberg J . MMWR Morb Mortal Wkly Rep 2023 72 (42) 1147-1148 Bartonella quintana infection is a vectorborne disease transmitted by the human body louse (1). In the United States, homelessness is the principal risk factor for B. quintana infection (2), likely attributable to limited access to hygiene facilities (1). This infection is not nationally notifiable in the United States, and its incidence is unknown. Acute B. quintana infection can cause fever, headache, and bone pain; severe manifestations include chronic bacteremia, bacillary angiomatosis, and infective endocarditis (3). Because the bacterium requires special conditions to grow in culture, standard blood cultures are usually negative (4). Diagnosis by serology is most common; however, cross-reactivity with other Bartonella species (e.g., B. henselae) can hamper interpretation. Molecular assays specific for B. quintana have been developed (5), but availability is limited to a few laboratories. Once diagnosed, infection can be cured by several weeks to months of antibiotic therapy. |
Recommendations for setting a criterion and assessing commutability of sample materials used in external quality assessment/proficiency testing schemes
Sandberg S , Fauskanger P , Johansen JV , Keller T , Budd J , Greenberg N , Rej R , Panteghini M , Delatour V , Ceriotti F , Deprez L , Camara JE , MacKenzie F , Lyle AN , van der Hagen E , Burns C , Greg Miller W . Clin Chem 2023 69 (11) 1227-1237 It is important for external quality assessment materials (EQAMs) to be commutable with clinical samples; i.e., they should behave like clinical samples when measured using end-user clinical laboratory in vitro diagnostic medical devices (IVD-MDs). Using commutable EQAMs makes it possible to evaluate metrological traceability and/or equivalence of results between IVD-MDs. The criterion for assessing commutability of an EQAM between 2 IVD-MDs is that its result should be within the prediction interval limits based on the statistical distribution of the clinical sample results from the 2 IVD-MDs being compared. The width of the prediction interval is, among other things, dependent on the analytical performance characteristics of the IVD-MDs. A presupposition for using this criterion is that the differences in nonselectivity between the 2 IVD-MDs being compared are acceptable. An acceptable difference in nonselectivity should be small relative to the analytical performance specifications used in the external quality assessment scheme. The acceptable difference in nonselectivity is used to modify the prediction interval criterion for commutability assessment. The present report provides recommendations on how to establish a criterion for acceptable commutability for EQAMS, establish the difference in nonselectivity that can be accepted between IVD-MDs, and perform a commutability assessment. The report also contains examples for performing a commutability assessment of EQAMs. |
Recommendations for setting a criterion for assessing commutability of secondary calibrator certified reference materials
Miller WG , Keller T , Budd J , Johansen JV , Panteghini M , Greenberg N , Delatour V , Ceriotti F , Deprez L , Rej R , Camara JE , MacKenzie F , Lyle AN , van der Hagen E , Burns C , Fauskanger P , Sandberg S . Clin Chem 2023 69 (9) 966-975 A secondary higher-order calibrator is required to be commutable with clinical samples to be suitable for use in the calibration hierarchy of an end-user clinical laboratory in vitro diagnostic medical device (IVD-MD). Commutability is a property of a reference material that means results for a reference material and for clinical samples have the same numeric relationship, within specified limits, across the measurement procedures for which the reference material is intended to be used. Procedures for assessing commutability have been described in the literature. This report provides recommendations for establishing a quantitative criterion to assess the commutability of a certified reference material (CRM). The criterion is the maximum allowable noncommutability bias (MANCB) that allows a CRM to be used as a calibrator in a calibration hierarchy for an IVD-MD without exceeding the maximum allowable combined standard uncertainty for a clinical sample result (umaxCS). Consequently, the MANCB is derived as a fraction of the umaxCS for the measurand. The suitability of an MANCB for practical use in a commutability assessment is determined by estimating the number of measurements of clinical samples and CRMs required based on the precision performance and nonselectivity for the measurand of the measurement procedures in the assessment. Guidance is also provided for evaluating indeterminate commutability conclusions and how to report results of a commutability assessment. |
Association of E484K and L452R spike protein mutations with SARS-CoV-2 infection in vaccinated persons---Maryland, January – May 2021 (preprint)
Feder KA , Patel A , Vepachedu VR , Dominguez C , Keller EN , Klein L , Kim C , Blood T , Hyun J , Williams TW , Feldman KA , Mostafa HH , Morris CP , Ravel J , Duwell M , Blythe D , Myers R . medRxiv 2021 2021.07.29.21261006 Background The E484K and L452R amino acid substitutions on the spike protein of SARS-CoV-2 are associated with reduced neutralization by antibodies from acquired immunity. This study examines the respective association of these mutations with infection in persons who had previously received a COVID-19 vaccine.Methods Genetic sequences from SARS-CoV-2 specimens collected from Maryland residents and reported to Maryland Department of Health were linked to vaccination history. The prevalence of infections in fully vaccinated persons -- defined as being at least two weeks past receiving the final scheduled dose of a COVID-19 vaccine series -- was compared between infections caused by viruses carrying E484K to those not carrying E484K, and between infections caused by viruses carrying L452R to those not carrying L452R, using logistic regression to adjust for confounding.Results Of 9,048 sequenced SARS-CoV-2 specimens examined, 265 (2.9%) were collected from fully vaccinated persons. In adjusted analysis, the E484K substitution was associated with an increase in the odds of the sequenced specimen being collected from a fully vaccinated person (OR 1.96, 95% CI, 1.36 to 2.83). The L452R mutation was not significantly associated with infections in vaccinated persons (OR 1.07, 95% CI, 0.69 to 1.68).Conclusion Though more than 97% of SARS-CoV-2 infections were in persons who were not fully vaccinated, the E484K mutation was associated with increased odds of SARS-CoV-2 infection in vaccinated persons. Linking vaccination and sequencing data can help identify and estimate the impact SARS-CoV-2 mutations may have on vaccine effectiveness.Summary In viruses sequenced for Maryland’s routine SARS-CoV-2 genomic surveillance, the spike protein amino acid substitution E484K was more prevalent in viruses that infected vaccinated people than in viruses that infected people who were not vaccinated.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding to report.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Case investigation, data collection, and analysis were conducted for public health purposes. This project was reviewed by the Division of Scientific Education and Professional Development within the Center for Surveillance, Epidemiology, and Laboratory Services at the Centers for Disease Control and Prevention (CDC). The project was determined to meet the requirements of public health surveillance covered by the U.S. Department of Health and Human Services Policy for the Protection of Human Research Subjects as defined in 45 C.F.R. part 46.102(l)(2), 21 C.F.R. part 56; 42 U.S.C. Sec.241(d); 5 U.S.C. Sec.552a; 44 U.S.C. Sec.3501 et seq. In., and the decision was made that this project was nonresearch and did not require ethical review by the CDC Human Research Protection Office. Ethical approval was waived and informed consent was not required.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData are the property of the U.S. state of Maryland and are collected for public health surveillance purposes. They are not available to the ublic. |
Mitigating Pandemic Risk with Influenza A Virus Field Surveillance at a Swine-Human Interface (preprint)
Rambo-Martin BL , Keller MW , Wilson MM , Nolting JM , Anderson TK , Vincent AL , Bagal UR , Jang Y , Neuhaus EB , Davis CT , Bowman AS , Wentworth DE , Barnes JR . bioRxiv 2019 585588 Working overnight at a large swine exhibition, we identified an influenza A virus (IAV) outbreak in swine, nanopore-sequenced 13 IAV genomes from samples collected, and in real-time, determined that these viruses posed a novel risk to humans due to genetic mismatches between the viruses and current pre-pandemic candidate vaccine viruses (CVV). We developed and used a portable IAV sequencing and analysis platform called Mia (Mobile Influenza Analysis) to complete and characterize full-length consensus genomes approximately 18 hours after unpacking the mobile lab. Swine are important animal IAV reservoirs that have given rise to pandemic viruses via zoonotic transmission. Genomic analyses of IAV in swine are critical to understanding pandemic risk of viruses in this reservoir, and characterization of viruses circulating in exhibition swine enables rapid comparison to current seasonal influenza vaccines and CVVs. The Mia system rapidly identified three genetically distinct swine IAV lineages from three subtypes: A(H1N1), A(H3N2) and A(H1N2). Additional analysis of the HA protein sequences of the A(H1N2) viruses identified >30 amino acid differences between the HA1 portion of the hemagglutinin of these viruses and the most closely related pre-2009 CVV. All virus sequences were emailed to colleagues at CDC who initiated development of a synthetically derived CVV designed to provide an optimal antigenic match with the viruses detected in the exhibition. In subsequent months, this virus caused 13 infections in humans, and was the dominant variant virus in the US detected in 2018. Had this virus caused a severe outbreak or pandemic, our proactive surveillance efforts and CVV derivation would have provided an approximate 8 week time advantage for vaccine manufacturing. This is the first report of the use of field-derived nanopore sequencing data to initiate a real-time, actionable public health countermeasure. |
Direct RNA Sequencing of the Complete Influenza A Virus Genome (preprint)
Keller MW , Rambo-Martin BL , Wilson MM , Ridenour CA , Shepard SS , Stark TJ , Neuhaus EB , Dugan VG , Wentworth DE , Barnes JR . bioRxiv 2018 300384 For the first time, a complete genome of an RNA virus has been sequenced in its original form. Previously, RNA was sequenced by the chemical degradation of radiolabelled RNA, a difficult method that produced only short sequences. Instead, RNA has usually been sequenced indirectly by copying it into cDNA, which is often amplified to dsDNA by PCR and subsequently analyzed using a variety of DNA sequencing methods. We designed an adapter to short highly conserved termini of the influenza virus genome to target the (-) sense RNA into a protein nanopore on the Oxford Nanopore MinION sequencing platform. Utilizing this method and total RNA extracted from the allantoic fluid of infected chicken eggs, we demonstrate successful sequencing of the complete influenza virus genome with 100% nucleotide coverage, 99% consensus identity, and 99% of reads mapped to influenza. By utilizing the same methodology we can redesign the adapter in order to expand the targets to include viral mRNA and (+) sense cRNA, which are essential to the viral life cycle. This has the potential to identify and quantify splice variants and base modifications, which are not practically measurable with current methods. |
Identification of a Novel SARS-CoV-2 Delta-Omicron Recombinant Virus in the United States (preprint)
Lacek KA , Rambo-Martin BL , Batra D , Zheng XY , Sakaguchi H , Peacock T , Keller M , Wilson MM , Sheth M , Davis ML , Borroughs M , Gerhart J , Hassell N , Shepard SS , Cook PW , Lee J , Wentworth DE , Barnes JR , Kondor R , Paden CR . bioRxiv 2022 21 Recombination between SARS-CoV-2 virus variants can result in different viral properties (e.g., infectiousness or pathogenicity). In this report, we describe viruses with recombinant genomes containing signature mutations from Delta and Omicron variants. These genomes are the first evidence for a Delta-Omicron hybrid Spike protein in the United States. Copyright The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Number needed to vaccinate with a COVID-19 booster to prevent a COVID-19-associated hospitalization during SARS-CoV-2 Omicron BA.1 variant predominance, December 2021-February 2022, VISION Network: a retrospective cohort study
Adams K , Riddles JJ , Rowley EAK , Grannis SJ , Gaglani M , Fireman B , Hartmann E , Naleway AL , Stenehjem E , Hughes A , Dalton AF , Natarajan K , Dascomb K , Raiyani C , Irving SA , Sloan-Aagard C , Kharbanda AB , DeSilva MB , Dixon BE , Ong TC , Keller J , Dickerson M , Grisel N , Murthy K , Nanez J , Fadel WF , Ball SW , Patel P , Arndorfer J , Mamawala M , Valvi NR , Dunne MM , Griggs EP , Embi PJ , Thompson MG , Link-Gelles R , Tenforde MW . Lancet Reg Health Am 2023 23 100530 ![]() BACKGROUND: Understanding the usefulness of additional COVID-19 vaccine doses-particularly given varying disease incidence-is needed to support public health policy. We characterize the benefits of COVID-19 booster doses using number needed to vaccinate (NNV) to prevent one COVID-19-associated hospitalization or emergency department encounter. METHODS: We conducted a retrospective cohort study of immunocompetent adults at five health systems in four U.S. states during SARS-CoV-2 Omicron BA.1 predominance (December 2021-February 2022). Included patients completed a primary mRNA COVID-19 vaccine series and were either eligible to or received a booster dose. NNV were estimated using hazard ratios for each outcome (hospitalization and emergency department encounters), with results stratified by three 25-day periods and site. FINDINGS: 1,285,032 patients contributed 938 hospitalizations and 2076 emergency department encounters. 555,729 (43.2%) patients were aged 18-49 years, 363,299 (28.3%) 50-64 years, and 366,004 (28.5%) ≥65 years. Most patients were female (n = 765,728, 59.6%), White (n = 990,224, 77.1%), and non-Hispanic (n = 1,063,964, 82.8%). 37.2% of patients received a booster and 62.8% received only two doses. Median estimated NNV to prevent one hospitalization was 205 (range 44-615) and NNV was lower across study periods for adults aged ≥65 years (110, 46, and 88, respectively) and those with underlying medical conditions (163, 69, and 131, respectively). Median estimated NNV to prevent one emergency department encounter was 156 (range 75-592). INTERPRETATION: The number of patients needed to receive a booster dose was highly dependent on local disease incidence, outcome severity, and patient risk factors for moderate-to-severe disease. FUNDING: Funding was provided by the Centers for Disease Control and Prevention though contract 75D30120C07986 to Westat, Inc. and contract 75D30120C07765 to Kaiser Foundation Hospitals. |
SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility (preprint)
Zhou B , Thao TTN , Hoffmann D , Taddeo A , Ebert N , Labroussaa F , Pohlmann A , King J , Portmann J , Halwe NJ , Ulrich L , Trüeb BS , Kelly JN , Fan X , Hoffmann B , Steiner S , Wang L , Thomann L , Lin X , Stalder H , Pozzi B , de Brot S , Jiang N , Cui D , Hossain J , Wilson M , Keller M , Stark TJ , Barnes JR , Dijkman R , Jores J , Benarafa C , Wentworth DE , Thiel V , Beer M . bioRxiv 2020 During the evolution of SARS-CoV-2 in humans a D614G substitution in the spike (S) protein emerged and became the predominant circulating variant (S-614G) of the COVID-19 pandemic (1) . However, whether the increasing prevalence of the S-614G variant represents a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains elusive. Here, we generated isogenic SARS-CoV-2 variants and demonstrate that the S-614G variant has (i) enhanced binding to human ACE2, (ii) increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a novel human ACE2 knock-in mouse model, and (iii) markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Collectively, our data show that while the S-614G substitution results in subtle increases in binding and replication in vitro , it provides a real competitive advantage in vivo , particularly during the transmission bottle neck, providing an explanation for the global predominance of S-614G variant among the SARS-CoV-2 viruses currently circulating. |
Author Correction: Direct RNA Sequencing of the Coding Complete Influenza A Virus Genome.
Keller MW , Rambo-Martin BL , Wilson MM , Ridenour CA , Shepard SS , Stark TJ , Neuhaus EB , Dugan VG , Wentworth DE , Barnes JR . Sci Rep 2018 8 (1) 15746 ![]() A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper. |
Erratum: Vol. 71, No. 6.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (14) 528 The report “Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants — United States, June 2021–January 2022” contained several errors. |
SARS-CoV-2 Delta-Omicron Recombinant Viruses, United States.
Lacek KA , Rambo-Martin BL , Batra D , Zheng XY , Hassell N , Sakaguchi H , Peacock T , Groves N , Keller M , Wilson MM , Sheth M , Davis ML , Borroughs M , Gerhart J , Shepard SS , Cook PW , Lee J , Wentworth DE , Barnes JR , Kondor R , Paden CR . Emerg Infect Dis 2022 28 (7) 1442-1445 ![]() ![]() To detect new and changing SARS-CoV-2 variants, we investigated candidate Delta-Omicron recombinant genomes from Centers for Disease Control and Prevention national genomic surveillance. Laboratory and bioinformatic investigations identified and validated 9 genetically related SARS-CoV-2 viruses with a hybrid Delta-Omicron spike protein. |
Assessing sleep and pain among adults with myalgic encephalomyelitis/chronic fatigue syndrome: psychometric evaluation of the PROMIS sleep and pain short forms
Yang M , Keller S , Lin JS . Qual Life Res 2022 31 (12) 3483-3499 PURPOSE: To evaluate the psychometric properties of the patient-reported outcome measurement information system (PROMIS) short forms for assessing sleep disturbance, sleep-related impairment, pain interference, and pain behavior, among adults with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). METHODS: Data came from the Multi-Site ME/CFS study conducted between 2012 and 2020 at seven ME/CFS specialty clinics across the USA. Baseline and follow-up data from ME/CFS and healthy control (HC) groups were used to examine ceiling/floor effects, internal consistency reliability, differential item functioning (DIF), known-groups validity, and responsiveness. RESULTS: A total of 945 participants completed the baseline assessment (602 ME/CFS and 338 HC) and 441 ME/CFS also completed the follow-up. The baseline mean T-scores of PROMIS sleep and pain measures ranged from 57.68 to 62.40, about one standard deviation above the national norm (T-score=50). All four measures showed high internal consistency (=0.92 to 0.97) and no substantial floor/ceiling effects. No DIF was detected by age or sex. Known-groups comparisons among ME/CFS groups with low, medium, and high functional impairment showed significant small-sized differences in scores ((2)=0.01 to 0.05) for the two sleep measures and small-to-medium-sized differences ((2)=0.01 to 0.15) for the two pain measures. ME/CFS participants had significantly worse scores than HC ((2)=0.35 to 0.45) for all four measures. Given the non-interventional nature of the study, responsiveness was evaluated as sensitivity to change over time and the pain interference measure showed an acceptable sensitivity. CONCLUSION: The PROMIS sleep and pain measures demonstrated satisfactory psychometric properties supporting their use in ME/CFS research and clinical practice. |
Evolution and applications of recent sensing technology for occupational risk assessment: A rapid review of the literature
Fanti G , Spinazzè A , Borghi F , Rovelli S , Campagnolo D , Keller M , Borghi A , Cattaneo A , Cauda E , Cavallo DM . Sensors (Basel) 2022 22 (13) Over the last decade, technological advancements have been made available and applied in a wide range of applications in several work fields, ranging from personal to industrial enforcements. One of the emerging issues concerns occupational safety and health in the Fourth Industrial Revolution and, in more detail, it deals with how industrial hygienists could improve the risk-assessment process. A possible way to achieve these aims is the adoption of new exposure-monitoring tools. In this study, a systematic review of the up-to-date scientific literature has been performed to identify and discuss the most-used sensors that could be useful for occupational risk assessment, with the intent of highlighting their pros and cons. A total of 40 papers have been included in this manuscript. The results show that sensors able to investigate airborne pollutants (i.e., gaseous pollutants and particulate matter), environmental conditions, physical agents, and workers' postures could be usefully adopted in the risk-assessment process, since they could report significant data without significantly interfering with the job activities of the investigated subjects. To date, there are only few "next-generation" monitors and sensors (NGMSs) that could be effectively used on the workplace to preserve human health. Due to this fact, the development and the validation of new NGMSs will be crucial in the upcoming years, to adopt these technologies in occupational-risk assessment. |
Association of E484K Spike Protein Mutation With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Vaccinated Persons: Maryland, January-May 2021.
Feder KA , Patel A , Vepachedu VR , Dominguez C , Keller EN , Klein L , Kim C , Blood T , Hyun J , Williams TW , Feldman KA , Mostafa HH , Morris CP , Ravel J , Duwell M , Blythe D , Myers R . Clin Infect Dis 2022 74 (11) 2053-2056 ![]() ![]() Among 9048 people infected with SARS-CoV-2 between January and May 2021 in Maryland, in regression-adjusted analysis, SARS-CoV-2 viruses carrying the spike protein mutation E484K were disproportionately prevalent among persons infected after full vaccination against COVID-19 compared with infected persons who were not fully vaccinated (aOR, 1.96; 95% CI: 1.36-2.83). |
The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis
Walker TM , Fowler PW , Knaggs J , Hunt M , Peto TE , Walker AS , Crook DW , Walker TM , Miotto P , Cirillo DM , Kser CU , Knaggs J , Iqbal Z , Hunt M , Chindelevitch L , Farhat MR , Comas I , Comas I , Posey J , Omar SV , Peto TE , Walker AS , Crook DW , Suresh A , Uplekar S , Laurent S , Colman RE , Rodwell TC , Nathanson CM , Zignol M , Ismail N , Rodwell TC , Walker AS , Steyn AJC , Lalvani A , Baulard A , Christoffels A , Mendoza-Ticona A , Trovato A , Skrahina A , Lachapelle AS , Brankin A , Piatek A , GibertoniCruz A , Koch A , Cabibbe AM , Spitaleri A , Brandao AP , Chaiprasert A , Suresh A , Barbova A , VanRie A , Ghodousi A , Bainomugisa A , Mandal A , Roohi A , Javid B , Zhu B , Letcher B , Rodrigues C , Nimmo C , Nathanson CM , Duncan C , Coulter C , Utpatel C , Liu C , Grazian C , Kong C , Kser CU , Wilson DJ , Cirillo DM , Matias D , Jorgensen D , Zimenkov D , Chetty D , Moore DA , Clifton DA , Crook DW , vanSoolingen D , Liu D , Kohlerschmidt D , Barreira D , Ngcamu D , SantosLazaro ED , Kelly E , Borroni E , Roycroft E , Andre E , Bttger EC , Robinson E , Menardo F , Mendes FF , Jamieson FB , Coll F , Gao GF , Kasule GW , Rossolini GM , Rodger G , Smith EG , Meintjes G , Thwaites G , Hoffmann H , Albert H , Cox H , Laurenson IF , Comas I , Arandjelovic I , Barilar I , Robledo J , Millard J , Johnston J , Posey J , Andrews JR , Knaggs J , Gardy J , Guthrie J , Taylor J , Werngren J , Metcalfe J , Coronel J , Shea J , Carter J , Pinhata JM , Kus JV , Todt K , Holt K , Nilgiriwala KS , Ghisi KT , Malone KM , Faksri K , Musser KA , Joseph L , Rigouts L , Chindelevitch L , Jarrett L , Grandjean L , Ferrazoli L , Rodrigues M , Farhat M , Schito M , Fitzgibbon MM , Loemb MM , Wijkander M , Ballif M , Rabodoarivelo MS , Mihalic M , Wilcox M , Hunt M , Zignol M , Merker M , Egger M , O'Donnell M , Caws M , Wu MH , Whitfield MG , Inouye M , Mansj M , DangThi MH , Joloba M , Kamal SM , Okozi N , Ismail N , Mistry N , Hoang NN , Rakotosamimanana N , Paton NI , Rancoita PMV , Miotto P , Lapierre P , Hall PJ , Tang P , Claxton P , Wintringer P , Keller PM , Thai PVK , Fowler PW , Supply P , Srilohasin P , Suriyaphol P , Rathod P , Kambli P , Groenheit R , Colman RE , Ong RTH , Warren RM , Wilkinson RJ , Diel R , Oliveira RS , Khot R , Jou R , Tahseen S , Laurent S , Gharbia S , Kouchaki S , Shah S , Plesnik S , Earle SG , Dunstan S , Hoosdally SJ , Mitarai S , Gagneux S , Omar SV , Yao SY , GrandjeanLapierre S , Battaglia S , Niemann S , Pandey S , Uplekar S , Halse TA , Cohen T , Cortes T , Prammananan T , Kohl TA , Thuong NTT , Teo TY , Peto TEA , Rodwell TC , William T , Walker TM , Rogers TR , Surve U , Mathys V , Furi V , Cook V , Vijay S , Escuyer V , Dreyer V , Sintchenko V , Saphonn V , Solano W , Lin WH , vanGemert W , He W , Yang Y , Zhao Y , Qin Y , Xiao YX , Hasan Z , Iqbal Z , Puyen ZM , CryPticConsortium theSeq , Treat Consortium . Lancet Microbe 2022 3 (4) e265-e273 Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (73%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (07%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (914%), moxifloxacin (916%) and ethambutol (933%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation. 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license |
Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants - United States, June 2021-January 2022.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (6) 206-211 ![]() ![]() Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.(†) The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice. |
Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants.
Welch NL , Zhu M , Hua C , Weller J , Mirhashemi ME , Nguyen TG , Mantena S , Bauer MR , Shaw BM , Ackerman CM , Thakku SG , Tse MW , Kehe J , Uwera MM , Eversley JS , Bielwaski DA , McGrath G , Braidt J , Johnson J , Cerrato F , Moreno GK , Krasilnikova LA , Petros BA , Gionet GL , King E , Huard RC , Jalbert SK , Cleary ML , Fitzgerald NA , Gabriel SB , Gallagher GR , Smole SC , Madoff LC , Brown CM , Keller MW , Wilson MM , Kirby MK , Barnes JR , Park DJ , Siddle KJ , Happi CT , Hung DT , Springer M , MacInnis BL , Lemieux JE , Rosenberg E , Branda JA , Blainey PC , Sabeti PC , Myhrvold C . Nat Med 2022 28 (5) 1083-1094 ![]() The COVID-19 pandemic has demonstrated a clear need for high-throughput, multiplexed, and sensitive assays for detecting SARS-CoV-2 and other respiratory viruses as well as their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic CARMEN (mCARMEN), that combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel (RVP) to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens, with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jul 11, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure