Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-15 (of 15 Records) |
Query Trace: Kashon Michael L[original query] |
---|
Differential Expression of Serum Exosome microRNAs and Cytokines in Influenza A and B Patients Collected in the 2016 and 2017 Influenza Seasons.
Othumpangat S , Lindsley WG , Beezhold DH , Kashon ML , Burrell CN , Mubareka S , Noti JD . Pathogens 2021 10 (2) ![]() ![]() MicroRNAs (miRNAs) have remarkable stability and are key regulators of mRNA transcripts for several essential proteins required for the survival of cells and replication of the virus. Exosomes are thought to play an essential role in intercellular communications by transporting proteins and miRNAs, making them ideal in the search for biomarkers. Evidence suggests that miRNAs are involved in the regulation of influenza virus replication in many cell types. During the 2016 and 2017 influenza season, we collected blood samples from 54 patients infected with influenza and from 30 healthy volunteers to identify the potential role of circulating serum miRNAs and cytokines in influenza infection. Data comparing the exosomal miRNAs in patients with influenza B to healthy volunteers showed 76 miRNAs that were differentially expressed (p < 0.05). In contrast, 26 miRNAs were differentially expressed between patients with influenza A (p < 0.05) and the controls. Of these miRNAs, 11 were commonly expressed in both the influenza A and B patients. Interferon (IFN)-inducing protein 10 (IP-10), which is involved in IFN synthesis during influenza infection, showed the highest level of expression in both influenza A and B patients. Influenza A patients showed increased expression of IFNα, GM-CSF, interleukin (IL)-13, IL-17A, IL-1β, IL-6 and TNFα, while influenza B induced increased levels of EGF, G-CSF, IL-1α, MIP-1α, and TNF-β. In addition, hsa-miR-326, hsa-miR-15b-5p, hsa-miR-885, hsa-miR-122-5p, hsa-miR-133a-3p, and hsa-miR-150-5p showed high correlations to IL-6, IL-15, IL-17A, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) with both strains of influenza. Next-generation sequencing studies of H1N1-infected human lung small airway epithelial cells also showed similar pattern of expression of miR-375-5p, miR-143-3p, 199a-3p, and miR-199a-5p compared to influenza A patients. In summary, this study provides insights into the miRNA profiling in both influenza A and B virus in circulation and a novel approach to identify the early infections through a combination of cytokines and miRNA expression. |
Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities.
Fraser K , Kodali V , Yanamala N , Birch ME , Cena L , Casuccio G , Bunker K , Lersch TL , Evans DE , Stefaniak A , Hammer MA , Kashon ML , Boots T , Eye T , Hubczak J , Friend SA , Dahm M , Schubauer-Berigan MK , Siegrist K , Lowry D , Bauer AK , Sargent LM , Erdely A . Part Fibre Toxicol 2020 17 (1) 62 ![]() BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 μg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters. |
Biological effects of inhaled hydraulic fracturing sand dust. V. Pulmonary inflammatory, cytotoxic and oxidant effects.
Sager TM , Roberts JR , Umbright CM , Barger M , Kashon ML , Fedan JS , Joseph P . Toxicol Appl Pharmacol 2020 408 115280 ![]() The pulmonary inflammatory response to inhalation exposure to a fracking sand dust (FSD 8) was investigated in a rat model. Adult male Sprague-Dawley rats were exposed by whole-body inhalation to air or an aerosol of a FSD, i.e., FSD 8, at concentrations of 10 or 30 mg/m(3), 6 h/d for 4 d. The control and FSD 8-exposed rats were euthanized at post-exposure time intervals of 1, 7 or 27 d and pulmonary inflammatory, cytotoxic and oxidant responses were determined. Deposition of FSD 8 particles was detected in the lungs of all the FSD 8-exposed rats. Analysis of bronchoalveolar lavage parameters of toxicity, oxidant generation, and inflammation did not reveal any significant persistent pulmonary toxicity in the FSD 8-exposed rats. Similarly, the lung histology of the FSD 8-exposed rats showed only minimal changes in influx of macrophages following the exposure. Determination of global gene expression profiles detected statistically significant differential expressions of only six and five genes in the 10 mg/m(3), 1-d post-exposure, and the 30 mg/m(3), 7-d post-exposure FSD 8 groups, respectively. Taken together, data obtained from the present study demonstrated that FSD 8 inhalation exposure resulted in no statistically significant toxicity or gene expression changes in the lungs of the rats. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan, J.S., Toxicol Appl Pharmacol. 000, 000-000, 2020) has been designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems. |
Potential classification of chemical immunologic response based on gene expression profiles.
Anderson SE , Baur R , Kashon M , Lukomska E , Weatherly L , Shane HL . J Immunotoxicol 2020 17 (1) 122-134 ![]() Occupational immune diseases are a serious public health burden and are often a result of exposure to low molecular weight (LMW) chemicals. The complete immunological mechanisms driving these responses are not fully understood which has made the classification of chemical allergens difficult. Antimicrobials are a large group of immunologically-diverse LMW agents. In these studies, mice were dermally exposed to representative antimicrobial chemicals (sensitizers: didecyldimethylammonium chloride (DDAC), ortho-phthalaldehyde (OPA), irritants: benzal-konium chloride (BAC), and adjuvant: triclosan (TCS)) and the mRNA expression of cytokines and cellular mediators was evaluated using real-time qPCR in various tissues over a 7-days period. All antimicrobials caused increases in the mRNA expression of the danger signals Tslp (skin), and S100a8 (skin, blood, lung). Expression of the TH2 cytokine Il4 peaked at different timepoints for the chemicals based on exposure duration. Unique expression profiles were identified for OPA (Il10 in lymph node, Il4 and Il13 in lung) and TCS (Tlr4 in skin). Additionally, all chemicals except OPA induced decreased expression of the cellular adhesion molecule Ecad. Overall, the results from these studies suggest that unique gene expression profiles are implicated following dermal exposure to various antimicrobial agents, warranting the need for additional studies. In order to advance the development of preventative and therapeutic strategies to combat immunological disease, underlying mechanisms of antimicrobial-induced immunomodulation must be fully understood. This understanding will aid in the development of more effective methods to screen for chemical toxicity, and may potentially lead to more effective treatment strategies for those suffering from immune diseases. |
Effect of Age, High-Fat Diet, and Rat Strain on Serum Biomarkers and Telomere Length and Global DNA Methylation in Peripheral Blood Mononuclear Cells.
Antonini JM , Kodali V , Meighan TG , Roach KA , Roberts JR , Salmen R , Boyce GR , Zeidler-Erdely PC , Kashon M , Erdely A , Shoeb M . Sci Rep 2019 9 (1) 1996 ![]() The objective of the current study was to determine if age, diet, and genetic disposition (animal strain) in an animal model had early effects on specific molecular markers in circulating peripheral blood mononuclear cells (PBMCs). Three strains [Sprague-Dawley (SD), Fischer 344 (F344), and Brown-Norway (BN)] of male rats were maintained on a high-fat (HF) or regular diet. Blood was collected at 4, 12, and 24 wk to assess chemistry and to recover PBMCs. Triglycerides and body weight gain increased at all time points in the HF diet group for each strain. Telomere length in PBMCs decreased in the HF diet group compared to the regular diet group up to 24 wk in all strains. Telomere length decreased in PBMCs at 24 wk compared to baseline in all strains, indicating an age-related effect. These findings highlight that diet and age cause changes in PBMCs recovered from different strains of rats. The next tier of studies will examine the contribution of an occupational exposure (e.g., welding fume inhalation) in combination with diet, age, and strain, to assess changes in the molecular responses of isolated PBMCs. In addition, studies involving lifestyle exposure (e.g., tobacco smoke) are in the planning stages and will assess the long-term effects of exposure in our animal model. |
Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States.
Lemons AR , Hogan MB , Gault RA , Holland K , Sobek E , Olsen-Wilson KA , Park Y , Park JH , Gu JK , Kashon ML , Green BJ . Environ Sci Process Impacts 2017 19 (2) 101-110 ![]() Recent studies conducted in the Great Basin Desert region of the United States have shown that skin test reactivity to fungal and dust mite allergens are increased in children with asthma or allergy living in homes with evaporative coolers (EC). The objective of this study was to determine if the increased humidity previously reported in EC homes leads to varying microbial populations compared to homes with air conditioners (AC). Children with physician-diagnosed allergic rhinitis living in EC or AC environments were recruited into the study. Air samples were collected from the child's bedroom for genomic DNA extraction and metagenomic analysis of bacteria and fungi using the Illumina MiSeq sequencing platform. The analysis of bacterial populations revealed no major differences between EC and AC sampling environments. The fungal populations observed in EC homes differed from AC homes. The most prevalent species discovered in AC environments belonged to the genera Cryptococcus (20%) and Aspergillus (20%). In contrast, the most common fungi identified in EC homes belonged to the order Pleosporales and included Alternaria alternata (32%) and Phoma spp. (22%). The variations in fungal populations provide preliminary evidence of the microbial burden children may be exposed to within EC environments in this region. |
Comparison between active (pumped) and passive (diffusive) sampling methods for formaldehyde in pathology and histology laboratories
Lee Eun Gyung , Magrm Rana , Kusti Mohannad , Kashon Michael L , Guffey Steven , Costas Michelle M , Boykin Carie J , Harper Martin . J Occup Environ Hyg 2016 14 (1) 31-39. This study was to determine occupational exposures to formaldehyde and to compare concentrations of formaldehyde obtained by active and passive sampling methods. In one pathology and one histology laboratories, exposure measurements were collected with sets of active air samplers (Supelco LpDNPH tubes) and passive badges (ChemDisk Aldehyde Monitor 571). Sixty-six sample pairs (49 personal and 17 area) were collected and analyzed by NIOSH NMAM 2016 for active samples and OSHA Method 1007 (using the manufacturer's updated uptake rate) for passive samples. All active and passive 8-hour time-weighted average (TWA) measurements showed compliance with the OSHA permissible exposure limit (PEL-0.75 ppm) except for one passive measurement, whereas 78% for the active and 88% for the passive samples exceeded the NIOSH recommended exposure limit (REL-0.016 ppm). Overall, 73% of the passive samples showed higher concentrations than the active samples and a statistical test indicated disagreement between two methods for all data and for data without outliers. The OSHA Method cautions that passive samplers should not be used for sampling situations involving formalin solutions because of low concentration estimates in the presence of reaction products of formaldehyde and methanol (a formalin additive). However, this situation was not observed, perhaps because the formalin solutions used in these laboratories included much less methanol (3%) than those tested in the OSHA Method (up to 15%). The passive samplers in general overestimated concentrations compared to the active method, which is prudent for demonstrating compliance with an occupational exposure limit, but occasional large differences may be a result of collecting aerosolized droplets or splashes on the face of the samplers. In the situations examined in this study the passive sampler generally produces higher results than the active sampler so that a body of results from passive samplers demonstrating compliance with the OSHA PEL would be a valid conclusion. However, individual passive samples can show lower results than a paired active sampler so that a single result should be treated with caution. |
Inhibition of influenza A virus matrix and nonstructural gene expression using RNA interference.
McMillen CM , Beezhold DH , Blachere FM , Othumpangat S , Kashon ML , Noti JD . Virology 2016 497 171-184 ![]() Influenza antiviral drugs that use protein inhibitors can lose their efficacy as resistant strains emerge. As an alternative strategy, we investigated the use of small interfering RNA molecules (siRNAs) by characterizing three siRNAs (M747, M776 and M832) targeting the influenza matrix 2 gene and three (NS570, NS595 and NS615) targeting the nonstructural protein 1 and 2 genes. We also re-examined two previously reported siRNAs, M331 and M950, which target the matrix 1 and 2 genes. Treatment with M331-, M776-, M832-, and M950-siRNAs attenuated influenza titer. M776-siRNA treated cells had 29.8% less infectious virus than cells treated with the previously characterized siRNA, M950. NS570-, NS595- and NS615-siRNAs reduced nonstructural protein 1 and 2 expression and enhanced type I interferon expression by 50%. Combination siRNA treatment attenuated 20.9% more infectious virus than single siRNA treatment. Our results suggest a potential use for these siRNAs as an effective anti-influenza virus therapy. |
Association of MHC region SNPs with irritant susceptibility in healthcare workers.
Yucesoy B , Talzhanov Y , Michael Barmada M , Johnson VJ , Kashon ML , Baron E , Wilson NW , Frye B , Wang W , Fluharty K , Gharib R , Meade J , Germolec D , Luster MI , Nedorost S . J Immunotoxicol 2016 13 (5) 1-7 ![]() Irritant contact dermatitis is the most common work-related skin disease, especially affecting workers in "wet-work" occupations. This study was conducted to investigate the association between single nucleotide polymorphisms (SNPs) within the major histocompatibility complex (MHC) and skin irritant response in a group of healthcare workers. 585 volunteer healthcare workers were genotyped for MHC SNPs and patch tested with three different irritants: sodium lauryl sulfate (SLS), sodium hydroxide (NaOH) and benzalkonium chloride (BKC). Genotyping was performed using Illumina Goldengate MHC panels. A number of SNPs within the MHC Class I (OR2B3, TRIM31, TRIM10, TRIM40 and IER3), Class II (HLA-DPA1, HLA-DPB1) and Class III (C2) genes were associated (p < 0.001) with skin response to tested irritants in different genetic models. Linkage disequilibrium patterns and functional annotations identified two SNPs in the TRIM40 (rs1573298) and HLA-DPB1 (rs9277554) genes, with a potential impact on gene regulation. In addition, SNPs in PSMB9 (rs10046277 and ITPR3 (rs499384) were associated with hand dermatitis. The results are of interest as they demonstrate that genetic variations in inflammation-related genes within the MHC can influence chemical-induced skin irritation and may explain the connection between inflamed skin and propensity to subsequent allergic contact sensitization. |
Genetic Basis of Irritant Susceptibility in Health Care Workers.
Yucesoy B , Talzhanov Y , Barmada MM , Johnson VJ , Kashon ML , Baron E , Wilson NW , Frye B , Wang W , Fluharty K , Gharib R , Meade J , Germolec D , Luster MI , Nedorost S . J Occup Environ Med 2016 58 (8) 753-9 ![]() OBJECTIVE: The aim of this study was to investigate the association of single nucleotide polymorphisms (SNPs) within genes involved in inflammation, skin barrier integrity, signaling/pattern recognition, and antioxidant defense with irritant susceptibility in a group of health care workers. METHODS: The 536 volunteer subjects were genotyped for selected SNPs and patch tested with three model irritants: sodium lauryl sulfate (SLS), sodium hydroxide (NaOH), and benzalkonium chloride (BKC). Genotyping was performed on genomic DNA using Illumina Goldengate custom panels. RESULTS: The ACACB (rs2268387, rs16934132, rs2284685), NTRK2 (rs10868231), NTRK3 (rs1347424), IL22 (rs1179251), PLAU (rs2227564), EGFR (rs6593202), and FGF2 (rs308439) SNPs showed an association with skin response to tested irritants in different genetic models (all at P < 0.001). Functional annotations identified two SNPs in PLAU (rs2227564) and ACACB (rs2284685) genes with a potential impact on gene regulation. In addition, EGF (rs10029654), EGFR (rs12718939), CXCL12 (rs197452), and VCAM1 (rs3917018) genes showed an association with hand dermatitis (P < 0.005). CONCLUSIONS: The results demonstrate that genetic variations in genes related to inflammation and skin homeostasis can influence responses to irritants and may explain inter-individual variation in the development of subsequent contact dermatitis. |
Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents.
Dong J , Yu X , Porter DW , Battelli LA , Kashon ML , Ma Q . Arch Toxicol 2015 90 (2) 385-402 ![]() Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genome-wide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. |
Genetic variants in TNFa, TGFB1, PTGS1 and PTGS2 genes are associated with diisocyanate-induced asthma.
Yucesoy B , Kashon ML , Johnson VJ , Lummus ZL , Fluharty K , Gautrin D , Cartier A , Boulet LP , Sastre J , Quirce S , Tarlo SM , Cruz MJ , Munoz X , Luster MI , Bernstein DI . J Immunotoxicol 2015 13 (1) 1-8 ![]() Diisocyanates are the most common cause of occupational asthma, but risk factors are not well defined. A case-control study was conducted to investigate whether genetic variants in inflammatory response genes (TNFalpha, IL1alpha, IL1beta, IL1RN, IL10, TGFB1, ADAM33, ALOX-5, PTGS1, PTGS2 and NAG-1/GDF15) are associated with increased susceptibility to diisocyanate asthma (DA). These genes were selected based on their role in asthmatic inflammatory processes and previously reported associations with asthma phenotypes. The main study population consisted of 237 Caucasian French Canadians from among a larger sample of 280 diisocyanate-exposed workers in two groups: workers with specific inhalation challenge (SIC) confirmed DA (DA+, n = 95) and asymptomatic exposed workers (AW, n = 142). Genotyping was performed on genomic DNA, using a 5' nuclease PCR assay. After adjusting for potentially confounding variables of age, smoking status and duration of exposure, the PTGS1 rs5788 and TGFB1 rs1800469 single nucleotide polymorphisms (SNP) showed a protective effect under a dominant model (OR = 0.38; 95% CI = 0.17, 0.89 and OR = 0.38; 95% CI = 0.18, 0.74, respectively) while the TNFalpha rs1800629 SNP was associated with an increased risk of DA (OR = 2.08; 95% CI = 1.03, 4.17). Additionally, the PTGS2 rs20417 variant showed an association with increased risk of DA in a recessive genetic model (OR = 6.40; 95% CI = 1.06, 38.75). These results suggest that genetic variations in TNFalpha, TGFB1, PTGS1 and PTGS2 genes contribute to DA susceptibility. |
Genetic variants in the major histocompatibility complex class I and class II genes are associated with diisocyanate-induced Asthma.
Yucesoy B , Johnson VJ , Lummus ZL , Kashon ML , Rao M , Bannerman-Thompson H , Frye B , Wang W , Gautrin D , Cartier A , Boulet LP , Sastre J , Quirce S , Tarlo SM , Germolec DR , Luster MI , Bernstein DI . J Occup Environ Med 2014 56 (4) 382-7 ![]() OBJECTIVE: To investigate the association between single nucleotide polymorphisms (SNPs) located across the major histocompatibility complex and susceptibility to diisocyanate-induced asthma (DA). METHODS: The study population consisted of 140 diisocyanate-exposed workers. Genotyping was performed using the Illumina GoldenGate major histocompatibility complex panels. RESULTS: The HLA-E rs1573294 and HLA-DPB1 rs928976 SNPs were associated with an increased risk of DA under dominant (odds ratio [OR], 6.27; 95% confidence interval [CI], 2.37 to 16.6; OR, 2.79, 95% CI, 0.99 to 7.81, respectively) and recessive genetic models (OR, 6.27, 95% CI, 1.63 to 24.13; OR, 10.10, 95% CI, 3.16 to 32.33, respectively). The HLA-B rs1811197, HLA-DOA rs3128935, and HLA-DQA2 rs7773955 SNPs conferred an increased risk of DA in a dominant model (OR, 7.64, 95% CI, 2.25 to 26.00; OR, 19.69, 95% CI, 2.89 to 135.25; OR, 8.43, 95% CI, 3.03 to 23.48, respectively). CONCLUSION: These results suggest that genetic variations within HLA genes play a role in DA risk. |
Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments.
Rittenour WR , Ciaccio CE , Barnes CS , Kashon ML , Lemons AR , Beezhold DH , Green BJ . Environ Sci Process Impacts 2013 16 (1) 33-43 ![]() Compared to traditional methods of fungal exposure assessment, molecular methods have provided new insight into the richness of fungal communities present in both indoor and outdoor environments. In this study, we describe the diversity of fungi in the homes of asthmatic children located in Kansas City. Fungal diversity was determined by sequencing the internal transcribed spacer (ITS) regions of ribosomal RNA derived from fungi collected in air and dust samples from 31 homes participating in the Kansas City Safe and Healthy Homes Program (KCSHHP). Sequencing results were then compared to data obtained using viable and non-viable fungal exposure assessment methods. ITS clone libraries were predominantly derived from the phylum Ascomycota in both air (68%) and dust (92%) samples and followed by the Basidiomycota and Zygomycota. The majority of Ascomycota clones belonged to four orders including the Pleosporales, Eurotiales, Capnodiales, and Dothideales. ITS sequencing revealed the presence of a number of rarely documented fungal species placed in the Pleosporales. Several species placed in the Basidiomycota were detected in ITS clone libraries but not by viable or non-viable methods. The prevalence of organizational taxonomic units (OTUs) was significantly higher in air than in dust samples (p < 0.0001); however, no differences between OTUs in air samples collected in the subjects' room and basement were observed. These sequencing results demonstrate a much broader diversity of Ascomycota and Basidiomycota communities in KCSHHP indoor environments than previously estimated using traditional methods of assessment. |
Blood gene expression profiling detects silica exposure and toxicity.
Sellamuthu R , Umbright C , Roberts JR , Chapman R , Young SH , Richardson D , Leonard H , McKinney W , Chen B , Frazer D , Li S , Kashon M , Joseph P . Toxicol Sci 2011 122 (2) 253-64 ![]() Blood gene expression profiling was investigated as a minimally invasive surrogate approach to detect silica exposure and resulting pulmonary toxicity. Rats were exposed by inhalation to crystalline silica (15 mg/m(3), 6 hours/day, 5 days), and pulmonary damage and blood gene expression profiles were determined after latency periods (0 - 16 weeks). Silica exposure resulted in pulmonary toxicity as evidenced by histological and biochemical changes in the lungs. The number of significantly differentially expressed genes in the blood, identified by microarray analysis, correlated with the severity of silica-induced pulmonary toxicity. Functional analysis of the differentially expressed genes identified activation of inflammatory response as the major biological signal. Induction of pulmonary inflammation, as suggested by the blood gene expression data, was supported by significant increases in the number of macrophages and infiltrating neutrophils as well as the activity of pro-inflammatory chemokines observed in the lungs of the silica exposed rats. A gene expression signature developed using the blood gene expression data predicted the exposure of rats to lower, minimally toxic and non-toxic concentrations of silica. Taken together our findings suggest the potential application of peripheral blood gene expression profiling as a minimally invasive surrogate approach to detect pulmonary toxicity induced by silica in the rat. However, further research is required to determine the potential application of our findings specifically to monitor human exposure to silica and the resulting pulmonary effects. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure